Расчет провода для прогрева бетона: Электропрогрев бетона проводом ПНСВ: технология прогрева, расчет длины

Электропрогрев бетона проводом ПНСВ: технология прогрева, расчет длины

Процедура заливки бетона заметно усложняется, если проводить ее в холодное время года. Связано это с возникновением вероятности замерзания воды, что не позволит раствору набрать необходимой технологической прочности. Даже если получится избежать такого эффекта, то рентабельность проводимых работ окажется под вопросом, так как высыхать состав будет на протяжении довольно длительного времени. Решить проблему можно с помощью прогрева бетона. Для этих целей используется провод ПНСВ.

Электропрогрев позволяет придать материалу нужную твердость. Данная процедура регламентируется нормами СП 70.13330.2012. Его применение допускается в ходе выполнения абсолютно любых строительных работ. С экономической точки зрения целесообразно использовать дешевый провод ПНСВ, так как после затвердевания бетона он остается внутри конструкции.

Содержание

Применение

С помощью кабеля ПНСВ можно решить сразу две проблемы, возникающие с бетоном в зимний период. Вода, входящая в состав раствора переходит в кристаллическое состояние. В результате полностью останавливается реакция гидратации. Всем известно из школьной программы, что при замерзании воды происходит ее расширение. В таких условиях сформировать прочные связи в бетоне невозможно, поэтому добиться нужной прочности не получится.

Чтобы состав затвердел правильно, необходимо обеспечить температуру окружающей среды на уровне +200С. При ее снижении до нулевых показателей данный процесс замедляется даже при условии выделении тепла в результате протекания гидратации. Для выдержки нужных параметров без провода ПНСВ не обойтись. Необходимость в прогреве бетона возникает в следующих случаях:

  • Недостаточная теплоизоляция монолита или опалубки.
  • Низкая температура воздуха.
  • Слишком большие размеры монолита.

применение провода пнсв

Характеристики провода

Кабель ПНСВ состоит из жилы сечением 0,6-4 мм2 и диаметром 1,2-3 мм. Некоторые марки покрываются оцинковкой для подавления негативного воздействия агрессивных составляющих раствора. В качестве дополнительного покрытия используется поливинилхлорид или полиэстер. Такая термоустойчивая изоляция отличается высокой прочностью и удельным сопротивлением, хорошо гнется, не повержена истиранию.

Технические характеристики кабеля ПНСВ:

  • Диапазон рабочих температур – от -600С до +500С.
  • Удельное сопротивление – 0,15 Ом/м.
  • Расход провода – 60 м на каждый куб бетона.
  • Допустимая температура монтажа – -150С.
  • Нижний температурный порог применения – -250С.

Кабель соединяется с холодными краями посредством алюминиевого провода АПВ. Питается провод от трехфазной сети 380В. В некоторых случаях при правильных расчетах допускается использование домашней сети 220В. Главное условие – длина кабеля должна быть минимум 120 м. Также необходимо, чтобы по системе протекал ток номинальной величиной 14-16 А.

Процедура укладки и технология прогрева

Прежде, чем устанавливать систему прогрева, необходимо смонтировать арматуру и опалубку. Только после этого можно приступать к раскладке ПНСВ. Интервал между поворотами должен составлять 80-200 мм. Конкретное расстояние выбирается в зависимости от наружной температуры, уровня влажности и скорости ветра. Провод не должен иметь натяжение. Для его крепления к арматуре нужно использовать специальные зажимы. Минимальный радиус изгиба – 25 см. Также необходимо позаботиться об отсутствии перехлестов жил, по которым передается ток. Они должны прокладываться на расстоянии 15 мм друг от друга. При нарушении этого правила возникает рис короткого замыкания.

Наибольшей популярностью пользуется схема укладки под названием «змейка». Укладка ПНСВ в данном случае чем-то напоминает процедуру монтажа теплого пола. При таком методе расход греющего кабеля будет минимальным, а обогреть получится максимальный объем массива. Заливать бетон нужно в сухую опалубку, при этом температура раствора должны быть выше +5

0С, а схема подключена правильно. Также необходимо проверить, чтобы холодные концы были выведены на необходимую длину.

