Трехфазный ввод: Трехфазный ввод — основные моменты при реализации трехфазного ввода в здание, 380В

Содержание

Трехфазный ввод — основные моменты при реализации трехфазного ввода в здание, 380В

Трехфазный ввод

Рубрика: Статьи   ‡  

На сегодняшний день, в большинстве бытовых потребителей электроэнергии электрический ввод в домовладения организован по однофазной схеме. Это предполагает подведение одного фазного провода и PEN-провода. Если суммарная потребляемая мощность дома, квартиры является сравнительно не большой, например до 5 кВт  и отсутствуют трехфазные потребители электроэнергии, то однофазной системы вполне достаточно для нормального функционирования объекта. Но для современных домов и коттеджей, больших магазинов,  административных зданий в силу большой потребляемой мощности и наличия трехфазных электропотребителей,  однофазного ввода не достаточно. В этих случаях необходим трехфазный ввод.

Примерами трехфазных электропотребителей могут быть: мощные двигатели насосов, станки, различные привода, мощные системы вентиляции и кондиционирования, системы электрического отопления. Все эти электропотребители требуют наличия трехфазной сети 380/220 В.
Как правило при организации трехфазного электрического ввода к объекту потребителя приводят три фазных провода и один нейтральный (PEN) провод — система заземления TN-C-S. При реализации воздушного ввода с TN-C-S системой заземления на вводе в здание выполняют контур повторного заземления PEN проводника, а также в вводно-распределительном устройстве (ВРУ) здания формируют главную заземляющую шину (ГЗШ), после которой все электропроводки выполняются 3-х или 5-ти проводными: 3 фазы, N-проводник, PE-проводник (присоединен к ГЗШ). Также возможна пятипроводная система начиная от источники питания по стороне 0,4 кВ (РУ-0,4 кВ трансформаторной подстанции) — TN-S система заземления.
Трехфазный ввод организуется в соответствии с утвержденной проектной схемы и предусматривает применение: трехфазного вводного защитного автоматического выключателя (рубильника с предохранителями), трехфазного счетчика электроэнергии, в некоторых случаях требуется установка трехфазного ПЗР (прибор защиты релейный),  предотвращающий потребление мощности больше указанной в договоре.

Немаловажным фактором является то, что трехфазная электрическая разводка силовой цепи подразумевает под собой равномерное деление нагрузки по всем имеющимся рабочим фазам. В силу того, что большая часть электрического оборудования используемого в быту однофазная — необходимо как можно точнее распределить ее пофазно. Для качественного, надежного и безопасного электроснабжения — монтажные работы и экслуатацию оборудования необходимо выполнять в строгом соответствии с проектной документацией.

Оставить комментарий или два

Пожалуйста, зарегистрируйтесь для комментирования.

Свежие записи

Свежие комментарии

Что лучше для частного дома – однофазный или трехфазный ввод?

Если вы планируете подключить частный дом к электрическим сетям, то стает вопрос о том, какой ввод в дом выбрать. В данной статье рассмотрим, что лучше для частного дома – однофазный или трехфазный ввод. Если сравнивать нагрузку современных бытовых электроприборов с нагрузкой электроприборов двадцатилетней давности, то можно сделать вывод, что количество потребляемой электроэнергии сегодня выросло в несколько раз. Причем наблюдается тенденция постоянного увеличения потребляемой электрической энергии на душу населения. Это связано, прежде всего, с тем, что в каждом доме появилось огромное количество бытовых электроприборов, характеризующихся большой мощностью и соответственно большим количеством потребляемой электрической энергии. Если раньше лимит нагрузки электропроводки одной квартиры (дома) был 8-10 А, то сейчас такого лимита хватит для одного электрического чайника, нагрузка которого составляет 10 А. Чем отличает однофазный электрический ввод от трехфазного? Практически все бытовые электроприборы рассчитаны для работы в однофазной сети переменного тока. То есть для подключения бытового электроприбора необходимо одна фаза и нулевой проводник. Однофазный ввод – одна фаза и нулевой проводник, трехфазный ввод – соответственно три фазы и нулевой проводник. Исходя из этого, можно сделать вывод, что принципиальное отличие трехфазного ввода от однофазного ввода – это количество фаз.

Преимущества трехфазного ввода в частном доме

Преимущества трехфазного ввода в частном доме очевидны.
 Вы можете одну фазу использовать для питания электропроводки дома, вторую фазу для питания наиболее мощный бытовых приборов дома, например кухни, а третью для электроснабжения гаража и других вспомогательных помещений на территории частного дома. Кроме того, у вас есть еще одно преимущество – возможность подключения трехфазных потребителей электрической энергии, что особенно актуально для частного дома. Например, трехфазный сварочный аппарат, электрическая плита, обогреватель, водяной насос, а также другие устройства с асинхронными трехфазными двигателями (молотилки для зерна, компрессоры и т.п.). Основное преимущество использования трехфазных электроприборов – это отсутствие перекоса фаз в электрической сети, так как нагрузка данных электроприборов равномерно распределяется на три фазы электрической сети. Следует отметить, что при использовании трехфазного ввода стает вопрос о равномерном распределении нагрузки однофазных бытовых электроприборов частного дома. В противном случае, то есть при значительной несимметричности нагрузок, возможен перекос фаз, в частности перекос фазных напряжений.
Следовательно, при проектировании трехфазной электропроводки частного дома необходимо произвести правильное распределение нагрузки бытовых однофазных электроприборов. Кроме вышеперечисленного следует выделить еще одну характерную особенность трехфазного ввода в частный дом – значительно больший размер учетно-распределительного электрического щитка по сравнению с однофазным щитком. В первую очередь это связано с тем, что трехфазный счетчик значительно больше однофазного. Что касается модульных защитных аппаратов, то для трехфазных автоматических выключателей, устройств защитного отключения необходимо значительно больше модульных мест в распределительном электрическом щите. Кроме того, схема электропроводки частного дома с трехфазным вводом характеризуется большим, по сравнению с однофазной проводкой, количеством линий и соответственно защитных аппаратов, для которых также необходимо предусмотреть место в квартирном щитке. Проблема большого размера трехфазного учетно-распределительного щитка частного дома решаема.
Не обязательно устанавливать щиток внутри дома, его можно установить на улице. Если вы решили установить распределительный щиток на улице, то обратите особое внимание на степень защиты корпуса IP. Как правило, степень защиты корпуса щитка, предназначенного для монтажа вне помещений – IP31 или IP54. Для обеспечения удобства обслуживания электропроводки частного дома можно предусмотреть установку нескольких распределительных щитков. Например, на улице можно установить щиток типа ЩРУН-3/12, в котором будет расположен прибор учета электрической энергии, а также вводные аппараты защиты. В доме будет установлен небольшой пластиковый бокс Тусо 68112 СП 12, рассчитанный на 12 модульных мест, в котором будут расположены аппараты защиты линий электропроводки дома. В гараже или другом сооружении на территории частного дома может быть установлен еще одни аналогичный щиток. В общем, вы можете спроектировать схему электропроводки частного дома в соответствии со своими потребностями и удобством дальнейшего обслуживания.
Что касается лимитов потребляемой мощности, то в данном случае существует заблуждение о том, что трехфазный ввод – это значительно больший лимит потребляемой мощности. В данном случае все зависит от установленных норм энергоснабжающей компании, которая осуществляет подключение частных домов к электрическим сетям. В соответствии с действующими техническими условиями подключения частных домов, может быть установлен одинаковый лимит потребления мощности, как для однофазного ввода, так и для трехфазного. Какой все-таки выбрать ввод  одно- или трехфазный? Если лимит потребления мощности одинаковый, как для однофазного, так и трехфазного ввода, то следует руководствоваться потребностью в использовании трехфазных бытовых электроприборов. Если в хозяйстве у вас нет трехфазных бытовых электроприборов, и в будущем вы не планируете их использовать, то проводить в дом трехфазный ввод не имеет смысла. Кроме вышесказанного, следует отметить, что подключение трехфазного ввода – это довольно кропотливый процесс, который несколько сложнее процедуры подключения однофазного ввода электрической сети.
Это, в первую очередь обусловлено тем, что использование трехфазного ввода предусматривает большие требования к пожарной безопасности дома и других сооружений на его территории.

Автомат на трехфазный ввод — Электрика

9 минут назад, Spy007 сказал:

если у вас есть контур заземления

у меня нету. Пока что. Сейчас важно подключиться, пока дают неограниченную мощность, с заземлением будем решать потом

10 минут назад, Spy007 сказал:

если на подстанции отгорит ноль

у меня потом (после щита учета) будут щиты в доме и бане, там я планировал реле напряжения ставить, они же при пропадании ноля сразу выключатся?

6 минут назад, Spy007 сказал:

мощность считается по силе тока

спасибо, просто в интернетах насмотрелся таблиц всяких и запутался вконец

6 минут назад, Grey67 сказал:

при однофазном (фаза + ноль) включении нагрузок ваш автомат будет держать 3 нагрузки по 63 ампера

вот именно это мне и нужно

Еще вопросы: как лучше-три автомата с объединенными язычками или один трехфазный?

И что предпочтительнее: автомат 4,5кА или 6кА? Какой у меня я не помню, только вечером смогу посмотреть, в гараже лежит.

Что это вообще такое, эти цифры 4.5 и 6

Может быть подскажете сечение СИП, какое брать (от столба до автомата в щите учета) и потом от щита до щитов в доме и бане. Чтобы был небольшой запас по мощности

Однофазная или трехфазная электростанция – что выбрать

Потенциальные покупатели часто задаются вопросом, какой из видов электростанций лучше – однофазный или трехфазный. Знакомясь с техническими характеристиками генераторов, они выясняют, что КПД первых агрегатов немного ниже, но менеджеры настоятельно рекомендуют именно однофазные станции. При этом на дом приходятся три фазы.

Невозможно однозначно ответить на вопрос, какой из видов генераторов лучше: для каждой конкретной ситуации необходимо изучить все нюансы, связанные с параметрами основного ввода и схемы распределения между потребителями.

 

Особенности электростанций в зависимости от количества фаз

  • Назначение трехфазного электрогенератора – обеспечение питанием потребителей с 3 фазами. Для однофазных приборов, разделенных на три группы, он не подойдет.
  • Одно из ключевых требований для безаварийной работы трехфазной станции – равномерное распределение нагрузки между всеми фазами. Не допускается разница свыше 25 %.
  • Мощность однофазной генерирующей установки передается целиком по этой фазе, а трехфазной – равномерно распределена.

 

Способы подключения генераторов

В жилом секторе трехфазные потребители встречаются крайне редко: в основном это электродвигатели и различные нагревательные системы, выпускавшиеся много лет назад. Современные бытовые приборы производятся в однофазном исполнении, поэтому пользователю легче заменить морально устаревшее оборудование на новое, чем усложнять схему резервного питания.

Переключение с основной линии на резервную обычно выполняется при помощи АВР (автоматического включения резерва). Его основная задача – быстрое включение генератора при выходе параметров основной сети за пределы полей допусков, обратное переключение после их восстановления и остановка электростанции. АВР также выступает в качестве барьера, предотвращающего попадание напряжения из основной сети в цепь агрегата.

Однофазные ввод и электростанция. Это самая простая ситуация, встречающаяся чаще всего. Дом запитан от одной фазы, в нем отсутствуют 3-фазные потребители. Для обеспечения резервного питания используются однофазные генератор и АВР.

Трехфазный ввод, однофазная электростанция для группы потребителей. Такой способ применим, когда на дом приходятся три фазы, каждая из которых обеспечивает энергией группу потребителей. Можно резервировать одну из них – самую важную, отвечающую за жизнеобеспечение (например, освещение, автоматику отопления и холодильник), а другие две оставить без питания. Используются однофазные электростанция и АВР.

Трехфазный ввод и генератор для всех групп потребителей. В схеме, когда на дом заходят три фазы, каждая из которых питает свою группу потребителей, а 3-фазные электроприборы отсутствуют, резервирование может быть реализовано двумя способами.

  • Можно установить трехфазные электростанцию и АВР, но при этом необходимо следить, чтобы нагрузка на каждую из фаз была одинаковой. Для этого придется изменить коммутацию в распределительном щите и постоянно контролировать параметры нагрузки.
  • Можно установить однофазный генератор и трехфазный АВР. Такой вариант реализовать легче всего, поскольку нет потребителей с 3 фазами. Достаточно подобрать соответствующий по мощности генератор и подключить его посредством АВР к сети по однофазному принципу. Такой способ позволит не затрагивать коммутацию и исключает проблемы с неравномерностью нагрузки.

Если обратить внимание на каталоги крупных производителей электрогенераторов (например, компании Pramac или AKSA), можно заметить, что большая часть их продукции – трехфазная.

Основным потребителем таких электростанций является промышленный сектор, большая часть оборудования которого нуждается именно в таком питании. Если взять для примера механический цех любого машиностроительного предприятия, то основная техника в нем представлена станками, грузоподъемными и транспортными механизмами, то для его функционирования нужно 3 фазы. В данном случае для предотвращения простоев необходима трехфазная электростанция и, возможно, небольшой однофазный генератор для организации аварийного освещения. 

Однофазный и трёхфазный ввод в частный дом.

Дата публикации: 10.12.2018 16:03

Вы наверное согласитесь со мной уважаемый читатель, что при постройке дома без электричества не обойтись. Ведь без электричества невозможно будет обеспечить работу бытовой техники, обогрева жилья, а также пожарную безопасность. Поэтому мы с вами должны понимать, что вопрос об подключении электричества должен возникать первоначально. Т.к до возведения вашей жилой постройки вы можете заниматься данным вопросом.

Первый вопрос который у вас возникнет это, а с чего мне начать ? Разберем все по порядку. 

Для начала вы должны получить ТУ(технические условия). Для их получения вам необходимо предоставить список документов, который вы можете получить в электроснабжающей организации, либо же в организациях занимающихся электромонтажем. В данном документе описываются мероприятия, которые должен выполнить исполнитель и заявитель. Тех.условия дают право на получение мощности для вашего частного дома.    Также, если это новый частный дом, то вам понадобится проект, который в дальнейшем согласовывается с электроснабжающей организацией вашего города. Хочется отметить, что если у вас есть желание чтобы ваш учёт( электрический счетчик) был установлен в доме, то вам необходимо будет указать это в заявление на получение технических условий.  

Итак тех.условия получили, проект согласован. Что дальше ?

А дальше вы должны выполнить оставшиеся мероприятия указанные в тех. уловие, под этим подразумевается подключение вашего участка к электрическим сетям. 

Подключение мы можем выполнить двумя способами :

  1. Воздушный -электропитания от опоры ВЛ. (счётчик вместе с  щитом учёта устанавливается на опоре, также можно выполнить подключение напрямую, а именно установить счётчик в доме, об этом я упоминал выше)

  1. Подземным — является самым надежным вариантом прокладки кабеля, но также дорогой и трудоемкий.

 

Начнём с воздушного ввода. Данный метод является наиболее распространенный среди подключений.   Для воздушного ввода обычно используется провод СИП(самонесущий изолированный провод).

Почему именно он ? Он более устойчив к перепаду температуры и воздействию осадков. Для ввода обычно используется двухжильный провод( по однофазной нагрузки 220в), или же четырехжильный, пятижильный провод( по трёхфазной нагрузке 380в) 16 мм2.

Монтаж электропитания производится только специалистами электросетей. Далее с помощью электромонтажников организации вашего города( не занимайтесь самодеятельностью и вызовите специалистов, это в первую очередь ваша безопасность!!!) нужно будет осуществить подключение кабеля проходом через крышу или стену до щита в вашем доме. 

Теперь перейдём к подземному типу прокладки кабеля. Как мы же писали выше, данный вид прокладки является самым надежным.

Прежде чем произвести подземный электрический ввод нужно от опоры ВЛ до дома выкопать траншею глубиной 0.8см.  Опуск осуществляется в трубке, которая будет не менее 2м, от уровня грунта.

Кабель лучше всего использовать не менее 16 мм2. Прокладывая кабелем бронированным тип ВбБШв,  трубка используется только на подъемах. Токопроводящая оболочка должна быть заземлена и на ВЛ и щитке дома.  Данный вид кабеля является бронированным. Но  не будем забывать про трубку для кабелей ВВГ и АВВГ. На протяжение всей трассы кабель прокладывается в металлической или пластиковой трубке. После укладки кабеля, осуществляется песчаная подсыпка, далее укладывается сигнальная лента, на случай, если будут проводится земляные работы.

Осталось теперь завести кабель в дом. Существует два способа, это либо поднять кабель на высоту 2 метра по стене(при прокладке по стене кабель находится в металлической трубке и выходит пряму к щитку), либо через фундамент( при заранее готовом отверстии кабель прокладывается через металлическую трубу и также внутри дома выходит к щиту). 

Для трёхфазной нагрузки(380в) используется четырех или пятижильный кабель, для однофазной (220в) двухжильный. 

Важно знать что для дома должен монтироваться контур заземления, которые соединяется с шиной PE ваше щита. О том как правильно делать заземление для участка мы расскажем вам в следующей статье.

 

 

Кaкoй выбрaть гeнeрaтoр: oднoфaзный или трёхфaзный?

  • Электрогенераторы подразделяются на: однофазные (220 В) и трёхфазные (380 В).
  • При отсутствии трёхфазных потребителей рациональнее применять однофазную электростанцию для более полного использования её мощности.
  • К однофазным генераторам возможно подключать только однофазные потребители.
  • Трёхфазные электростанции на 380 В применяются при необходимости подключения трёхфазных потребителей.
  • Трёхфазные способны выдавать напряжение как 220В так и 380В, а однофазные только одно из них.
  • Трёхфазные генераторы могут снабжать резервным электричеством загородные дома с трёхфазной разводкой сети.