прогрев бетона проводом пнсв

Перед началом прогрева бетона необходимо ознакомиться с инструкцией, которая идет в комплекте с проводом ПНСВ. Подключение через секции шинопроводов может осуществляться двумя способами: через «звезду» или «треугольник». Первая схема подразумевает соединение трех проводов в один узел. Подключение к трансформатору выполняется через свободные контакты. Во втором случае система делится на 3 участка, каждый из которых подключается к выводам трехфазного трансформатора.

Прогрев бетонной смеси с помощью кабеля ПНСВ выполняется в несколько этапов:

  1. Каждый час температура плавно повышается на 100С. Так удастся обеспечить равномерность прогрева.
  2. В условиях постоянной температуры прогрев нужно осуществлять до момента набора смеси половины своей технологической прочности. Оптимальным показателем является 600С, а максимальным – 80
    0
    С.
  3. Остывать бетон должен на 50С в час. При несоблюдении данной рекомендации существует вероятность растрескивания монолита.

Если все технологические требования были соблюдены, то материал наберет необходимую прочность. ПНСВ после завершения работ остается в массиве и выполняется функции дополнительного армира.

электропрогрев бетона пнсв

Применять такие кабели, как ВЕТ или КДБС намного проще, так как их подключение производится напрямую в бытовую сеть или щитовую с напряжением 220В. Разделение на секции устраняет возможность перегрузок. Единственным недостатком таких этих кабелей является высокая стоимость. В связи с этим их реже используют при масштабном строительстве.

Также довольно большой популярностью пользуется технология, при которой опалубка оснащается электродами и ТЭНами. В этом случае греющий кабель не нужен, однако данный способ требует больших энергозатрат. Связано это с тем, при затвердевании бетона его сопротивление повышается, что делает проводимость воды ниже.

Расчет длины

При расчете длины кабеля ПНСВ необходимо учитывать ряд факторов, основным из которых является количество тепла, подаваемое к монолиту с целью его качественного затвердевания. На данный параметр влияет температура воздуха, форма и размеры конструкции, влажность, а также наличие теплоизоляции.

Также нужно определить шаг укладки провода, учитывая в расчетах среднюю длину петли (28-36 м). Если температура воздуха составляет -50С, то шаг должен быть 200 мм, -100С – 160 мм, -150С – 120 мм.

Рассчитывая длину кабеля, нужно знать его мощность. Для провода диаметром 1,2 мм – 0,015 Ом/м, 2 мм – 0,044 Ом/м, 3 мм – 0,02 Ом/м. Величина рабочего тока не должна превышать 16 А. В случае с ПНСВ 1,2 мм удельное сопротивление будет равняться 38,4 Вт. Для расчета суммарной мощности нужно это число умножить на длину использованного провода.

Для расчета напряжения понижающего трансформатора используется эта же схема. Если диаметр ПНСВ составляет 1,2 мм, а всего его уложено 100 м, то общее сопротивление будет равняться 15 Ом. Сила тока все та же (16 А). Напряжение – это произведение сопротивления и силы тока. В рассматриваемом примере оно будет составлять 240 В.

Заключение

Прогрев бетонной смеси с помощью провода ПНСВ является одним из самых бюджетных способов. Однако использовать его лучше при наличии достаточного опыта в сфере строительства. Кроме этого, для укладки ПНСВ может понадобиться специальное оборудование. Этот вид кабеля можно использовать в быту. Главное, верно рассчитать потребляемую мощность. Для снижения расходов на прогрев бетона рекомендуется применять теплоизоляционные материалы. Они ускорят процесс и будут способствовать более равномерному остыванию, что положительно скажется на качестве монолита.

Статьи по теме:

схема укладки и подключения, расчет

Заливка бетона зимой имеет свои сложности. Главной проблемой считается нормальное затвердевание раствора, вода в котором может замерзнуть, и он не наберет технологической прочности. Даже если этого не случится, низкая скорость высыхания состава сделает работы нерентабельными. Прогрев бетона проводом ПНСВ поможет снять этот вопрос.

Электропрогрев бетона в зимнее время – наиболее удобный и дешевый способ достигнуть нужной твердости материала. Он разрешается нормами СП 70.13330.2012, и может применяться при выполнении любых строительных работ. После отвердевания бетона, провод остается внутри конструкции, поэтому применение дешевого ПНСВ дает дополнительный экономический эффект.