А что же делать если у Вас трёхфазный ввод в дом, но нет трёхфазых потребителей? Это очень важный вопрос, потому что здесь есть 2 варианта:

1. Поставить трёхфазный генератор. В таком случае, нужно будет распределять всю нагрузку в доме на каждую из трёх фаз генератора. В теории это всё достаточно просто, но на деле всё запутаннее —  при таком подключении нужно учитывать один крайне важный момент - на каждой из трёх фаз должна быть равномерная нагрузка. В случае, если разница в нагрузках по фазам начинает превышать 25%, то появляется опасность возникновения перекоса фаз, который приводит к выходу генератора из строя.

К примеру, если у Вас нагрузка 3 кВт, то на каждой из фаз генератора должно висеть по 1 кВт. Допустимо небольшое отклонение по каждой из фаз, но не более 25%. Таким образом, если на 1-ой фазе будет нагрузка 1 кВт, то нагрузка 1,5 кВт для 2-ой фазы и 0,5 кВт для 3-ей фазы являются не допустимыми — слишком велик риск перекоса фаз.

2. Поставить однофазный генератор. Подключение такого генератора к 3-хфазному вводу у профессионалов не вызывает никаких сложностей, поэтому мы осуществляем такие подключения регулярно. Риск перекоса фаз в случае с установкой однофазного генератора полностью исключен.

Вывод: если у Вас 3-х фазный ввод в дом, но нет трёхфазных потребителей, лучше купить однофазный генератор, это самый оптимальный вариант. Если Вы всё же склоняетесь к трёхфазной электростанции, то стоит основательно взвесить существующие плюсы такого генератора с минусам в виде потенциального риска перекоса фаз.

В случае, если Вы выбираете 3х-фазный электрогенератор для подключения 1-фазных потребителей, важно знать:

  • При подключении к трёхфазным электрогенераторам однофазных потребителей, необходимо равномерно распределить нагрузку между фазами.
  • Разница мощностей на разных фазах не должна превышать 20-25%. Иначе, возникнет перекос фаз, что может повлечь за собой поломку электростанции.
  • Потребляемая мощность однофазной нагрузки не должна превышать 1/3 от номинальной мощности трёхфазного генератора. Т.е., к 6-ти киловаттной трёхфазной станции можно подключать 2-х киловаттный однофазный чайник.
  • Ни в коем случае не допускается замыкание двух или более фаз у трёхфазной электростанции.

  Смотрите также:

Трехфазное подключение дома. Что следует учесть

   Если вы столкнулись с проблемой электроснабжение дома, или же просто хотите заменить электропроводку, тогда перед вами представится необходимость сделать выбор, какой тип электрического питания лучше использовать (однофазный или трехфазный).  От выбранного типа питания напрямую будет завесить схема электрической сети. И так, сегодня давайте разберемся, что такое трехфазное подключение дома. 

   Решая эти вопросы владелец сталкивается с многочисленными задачами, которые требуется решать техническими и организационными способами.

Сравнение преимуществ и недостатков однофазного и трехфазного подключения дома

   При выборе схемы следует учесть ее влияние на конструкцию проводки и условия эксплуатации, создаваемые разными системами.

   Однофазная сеть

   Трёхфазная сеть

Потребляемая мощность

   Та величина разрешенной мощности, которую вам предоставит организация продающая электроэнергию, станет основой для создания проекта электропроводки. За счет распределения ее по двум проводам в однофазной схеме толщина сечения жил кабеля всегда требуется больше, чем в трёхфазной цепи, где нагрузка равномерно разнесена по трем симметричным цепочкам.

   При одинаковой мощности в каждой жиле трехфазной схемы будут протекать меньшие номинальные токи. Под них потребуются уменьшенные номиналы автоматических выключателей. Несмотря на это их габариты, как и других защит и электросчетчика, все равно будут больше за счет применения утроенной конструкции. Потребуется более емкий распределительный щит. Его размеры могут значительно ограничивать свободное пространство внутри небольших помещений.

Трёхфазные потребители

   Асинхронные электродвигатели механических приводов, электрические нагревательные котлы, другие электроприборы, рассчитанные на эксплуатацию в трехфазной сети, эффективнее, оптимально работают в ней. Чтобы их запитать от однофазного источника необходимо создавать преобразователи напряжения, которые будут потреблять дополнительную энергию. Причем, в большинстве случаев происходит снижение КПД таких механизмов и расход мощности на преобразователе.

   Использование трехфазных потребителей основано на равномерном распределении нагрузки в каждой фазе, а подключение мощных однофазных приборов способно создать пофазный перекос токов, когда часть их начинает протекать по жиле рабочего нуля.

   При большом перекосе токов на перегруженной фазе снижается напряжение: начинают тускло светиться лампы накаливания, наблюдаются сбои электронных устройств, хуже работают электродвигатели. В этой ситуации владельцы трехфазной электропроводки могут перекоммутировать часть нагрузки на ненагруженную фазу, а потребителям двухпроводной схемы требуется эксплуатировать стабилизаторы напряжения или резервные источники.

Условия работы изоляции электропроводки

   Владельцы трехфазной схемы должны учитывать действие линейного напряжения 380, а не фазного 220 вольт. Его номинал представляет бо́льшую опасность для человека и изоляции электропроводки или приборов.

Габариты оборудования

   Однофазная электропроводка и все входящие в нее компоненты более компактны, требуют меньше места для монтажа. На основе сравнения этих характеристик можно сделать вывод, что трехфазное подключение частного дома зачастую может быть в современных условиях нецелесообразным. Его имеет смысл применять в том случае, если существует необходимость эксплуатации мощных трехфазных потребителей типа электрических котлов или станочного оборудования для постоянной работы в определённые сезоны.  Большинство же бытовых электрических потребностей вполне может обеспечить однофазная электропроводка.

Как выполнить трехфазное подключение дома

   Когда вопрос трехфазного подключения частного дома стоит остро, то придется:

  1. заниматься подготовкой технической документации
  2. решать технические вопросы

Какие документы необходимо подготовить

   Обеспечить законность трехфазного подключения могут только следующие свидетельства и паспорта:

  1. технические условия от энергоснабжающей организации
  2. проект производства электроснабжения здания
  3. акт разграничения по балансовой принадлежности
  4. протоколы измерений основных электрических параметров собранной схемы подключения дома электротехнической лабораторией (монтаж разрешено выполнять после получения первых трех документов) и акт осмотра электротехнического оборудования
  5. заключение договора с энергосбытовой организацией, дающее право на получение наряда на включение

Технические условия

   Для их получения требуется заранее подать заявку в электроснабжающую организацию, где должны быть отражены требования к абоненту и электроустановке с указанием:

  • способов подключения
  • использования защит
  • мест размещения электроприборов и щитов
  • ограничение доступа посторонних лиц
  • характеристики нагрузки

Проект производства электроснабжения

   Разрабатывается проектной организацией на основе действующих нормативов и правил эксплуатации электроустановок с целью предоставления бригаде электромонтажников подробной информации по технологии монтажа электрической схемы.

   В состав проекта входят:

  1. пояснительная записка с отчетом
  2. исполнительные принципиальные и монтажные схемы
  3. ведомости
  4. требования нормативных документов и предписаний

Акт разграничения по балансовой принадлежности

   Определяются границы ответственности между электроснабжающей организацией и потребителем, указывается разрешенная мощность, категория надежности электроприемника, схема электропитания, некоторые другие сведения.

Протоколы электротехнических замеров

   Они выполняются электрической измерительной лабораторией после полного окончания монтажных работ. В случае получения положительных результатов измерений, отраженных в протоколах, предоставляется акт осмотра оборудования с заключением, дающим право на обращение в электросбытовую организацию.

Договор с энергосбытом

   После его заключения на основе документов от электротехнической лаборатории можно обращаться в электроснабжающую организацию на включение смонтированной электроустановки в работу по специальному наряду.

Трехфазное подключение дома, технические вопросы

   Принцип подвода электрической энергии к отдельно стоящему жилому зданию осуществляется по следующему принципу: от трансформаторной подстанции по линии электропередачи подается напряжение по четырем проводам, включающим три фазы (L1, L2, L3) и один общий нулевой проводник PEN. Подобная система выполняется по стандартам схемы TN-C, которая максимально распространена до сих пор в нашей стране.

   Линия электропередачи чаще всего может быть воздушной или реже кабельной. На обоих конструкциях могут возникнуть неисправности, которые быстрее устраняются у воздушных ЛЭП.

Особенности разделения PEN проводника

   Старые линии электропередач энергетики постепенно начинают модернизировать, переводить на новый стандарт TN-C-S, а строящиеся сразу создают по нормативам TN-S. В нем четвертый проводник PEN от питающей подстанции подается не одной, а двумя разветвленными жилами: РЕ и N. В итоге у этих схем используется уже пять жил для проводников.

   Трехфазное подключение дома по TN-S

   Трехфазное подключение дома основано на том, что все эти жилы подключаются к вводному устройству здания, а от него электроэнергия поступает на электрический счетчик и далее — в распределительный щит для осуществления внутренней разводки по помещениям и потребителям здания.