Прогрев проводом ПНСВПрогрев проводом ПНСВ

Применение

Прогрев бетона в зимнее время кабелем дает возможность решить две основные проблемы. При температурах ниже нуля вода в растворе превращается в кристаллики льда, в результате реакция гидратации цемента не просто замедляется, она прекращается полностью. Известно, что при замерзании вода расширяется, разрушая образовавшиеся в растворе связи, поэтому после повышения температуры он уже не наберет нужной прочности.

Раствор затвердевает с оптимальной скоростью и сохранением характеристик при температуре порядка 20°C. При падении температуры, особенно ниже нуля, эти процессы замедляются, даже с учетом того, что при гидратации выделяется дополнительное тепло. Чтобы выдержать технические условия, зимой не обойтись без прогрева бетона проводом ПНСВ или другим предназначенным для этого кабелем в таких ситуациях, когда:

  • не обеспечена достаточная теплоизоляция монолита и опалубки;
  • монолит слишком массивен, что затрудняет его равномерный прогрев;
  • низкая температура окружающего воздуха, при которой замерзает вода в растворе.

Применение кабеля ПНСВПрименение кабеля ПНСВ

Характеристики провода

Кабель для прогрева бетона ПНСВ состоит из стальной жилы с сечением от 0,6 до 4 мм², и диаметром от 1,2 мм до 3 мм. Некоторые виды покрываются оцинковкой, чтобы снизить воздействие агрессивных компонентов в строительных растворах. Дополнительно он покрыт термоустойчивой изоляцией их поливинилхлорида (ПВХ) или полиэстера, она не боится перегибов, истирания, агрессивных сред, прочна и обладает высоким удельным сопротивлением.
Кабель ПНСВ обладает следующими техническими характеристиками:

  • Удельное сопротивление составляет 0,15 Ом/м;
  • Стабильная работа в температурном диапазоне от -60°C до +50°C;
  • На 1 кубометр бетона расходуется до 60 м провода;
  • Возможность применения до температур до -25°C;
  • Монтаж при температурах до -15°C.

Кабель подключается к холодным концам через провод АПВ из алюминия. Питание может осуществляться через трехфазную сеть 380 В, подключаясь к трансформатору. При правильном расчете ПНСВ может подключаться и к бытовой сети 220 вольт, длина при этом не должна быть менее 120 м. По системе, находящейся в бетонном массиве должен протекать рабочий ток 14-16 А.

Технология прогрева и схема укладки

Перед установкой системы прогрева бетона в зимнее время монтируется опалубка и арматура. После этого раскладывается ПНСВ с интервалом между проводами от 8 до 20 см, в зависимости от наружной температуры, ветра и влажности. Провод не натягивается и прикрепляется к арматуре специальными зажимами. Нельзя допускать изгибов радиусом менее 25 см и перехлестов токоведущих жил. Минимальное расстояние между ними должно составлять 1,5 см, это поможет не допустить короткого замыкания.

Наиболее популярная схема укладки ПНСВ – «змейка», напоминающая систему «теплый пол». Она обеспечивает обогрев максимального объема бетонного массива при экономии греющего кабеля. Перед заливкой в опалубку раствора необходимо убедиться в том, что в ней нет льда, температура смеси не ниже +5°C, а монтаж схемы подключения проведен правильно, на достаточную длину выведены холодные концы.

Схема подключенияСхема подключения

К проводу ПНСВ прикладывается инструкция, с которой нужно ознакомиться перед тем, как прогреть бетон. Подключение осуществляется через секции шинопроводов двумя способами через схему «треугольник» или «звезда». В первом случае систему разделяют на три параллельных участка, подключаемых к выводам трехфазного понижающего трансформатора. Во втором – три одинаковых провода соединяются в один узел, потом три свободных контакта аналогично подключаются к трансформатору. Питающее устройство устанавливается не далее, чем в 25 м от места подключения, прогреваемый участок обносится ограждением.

Система подключается после полной заливки всего объема строительного раствора. Технология прогрева бетона греющим кабелем ПНСВ включает в себя несколько этапов:

  1. Разогрев осуществляется со скоростью не более 10°C в час, что обеспечивает равномерное прогревание всего объема.
  2. Нагрев при постоянной температуре длится до тех пор, пока бетон не наберет половину технологической прочности. Температура не должна превышать 80°C, оптимальный показатель 60°C.
  3. Остывание бетона должно происходить со скоростью 5°C в час, это поможет избежать растрескивания массива и обеспечит его монолитность.

При соблюдении технологических требований