   Практически все бытовые приборы работают от фазного напряжения 220 вольт, которое присутствует между рабочим нулем N и одним из потенциальных проводников L1, L2 или L3. А между линейными проводами образовано напряжение 380 вольт.

   Внутри вводного устройства, использующего стандарт TN-C-S, делается выделение рабочего нуля N и защитного РЕ из проводника PEN, который соединяют здесь же с ГЗШ — главной заземляющей шиной. Ее подключают к повторному контуру заземлению здания.

   От вводного устройства рабочие и защитные нули идут изолированными цепочками, которые запрещено объединять в любой другой точке схемы электропроводки.

   По старым правилам, действовавшим в схеме заземления TN-C, расщепление проводника PEN не делалась, а фазное напряжение бралось прямо между ним и одним из линейных потенциалов.

   Конечный промежуток линии между ее опорой до ввода в дом прокладывают по воздуху или под землей. Его называют ответвлением. Оно находится на балансе электроснабжающей организации, а не хозяина жилого здания. Поэтому все работы по подключению дома на этом участке должны выполняться с ведома и по решению владельца ЛЭП. Соответственно, законодательно они потребуют согласования и оплаты.

    У подземной кабельной линии ответвление монтируют в металлическом шкафу, который размещают поблизости с трассой, а для воздушной ЛЭП — непосредственно на опоре. В обоих случаях важно обеспечить безопасность их эксплуатации, закрыть доступ посторонних людей и выполнить надежную защиту от повреждения вандалами.

Выбор места расщепления PEN проводника

   Оно может быть выполнено:

  1. на ближайшей опоре
  2. или на вводном щите, расположенном на стене либо внутри дома

   В первом случае ответственность за безопасную эксплуатацию несет электроснабжающая организация, а во втором — владелец здания. Доступ жильцов дома к работам на конце PEN проводника, расположенного на опоре, запрещен правилами.

   При этом надо учесть, что провода на воздушной линии способны обрываться по различным причинам и на них могут возникать неисправности. Во время аварии на питающей ЛЭП с обрывом PEN проводника ее ток потечет через провод, подключенный к дополнительному контуру заземления. Его материал и сечение должны надежно выдерживать такие повышенные мощности. Поэтому их выбирают не тоньше, чем основная жила линии электропередачи.

   Трехфазное подключение дома, обрыв PEN проводника на КТП

   Когда расщепление выполняется прямо на опоре, то к нему и контуру прокладывают линию, называемую повторным заземлением. Ее удобно изготавливать из металлической полосы, заглубленной в землю на 0,3÷1 м.

   Поскольку через нее в грозу создается путь протекания молнии в землю, то ее надо отводить от дорожек и мест возможного размещения людей. Рационально прокладывать ее под забором здания и в подобных труднодоступных местах, а все соединения выполнять сваркой.

    Когда расщепление производится в водном щите здания, то через линию ответвления с подключенными проводами будут протекать аварийные токи, которые могут выдержать только проводники с сечением фазных жил ЛЭП.

Вводное распределительное устройство электроэнергии

   Оно отличается от простого вводного устройства тем, что в его конструкцию внесены элементы, осуществляющие распределение электричества по группам потребителей внутри здания. Его монтируют на вводе электрического кабеля в пристройке или каком-то отдельном помещении.

   ВРУ устанавливают внутри металлического шкафа, куда заводят все три фазы, PEN проводник и шину контура повторного заземления в схеме подключения здания по системе TN-C-S.

   Внутри шкафа вводного распределительного устройства фазные проводники подключаются к клеммам входного автоматического выключателя или силовых предохранителей, а PEN проводник к своей шине. Через нее выполняется его расщепление на PE и N с образованием главной заземляющей шины и ее подключением к повторному контуру заземления.

   Ограничители повышения напряжения работают по импульсному принципу, защищают схему цепей фаз и рабочего нуля от воздействий возможного проникновения посторонних внешних разрядов, отводят их через РЕ проводник и главную защитную шину с контуром заземления на потенциал земли.

   При возникновении высоковольтных импульсных разрядов больших мощностей в питающей линии и прохождении их через последовательную цепочку из автоматического выключателя и УЗИП вполне возможен выход из строя силовых контактов автомата из-за подгорания и даже приваривания их.

   Поэтому защита этой цепочки мощными предохранителями, выполняемая простым перегоранием плавкой вставки, остается актуальной, широко применяется на практике.

   Трехфазный электрический счетчик учитывает расходуемую мощность. После него подключаемые нагрузки распределяются по группам потребления через правильно подобранные автоматические выключатели и устройства защитного отключения. Также на вводе может стоять дополнительное УЗО, выполняющее противопожарные функции у всей электрической проводки здания.

   После каждой группы УЗО может производиться дополнительное деление потребителей по степеням защиты индивидуальными автоматами или обходиться без них, как показано разными участками на схеме.

   На выходные клеммы щита и защит подключаются кабели, идущие к группам конечных потребителей.

Особенности конструкции ответвления

   Чаще всего трехфазное подключение дома на питающей ЛЭП выполняется воздушной линией, на которой может возникнуть короткое замыкание или обрыв. Чтобы их предотвратить следует обратить внимание на:

  • общую механическую прочность создаваемой конструкции
  • качество изоляции внешнего слоя
  • материал токоведущих жил

   Современные самонесущие алюминиевые кабели обладают небольшим весом, хорошими токопроводящими свойствами. Они хорошо подходят для монтажа воздушного ответвления. При трехфазном питании потребителей сечения жилы СИП 16 мм2 будет достаточно для длительного получения 42 кВт, а 25 мм кв — 53 кВт.

   Когда ответвление выполняется подземным кабелем, то обращают внимание на:

  • конфигурацию прокладываемого маршрута, его недоступность для повреждения посторонними людьми и механизмами при работах в грунте
  • защиту выходящих из земли концов металлическими трубами на высоту не меньше среднего человеческого роста

   Лучшим вариантом считается полное размещение кабеля в трубе вплоть до ввода в ВУ и распределительный шкаф.

   Для подземной прокладки используют только цельный кусок кабеля с прочной броневой лентой или выполняют его защиту трубами или металлическими коробами. При этом медные жилы предпочтительнее, чем алюминиевые.

   Технические аспекты трехфазного подключения частного дома в большинстве случаев требуют бо́льших затрат и усилий чем при однофазной схеме.

Видео по сборке трёхфазного щита учёта на дом

 

 

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Трехфазный источник

— обзор

7.

2.3 Метод модуляции прямого матричного преобразователя

В этом разделе представлена ​​матрица рабочего цикла для управления каждым переключателем трехфазного прямого матричного преобразователя и метод модуляции трехфазного преобразователя. будет описан преобразователь прямой матрицы, использующий матрицу рабочего цикла. Напряжение на входе и ток на выходе прямого матричного преобразователя даны как независимые переменные в формуле. (7.12).

(7.12) vi = vsavsbvsc = Vimcosωitcosωit − 2π / 3cosωit + 2π / 3, io = ioAioBioC = Iomcosωot − ϕocosωot − ϕo − 2π / 3cosωot − ϕo + 2π / 3.

В этом случае предположим, что операция генерирует выходное фазное напряжение и входной фазный ток в формуле. (7.13) контролем.

(7,13) vo = voAvoBvoC = Vomcosωotcosωot − 2π / 3cosωot + 2π / 3, ii = isaisbisc = Iimcosωit − ϕicosωit − ϕi − 2π / 3cosωit − ϕi + 2π / 3,

где cos14 ( ϕ 900 ) и cos ( ϕ i ) — коэффициенты мощности нагрузки и входного каскада, соответственно, а ω i и ω o — входная и выходная угловые частоты, соответственно. Опорный потенциал выходного фазного напряжения v oA , v oB и v oC является нейтральной точкой трехфазного источника напряжения входного каскада, как показано на рис. 7.3. .

Входная мощность прямого матричного преобразователя должна быть равна выходной мощности. Следовательно, уравнение. (7.14) определяется из v i T i i = v o T i o .

(7.14) VimIimcosϕi = VomIomcosϕo.

Когда коэффициент усиления по напряжению прямого матричного преобразователя определяется как q = V om / V im , уравнение. (7.15) определяется как

(7.15) Vom = qVim, Iim = qIomcosϕocosϕi.

Когда уравнения. (7.12), (7.13) подставляются в уравнение. (7.10) матрица T заполнения, которая удовлетворяет ограниченному условию продолжительности включения, как в уравнении. (7.11) рассчитывается по формуле. (7.16).

(7.16) T = dAadAbdAcdBadBbdBcdCadCbdCc = p13d1d2d3d3d1d2d2d3d1 + p23d1′d2′d3′d2′d3′d1′d3′d1′d2 ′,

, где

d15 d 1 , d 1 ′, d 2 ′ и d 3 ′ выражены в уравнении. (7.17).

(7.17) d1 = 1 + 2qcosω1t, d2 = 1 + 2qcosω1t + 2π3, d3 = 1 + 2qcosω1t − 2π3, d1 ′ = 1 + 2qcosω2t, d2 ′ = 1 + 2qcosω2t − 2π3, d3 ′ = 1 + 2qcosω2t + 2π3,

, где ω 1 и ω 2 составляют ω o ω i и ω o + ω i соответственно, и p 1 и p 2 являются переменными управления коэффициентом мощности положительного и отрицательного направления, соответственно, которые выражены в формуле.(7.18).

(7,18) p1 = 121 + p, p2 = 121 − p, p = tanϕitanϕo.

Из уравнения. (7.18), p 1 + p 2 = 1 и p 1 p 2 = p . Кроме того, p — это коэффициент передачи фазы между входом и выходом прямого матричного преобразователя. Среди переменных, которые определяют p, , ϕ o определяется характеристиками нагрузки, а ϕ i определяется желаемым значением команды.

Если входной каскад матричного преобразователя работает с единичным коэффициентом мощности ( ϕ i = 0), уравнение. (7.16) можно просто переписать, как это дает Ур. (7.19).

(7,19) djk = 131 + 2vojvskVim2j = ABCk = abc.

На рис. 7.10 показан диапазон значений трехфазного входного напряжения источника и выходного фазного напряжения прямого матричного преобразователя. Трехфазное выходное фазное напряжение не может выходить за пределы диапазона входного фазного напряжения, поскольку выходное фазное напряжение прямого матричного преобразователя синтезируется из входного напряжения. Следовательно, максимальная величина выходного фазного напряжения ограничена 50% от входного фазного напряжения. Другими словами, максимальное значение управляющего параметра q составляет 0,5 в матрице скважности уравнения. (7.16).

Рис. 7.10. Входное напряжение и выходное фазное напряжение ( q макс. = 0,5).

На рис. 7.11 показан способ получения большего выходного фазного напряжения, чем выходное фазное напряжение на рис. 7.10, путем добавления синфазного напряжения к выходному фазному напряжению по формуле.(7.13). Как упоминалось ранее, синфазное напряжение, приложенное к выходному фазному напряжению, не влияет на линейное напряжение выходного каскада прямого матричного преобразователя, поскольку опорные потенциалы выходного фазного напряжения v oA , v oB и v oC являются нейтральными точками трехфазного источника напряжения входного каскада.

Рис. 7.11. Входное напряжение и выходное фазное напряжение ( q max = 0. 866) с использованием синфазного напряжения в модуляции.

Следовательно, фазные напряжения на выходе выражаются в формуле. (7.20) как

(7.20) vo = voAvoBvoC = Vomcosωot + vcmtcosωot − 2π / 3 + vcmtcosωot + 2π / 3 + vcmt,

, где v cm — синфазное напряжение, выраженное в уравнении . (7.21) как

(7.21) vcmt = −16cos3ωot + 36cos3ωit.

В результате максимальное значение q увеличивается до √ 3/2 (= 0,866). Дополнительно q max = 0.866 — это уникальная характеристика прямого матричного преобразователя, которая определяется независимо от метода модуляции управления прямого матричного преобразователя.

Если выходное фазное напряжение уравнения. (7.20) вместо уравнения. (7.13) окончательное решение обычно выражается комплексным уравнением, полученным с помощью оптимального метода Вентурини. Кроме того, этот метод необходим для многих расчетов в реальном приложении. Однако, если входной каскад прямого матричного преобразователя работает с единичным коэффициентом мощности ( ϕ i = 0), окончательное решение может быть легко реализовано, как показано в уравнении.(7.22).

(7.22) djk = 131 + 2vojvskVim2 + 4q33sinωit + βksin3ωit, j = A, B, C, k = a, b, c, βa = 0, βb = −2π / 3, βc = 2π / 3.

В зависимости от оптимального метода анализа Вентурини, соотношение между передаточным отношением фазы на входе и выходе p прямого матричного преобразователя и коэффициентом усиления по напряжению q выбирается из уравнения. (7.23).

(7,23) 2qp⋅1 − signλ3 + sgnλ3≤1,

, где λ и sgn ( λ ) выражаются следующим образом в уравнении. (7.24).

(7.24) λ = 2q31 − p, signλ = 1, λ≥0−1, λ <0.

На рис. 7.12 показано изменение максимального усиления по напряжению q max в зависимости от значения p . Если p управляется для управления коэффициентом мощности входного каскада прямого матричного преобразователя, необходимо соблюдать осторожность, поскольку максимальное усиление напряжения q max изменяется, как показано на рис. 7.12.

Рис. 7.12. Максимальное усиление напряжения q max в зависимости от значения p .

Если требуется, чтобы q max было> 0,5, диапазон p должен быть ограничен в диапазоне — 1 < p <1. Кроме того, в диапазоне - 1 < p <1, диапазон регулировки угла коэффициента мощности входного каскада ограничен как - | ϕ o | < ϕ i <| ϕ o | из уравнения. (7.18).

На рис. 7.13 показан пример метода, который генерирует стробирующие сигналы, которые являются функцией присутствия переключателя ( S jk ), с использованием каждого матричного элемента ( d jk ) матрицы заполнения . Т матричного преобразователя.Стробирующие сигналы переключателей S Aa , S Ab и S Ac , подключенных к выходному каскаду фазы A, определяются путем сравнения несущего сигнала v tri треугольной формы. форма с d Aa и ( d Aa + d Ab ) мгновенно. Кроме того, они выражаются следующим образом в формуле. (7.25):

Рис. 7.13. Формирование стробирующих сигналов из дежурного сигнала (переключение фазы А).

(7.25) sAasAbsAc = 100,0≤vtri

, где s ij = 0 представляет состояние выключения переключателя и s ij = 1 представляет состояние включения. Методы, которые генерируют стробирующие сигналы переключателей ( S Ba , S Bb и S Bc ), подключенных к выходному каскаду фазы B и переключателям ( S Ca , S Cb и S Cc ), подключенные к выходному каскаду C-фазы, аналогичны методу для переключателей, подключенных к выходному каскаду A-фазы.

Могу ли я подключить трехфазный преобразователь частоты к однофазной сети?

Часто те, кто использует преобразователь частоты, могут обнаружить, что им необходимо подключить преобразователь частоты более высокой мощности к однофазному источнику питания. Поскольку большинство преобразователей частоты высокой мощности принимают в качестве источника питания только трехфазный вход, у них остается мало вариантов или альтернатив. Не волнуйтесь, решение есть.

Если вы используете преобразователь частоты, рассчитанный на трехфазный вход, и единственный источник питания, который у вас есть, — это однофазный вход, то вы можете уменьшить номинальные характеристики преобразователя частоты, чтобы принять однофазный входной источник питания.Вы почти всегда можете использовать преобразователь частоты, рассчитанный на трехфазный вход, с однофазным входным источником питания. Когда доступен только трехфазный входной преобразователь частоты, приемлемой и обычной практикой является снижение номинальных характеристик преобразователя частоты для работы с однофазным входным источником питания.

Прежде чем снижать номинальные параметры преобразователя частоты, очень важно убедиться, что используемый преобразователь частоты правильно подходит для вашего применения. Ниже приведены некоторые основные рекомендации, которые помогут вам определить, подходит ли ваш преобразователь частоты для вашего приложения: Соберите данные с паспортной таблички двигателя, включая мощность (л.с.), ток (А), напряжение двигателя, входное линейное напряжение и фазу источника питания.Определите, какой тип преобразователя частоты потребуется для вашего приложения. Тип будет подпадать под категорию вольт на герц (В / Гц), вектор с обратной связью или вектор с обратной связью (вектор без датчика). Внутренние компоненты трехфазного входного преобразователя частоты рассчитаны на соответствующий ток, ожидаемый при подаче трехфазного входного питания. При использовании однофазного входа линейный ток от однофазной сети всегда выше. «Снижение номиналов» — это процесс обеспечения того, чтобы эти компоненты были рассчитаны на более высокий ток, который будет течь от однофазного входа вместо трехфазного входа.

Мощность преобразователя частоты можно снизить на :
При определении мощности двигателя преобразователь частоты также будет подключен, а затем будет выбран преобразователь частоты с мощностью выше, чем мощность двигателя, чтобы компенсировать дополнительный входной ток от однофазного источника питания. Самая простая формула, используемая для этих типов приложений:

Входной ток преобразователя частоты> Номинальный ток двигателя * 1,73
Входной ток преобразователя частоты должен быть равен номинальному току двигателя * 1 или превышать его.73

При установке большинства трехфазных входных преобразователей частоты в приложениях, где используется однофазная входная мощность, вы почти всегда подключаете провода входной линии к L1 и L2 преобразователя частоты. L3 останется открытым без каких-либо подключений. Для уверенности проконсультируйтесь с производителем преобразователя частоты или знающим интегратором.

Пример:
Приложение имеет однофазный входной источник питания 230 В переменного тока, и его необходимо подключить к конвейеру с преобразователем частоты, подключенным к трехфазному асинхронному двигателю на 10 лошадиных сил 230 В переменного тока.Предположим, было определено, что это приложение будет хорошо работать с простым преобразователем частоты вольт на герц (В / Гц). Проблема в том, что, поскольку нет производителей частотных преобразователей, которые предлагают однофазный входной преобразователь частоты (преобразователь частоты) мощностью 10 лошадиных сил (л.с.), нам нужно будет снизить номинальные характеристики преобразователя частоты с трехфазным входом для однофазного входа. Большинство производителей преобразователей частоты предлагают продукты мощностью до 3 лошадиных сил (л.с.) для однофазного входа. Паспортная табличка двигателя переменного тока мощностью 10 лошадиных сил (л.с.) показывает, что двигатель рассчитан примерно на 27 ампер при 230 В переменного тока.Мы должны использовать приведенное выше уравнение:

Входной ток преобразователя частоты> Номинальный ток двигателя * 1,73
Входной ток преобразователя частоты> 27 А * 1,73
Преобразователь частоты Входной ток> 46,71
Для этого приложения потребуется преобразователь частоты 230 В переменного тока с трехфазным напряжением на герц (В / Гц) с номинальным входным током 47,0 ампер или выше.

ATO Однофазный 220 В, 5 л.с., 3,7 кВт VFD, однофазный вход 220 В на выход 3 фазы 220 В / 240 В —

Однофазный преобразователь частоты (VFD) ATO, частотно-регулируемый привод (VSD), вход 1 фаза 220 В 230 В, 240 В, выход может быть 1 фазой и 3 фазой 0–220 В.Сам VFD не может поднять напряжение. Он изменяет частоту двигателя для изменения скорости двигателя, обеспечивает защиту во время работы двигателя и контролирует рабочие параметры в режиме реального времени для изменения скорости вращения двигателя и улучшения процесса отключения двигателя и т. Д. Однофазный частотно-регулируемый привод специально разработан для приложений, которые не могут обеспечить трехфазное питание и требуют частотно-регулируемых приводов.

Параметры:

Модель: GK3000-2S0037

Мощность: 5 л.с. (3.7 кВт)

Номинальный ток: 17 A

Входное напряжение: 1 фаза 220 ~ 240 В переменного тока ± 15%

Входная частота: 50 Гц / 60 Гц

Выходное напряжение: 3 фазы переменного тока 0 ~ входное напряжение

Выходная частота: 0,00 ~ 400,00 Гц

Допустимая перегрузка: 150% номинального тока в течение 1 минуты, 180% номинального тока в течение 3 секунд

Функция управления:

Режимы модуляции: Оптимизированная векторная модуляция пространственного напряжения SVPWM

Режим управления: V / F контроль; Бездатчиковое векторное управление (с оптимальной компенсацией низких частот)

Начальная частота: 0.40 Гц ~ 20,00 Гц

Точность частоты: Цифровая установка: максимальная частота × ± 0,01%; Аналоговая настройка: максимальная частота × ± 0,2%

Разрешение по частоте: Цифровая настройка: 0,01 Гц; Аналоговая настройка: наивысшая частота × 0,1%

Увеличение крутящего момента: автоматическое увеличение крутящего момента, ручное увеличение крутящего момента 0,1% ~ 30,0%

Многоступенчатая скорость: многоступенчатая скорость доступна через встроенный ПЛК или клеммы управления

Автоматическое напряжение регулирование: автоматическое поддержание стабильного напряжения при переходных процессах напряжения сети

Автоматический режим энергосбережения: экономия энергии за счет автоматической оптимизации кривой V / F в соответствии с нагрузкой

Автоматическое ограничение тока: автоматическое ограничение тока для предотвращения частых аварийных отключений по току

APC объявляет о выпуске ИБП, обеспечивающего однофазный выход от трехфазного входного питания

APC объявляет о выпуске ИБП, обеспечивающего однофазный выход от трехфазного входного питания

AIS 3100 — первая модель, обеспечивающая трехфазный вход — однофазный выход в качестве предварительно сконфигурированного ИБП для систем автоматизации промышленных предприятий ГАННОВЕР, Германия — 24 апреля 2006 г. — American Power Компания Conversion объявила о выпуске источника бесперебойного питания AIS® 3100 для тяжелых промышленных условий, где промышленные компьютеры, контроллеры процессов и распределенные системы управления требуют высокой надежности.Компания APC Industrial Systems разработала AIS 3100, чтобы удовлетворить международную потребность в готовых ИБП, которые предварительно сконфигурированы с трехфазным входным питанием и однофазным выходным питанием. Эта конструкция позволяет использовать трехфазное питание, распространенное на заводах, и одновременно обеспечивать однофазное питание, необходимое для работы промышленных компьютеров, управления производством, ПЛК и различных систем на заводе. Одно высокое шасси AIS 3100 устраняет необходимость во внешних трансформаторах, что экономит место и дает экономию при проектировании.Раньше системы ИБП для промышленных предприятий часто требовали индивидуальной настройки и их приходилось приобретать через длительные процедуры специального заказа. В AIS 3100 используется предварительно протестированный комплексный подход, который делает его более надежным и готовым к отправке со склада. Это позволяет руководителям предприятий и предприятий быстрее развернуть установку и быть уверенным в бесперебойной работе. AIS 3100 будет предлагаться мощностью 20-40 кВА и обычно получает входную мощность от трехфазной цепи на 400 вольт.3100 идеально подходит для всех типов систем автоматизации промышленных предприятий, используемых на фармацевтических предприятиях, химических предприятиях, предприятиях по производству продуктов питания и напитков и других промышленных предприятиях. «Это объявление является примером того, как прислушиваться к клиенту и предоставлять актуальные, доступные и высоконадежные. продуктов », — сказал Дитер Бруннер, управляющий директор APC Industrial Systems. «Наша команда по промышленным системам разработала AIS 3100 после выявления реальной потребности, которая не удовлетворялась другими продуктами на рынке.«AIS 3100 отличается современным корпусом из толстой стальной пластины, прочным и гладким. Батареи, установленные на заводе, имеют возможность горячей замены, а воздушные фильтры заменяются пользователем, поэтому AIS 3100 прост в обслуживании. AIS 3100 добавляет опцию однофазного выхода к серии APC AIS и тем самым дополняет ранее анонсированные трехфазные системы ИБП AIS 3000 и AIS 5000. Ориентировочная цена перепродажи AIS 3100 20 кВА начинается от 10600 евро. О компании American Power Conversion Компания American Power Conversion (Nasdaq: APCC) (APC), основанная в 1981 году, является ведущим поставщиком глобальных комплексных решений для инфраструктуры реального времени.Комплексные продукты и услуги APC для домашних и корпоративных сред повышают доступность, управляемость и производительность чувствительного электронного, сетевого, коммуникационного и промышленного оборудования любого размера. APC предлагает широкий спектр продуктов для критически важной физической инфраструктуры сети, включая InfraStruXure, ее революционную архитектуру для центров обработки данных по запросу, а также продукты для управления физическими угрозами через подразделение NetBotzâ компании. Эти продукты и услуги помогают компаниям повысить доступность и надежность своих ИТ-систем.APC со штаб-квартирой в Западном Кингстоне, штат Род-Айленд, сообщила о продажах в размере 2 миллиардов долларов за год, закончившийся 31 декабря 2005 года, и входит в список компаний Fortune 1000, Nasdaq 100 и S&P 500. Все товарные знаки являются собственностью их владельцев.

Учить больше


Трехфазное питание: объяснение треугольника и звезды

Электричество используется для питания множества устройств, которые предназначены для удобства и необходимости людей и процессов по всему миру.Трехфазное питание играет ключевую роль в проектировании электрических систем, а трехфазные фильтры электромагнитных помех являются важной частью электрических устройств на различных рынках, в первую очередь в тяжелых промышленных приложениях. Большинству устройств в промышленных приложениях требуется большая мощность для обеспечения достаточного количества электроэнергии для поддержки больших двигателей, систем отопления, инверторов, выпрямителей, источника питания и индукционных цепей. Из-за этого высокомощное оборудование обычно проектируется для трехфазного или многофазного переменного тока, в котором общая потребляемая мощность делится между многими фазами, оптимизируя систему энергоснабжения (генерацию и распределение) и конструкцию оборудования.

В трехфазной системе есть три проводника, по которым протекает переменный ток. Они называются фазами и обычно обозначаются как A, B и C. Каждая фаза настроена на одну и ту же частоту и амплитуду напряжения, но сдвинута по фазе на 120 °, обеспечивая постоянную передачу мощности во время электрических циклов.

Трехфазные конфигурации электропитания особенно важны, потому что они могут поддерживать в три раза больше мощности, используя всего в 1 ½ — 2 раза больше проводов, чем конфигурация с однофазным питанием.Это может помочь снизить стоимость и количество материалов, необходимых для проектирования системы. Это также может упростить конструкцию двигателя, исключив необходимость в пусковых конденсаторах.

Однако преобразование большой мощности (инвертирование, выпрямление) генерирует шум с чрезмерно высокими частотами (EMI), который обычно представляет собой высшие гармоники различных частот переключения.

По этой причине 3-фазные фильтры электромагнитных помех становятся особенно важными в трехфазных приложениях, поскольку они уменьшают количество электромагнитных помех, предотвращают нарушения в работе оборудования и помогают компаниям соблюдать правила электромагнитной совместимости.

Различия между Delta и WYE

Трехфазные системы могут быть сконфигурированы двумя различными способами для поддержания равных нагрузок; они известны как конфигурации Delta и WYE. Названия «Дельта» и «WYE» представляют собой специфические индикаторы форм, на которые напоминают провода после соединения друг с другом. «Дельта» происходит от греческого символа «Δ», а «WYE» напоминает букву «Y» и также известна как «звездная» цепь. Обе конфигурации, Delta и WYE, обладают гибкостью для подачи питания по трем проводам, но основные различия между ними основаны на количестве проводов, доступных в каждой конфигурации, и текущем потоке.Конфигурация WYE приобрела популярность в последние годы, потому что она имеет нейтральный провод, который позволяет подключать как фазу к нейтрали (однофазное), так и линейное (2/3 фазы).

Что такое трехфазные фильтры линии питания?

Трехфазные фильтры электромагнитных помех

разработаны в соответствии со строгими требованиями нормативов электромагнитной совместимости для промышленных приложений. Правила определяют максимально допустимые уровни шума (в дБ), допустимые на линиях электропередач. Общие требования к конструкции 3-фазного фильтра электромагнитных помех включают входные токи, линейное напряжение, ограничение размера и требуемые вносимые потери.В дополнение к этому, конфигурация 3-фазного фильтра электромагнитных помех играет важную роль в конструкции.

Дельта-трехфазный фильтр электромагнитных помех

3-фазные фильтры электромагнитных помех

Delta предназначены для уменьшения электромагнитных помех в устройствах, подключенных к трехфазному питанию, подключенному по схеме «треугольник». Конфигурация Delta состоит из четырех проводов; три токоведущих и один заземляющий провод. Фазовые нагрузки (например, обмотки двигателя) соединены друг с другом в форме треугольника, где соединение выполняется от одного конца обмотки к начальному концу другого, образуя замкнутую цепь.

В этой конфигурации нет нейтрального провода, но он может питаться от трехфазной сети WYE, если нейтральная линия опущена / заземлена. Дельта-система используется для передачи энергии из-за более низкой стоимости из-за отсутствия нейтрального кабеля. Он также используется в приложениях, требующих высокого пускового момента.

Из-за отсутствия нейтрального провода конденсаторы, используемые в трехфазных фильтрах электромагнитных помех Delta, должны быть рассчитаны на линейное (междуфазное) напряжение, что может увеличить размер, вес и стоимость.Однако отсутствие нейтрального провода позволяет получить более высокие номинальные токи, чем WYE, и лучшую производительность при том же заданном кубическом объеме.

Проектирование и трехфазный дельта-фильтр электромагнитных помех
  1. Определите максимальную мощность, требуемую нагрузкой.
  2. Разделите максимальную мощность, требуемую нагрузкой, на 3, чтобы получить мощность на фазу.
  3. Разделите ответ на линейное напряжение.
  4. Умножьте предыдущий ответ на квадратный корень из 3.
Преимущества дельта-конфигурации
  • Дельта-конфигурации обычно могут быть разработаны для работы с более высоким током и более эффективны.
  • Защита для дельта-конфигураций может быть простой.
  • Конфигурации
  • Delta обычно устанавливаются для тяжелых условий эксплуатации и предпочтительны для выработки и передачи электроэнергии.

WYE 3-фазный фильтр для защиты от электромагнитных помех

Фильтры EMI

WYE предназначены для фильтрации типичных устройств преобразования мощности в режиме переключения и других приложений, требующих нейтрального подключения. Эта конфигурация состоит из пяти проводов; три провода под напряжением, нейтраль и земля.В конфигурации WYE фазные нагрузки подключаются в единственной (нейтральной) точке, где подключается нейтральный провод.

Когда нагрузки WYE-конфигурации полностью сбалансированы, через нейтральный провод ток не течет. Когда нагрузки неуравновешены, через нейтральный провод проходит ток. Эта конфигурация позволяет использовать в фильтре конденсаторы более низкого напряжения (120 В переменного тока в системе 208 В переменного тока и 277 В переменного тока в системе 480 В переменного тока), что может привести к экономии затрат, веса и объема.

Во многих случаях нейтральный провод можно оставить плавающим.Однако, как упоминалось ранее, конфигурация WYE обеспечивает гибкость для подключения нагрузок в цепи между фазой и нейтралью или между фазами. В отличие от Delta, эта конфигурация может использоваться как четырехпроводная схема или пятипроводная схема. Конфигурации WYE обычно используются в сетях распределения электроэнергии. Это в первую очередь требуется в приложениях, требующих меньшего пускового тока и перемещаемых на большие расстояния.

Проектирование и трехфазный фильтр электромагнитных помех WYE
  1. Определите максимальную мощность, требуемую нагрузкой.
  2. Разделите максимальную мощность, требуемую нагрузкой, на 3, чтобы получить мощность на фазу.
  3. Разделите ответ на напряжение фаза-нейтраль / земля.
Преимущества конфигураций WYE
  • Предпочтительно для распределения электроэнергии, поскольку он может поддерживать однофазные (фаза-нейтраль), 2-фазные (междуфазные) и трехфазные нагрузки.
  • Точка звезды обычно заземлена, что отлично подходит для несимметричных нагрузок.
  • Для той же поддержки напряжения требуется меньшая изоляция.

Стоимость трехфазных фильтров линии питания Delta по сравнению с WYE

Конфигурация трехфазного дельта-фильтра электромагнитных помех может быть технически более рентабельной, чем конфигурации WYE, поскольку для нее требуется только трехжильный кабель вместо четырех, что снижает стоимость материалов для изготовления блоков. Однако некоторые из этих рентабельности могут быть компенсированы необходимостью в компонентах, рассчитанных на высокое напряжение.

Конфигурации трехфазного фильтра электромагнитных помех Astrodyne TDI Delta и WYE

Astrodyne TDI предлагает 3-фазные фильтры электромагнитных помех в конфигурациях Delta и WYE, чтобы помочь снизить электромагнитные помехи в различных приложениях и обеспечить соответствие международным стандартам излучения.Наши трехфазные фильтры электромагнитных помех находятся в диапазоне от 480/520 В до 600 В переменного тока с номинальным током до 2500 А. Сетевые фильтры предлагаются в одно-, двух- и многоступенчатом исполнении, с более высокими значениями тока и напряжения, доступными по запросу.

Благодаря нашему обширному ассортименту фильтров и сильным конструкторским возможностям наша команда инженеров может гарантировать, что найдет наиболее эффективное решение для трехфазных фильтров электромагнитных помех, соответствующее любой спецификации и самым сложным приложениям.

Просмотрите нашу подборку трехфазных фильтров электромагнитных помех или свяжитесь с нашей командой, чтобы узнать больше о продукте, который поможет удовлетворить ваши требования.

В чем разница между однофазным и трехфазным ИБП?

Трехфазный (3-фазный) ИБП может выдавать больше электроэнергии, чем однофазный (1-фазный) источник питания, поскольку он использует все три фазы, генерируемые из сети. Трехфазные ИБП, как правило, используются в промышленных и деловых условиях, тогда как однофазные системы ИБП используются для бытовых приборов или оборудования с более низкими требованиями к мощности.

Обзор однофазного (1-фазного) ИБП

Однофазный ИБП имеет один источник входа и выхода для электрического оборудования.Имея всего одно синусоидальное напряжение, для замыкания цепи требуется всего два провода, один провод и одна нейтраль.

Однофазные источники бесперебойного питания обычно удовлетворяют требованиям до 20 кВА и используются для небольших установок, таких как смонтированные в стойке серверы, телекоммуникационные или компьютерные системы, а также сетевые коммутаторы, а также любое устройство, которое работает непосредственно от стандартной трехконтактной вилки. .

Обзор трехфазного (3-фазного) ИБП

Трехфазный ИБП использует три отдельных проводника, обеспечивающих три синусоидальных сигнала, каждый в противофазе и разнесенных на 120 ° друг от друга, чтобы обеспечить непрерывное питание нагрузки.Это означает, что трехфазной системе требуется минимум четыре провода (три проводника плюс одна нейтраль), что позволяет ей поддерживать однофазный или трехфазный выход.

Трехфазные ИБП

— это стандартный выбор для крупных установок с критическими нагрузками, таких как центры обработки данных, промышленные приложения и медицинские учреждения, а также для защиты оборудования с двигателями, такого как лифты, насосы и вентиляторы.

Однофазный может также называться 1-фазным или 1-фазным, а трехфазный — 3-фазным или 3-фазным.

В случае систем ИБП однофазный ИБП обычно называют только его номинальной мощностью в кВА / кВт, т. Е. 10 кВА. В трехфазных системах номинальная мощность кВт / кВт сопровождается количеством выходных фаз, т. Е. 20 кВА (3: 1) или 200 кВА (3: 3)

Ключевые различия между однофазными и трехфазными ИБП:

  • Количество проводников (один против трех)
  • Количество синусоид (один против трех)
  • Однофазное напряжение 230 В, трехфазное 415 В
  • Однофазное подключение проще, чем трехфазный ИБП
  • Трехфазный двигатель обеспечивает более высокий КПД

Дополнительная литература:

Что такое трехфазный двигатель и как он работает?

Трехфазные двигатели (также численно обозначаемые как трехфазные двигатели) широко используются в промышленности и стали рабочей лошадкой многих механических и электромеханических систем из-за их относительной простоты, проверенной надежности и длительного срока службы.Трехфазные двигатели являются одним из примеров типа асинхронного двигателя, также известного как асинхронный двигатель, который работает на принципах электромагнитной индукции. Хотя существуют также однофазные асинхронные двигатели, эти типы асинхронных двигателей реже используются в промышленных приложениях, но широко используются в бытовых приложениях, таких как пылесосы, компрессоры холодильников и кондиционеры, из-за использования однофазных двигателей. фаза переменного тока в домах и офисах. В этой статье мы обсудим, что такое трехфазный двигатель, и опишем, как он работает.Чтобы получить доступ к другим ресурсам о двигателях, обратитесь к одному из наших других руководств по двигателям, посвященным двигателям переменного тока, двигателям постоянного тока, асинхронным двигателям, или к более общей статье о типах двигателей. Полный список статей о моторах можно найти в разделе статей по теме.

Что такое трехфазное питание?

Чтобы понять трехфазные двигатели, полезно сначала понять трехфазную мощность.

При производстве электроэнергии переменный ток (AC), создаваемый генератором, имеет характеристику, состоящую в том, что его амплитуда и направление меняются со временем.Если отображать графически с амплитудой на оси y и временем на оси x, соотношение между напряжением или током в зависимости от времени будет напоминать синусоидальную волну, как показано ниже:

Рисунок 1 — Однофазный переменный ток

Изображение предоставлено: Фуад А. Саад / Shutterstock.com

Электроэнергия, подаваемая в дома, является однофазной, что означает, что имеется один токоведущий провод плюс нейтраль и заземление. В трехфазном питании, которое используется в промышленных и коммерческих условиях для работы более крупного оборудования, которое требует большей мощности, есть три проводника электрического тока, каждый из которых работает с разностью фаз 120 o 2π / 3. радианы друг от друга.Если смотреть графически, каждая фаза будет выглядеть как отдельная синусоида, которая затем объединяется, как показано на изображении ниже:

Рисунок 2 — Трехфазное электрическое питание со сдвигом фаз 120
o между каждой фазой

Изображение предоставлено: teerawat chitprung / Shutterstock.com

Трехфазные двигатели питаются от электрического напряжения и тока, которые генерируются как трехфазная входная мощность и затем используются для выработки механической энергии в виде вращающегося вала двигателя.

Что такое трехфазный двигатель?

Трехфазные двигатели — это тип двигателя переменного тока, который является конкретным примером многофазного двигателя. Эти двигатели могут быть асинхронными двигателями (также называемыми асинхронными двигателями) или синхронными двигателями. Двигатели состоят из трех основных компонентов — статора, ротора и корпуса.

Статор состоит из ряда пластин из легированной стали, вокруг которых намотана проволока, образуя индукционные катушки, по одной катушке на каждую фазу источника электроэнергии.Катушки статора питаются от трехфазного источника питания.

Ротор также содержит индукционные катушки и металлические стержни, соединенные в цепь. Ротор окружает вал двигателя и представляет собой компонент двигателя, который вращается для выработки механической энергии на выходе двигателя.

Корпус двигателя удерживает ротор с валом двигателя на комплекте подшипников для уменьшения трения вращающегося вала. Корпус имеет торцевые крышки, которые удерживают подшипниковые опоры и вентилятор, прикрепленный к валу двигателя, который вращается при вращении вала двигателя.Вращающийся вентилятор втягивает окружающий воздух снаружи корпуса и заставляет воздух проходить через статор и ротор для охлаждения компонентов двигателя и рассеивания тепла, которое генерируется в различных катушках от сопротивления катушки. Кожух также обычно имеет выступающие механические ребра снаружи, которые служат для дальнейшего отвода тепла в наружный воздух. Торцевая крышка также обеспечит место для электрических соединений для трехфазного питания двигателя.

Как работает трехфазный двигатель?

Трехфазные двигатели работают по принципу электромагнитной индукции, который был открыт английским физиком Майклом Фарадеем еще в 1830 году.Фарадей заметил, что когда проводник, такой как катушка или проволочная петля, помещается в изменяющееся магнитное поле, в проводнике возникает наведенная электродвижущая сила или ЭДС. Он также заметил, что ток, протекающий в проводнике, таком как провод, будет генерировать магнитное поле и что магнитное поле будет меняться, когда ток в проводе изменяется по величине или направлению. Это выражается в математической форме, связывая ротор электрического поля со скоростью изменения магнитного потока во времени:

Эти принципы составляют основу для понимания того, как работает трехфазный двигатель.

На рисунке 3 ниже показан закон индукции Фарадея. Обратите внимание, что наличие ЭДС зависит от движения магнита, которое приводит к изменению магнитного поля.

Рисунок 3 — Принцип электромагнитной индукции

Изображение предоставлено: Фуад А. Саад / Shutterstock.com

Для асинхронных двигателей, когда статор питается от трехфазного источника электроэнергии, каждая катушка генерирует магнитное поле, полюса которого (северный или южный) меняют положение, когда переменный ток колеблется в течение полного цикла.Поскольку каждая из трех фаз переменного тока сдвинута по фазе на 120 o , магнитная полярность трех катушек не все идентичны в один и тот же момент времени. Это условие приводит к тому, что статор производит так называемое RMF или вращающееся магнитное поле. Поскольку ротор находится в центре катушек статора, изменяющееся магнитное поле статора индуцирует ток в катушках ротора, что, в свою очередь, приводит к возникновению противоположного магнитного поля, создаваемого ротором. Поле ротора стремится выровнять свою полярность относительно поля статора, в результате к валу двигателя прикладывается чистый крутящий момент, и он начинает вращаться, пытаясь выровнять свое поле.Обратите внимание, что в трехфазном асинхронном двигателе нет прямого электрического соединения с ротором; магнитная индукция вызывает вращение двигателя.

В трехфазных асинхронных двигателях ротор стремится поддерживать соосность с RMF статора, но никогда не достигает этого, поэтому асинхронные двигатели также называют асинхронными двигателями. Явление, которое заставляет скорость ротора отставать от скорости RMF, известно как скольжение, что выражается как:

, где N r — скорость ротора, а N s — синхронная скорость вращающегося поля (RMF) статора.

Синхронные двигатели работают аналогично асинхронным двигателям, за исключением того, что в случае синхронного двигателя поля статора и ротора синхронизированы, так что RMF статора заставляет ротор вращаться с точно такой же скоростью вращения (в синхронизация — значит, скольжение равно 0). Для получения дополнительной информации о том, как это сделать, обратитесь к статьям о реактивных двигателях и бесщеточных двигателях постоянного тока. Обратите внимание, что синхронные двигатели, в отличие от асинхронных двигателей, не нуждаются в питании от сети переменного тока.

Контроллеры двигателей для трехфазных двигателей

Скорость, создаваемая трехфазным двигателем переменного тока, является функцией частоты источника переменного тока, поскольку она является источником RMF в обмотках статора. Поэтому некоторые контроллеры двигателей переменного тока работают, используя вход переменного тока для генерации модулированной или управляемой частоты на входе двигателя, тем самым управляя скоростью двигателя. Другой подход, который можно использовать для управления скоростью двигателя, — это изменение скольжения (описанное ранее).Если скольжение увеличивается, скорость двигателя (то есть скорость ротора) уменьшается.

Чтобы узнать больше о подходах к управлению двигателями, просмотрите нашу статью о контроллерах двигателей переменного тока.

Сводка

В этой статье представлено краткое обсуждение того, что такое трехфазные двигатели и как они работают. Чтобы узнать больше о двигателях, ознакомьтесь с нашими соответствующими статьями, перечисленными ниже. Для получения информации о других продуктах обратитесь к нашим дополнительным руководствам или посетите платформу Thomas Supplier Discovery Platform, чтобы найти потенциальные источники поставок или просмотреть подробную информацию о конкретных продуктах.

Источники:
  1. https://kebblog.com/how-a-3-phase-ac-induction-motor-works/
  2. https://www.engineering.com/ElectronicsDesign/ElectronicsDesignArticles/ArticleID/15848/Three-Phase-Electric-Power-Explained.aspx
  3. http://www.oddparts.com/oddparts/acsi/defines/poles.htm
  4. http://www.gohz.com/how-to-determine-the-pole-number-of-an-induction-motor
  5. https://www.elprocus.com/induction-motor-types-advantages/
  6. https: // www.intechopen.com/books/electric-machines-for-smart-grids-applications-design-simulation-and-control/single-phase-motors-for-household-applications
  7. https://www.worldwideelectric.net/resource/construction-ac-motors/

Прочие изделия из двигателей

Больше от Machinery, Tools & Supplies

.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *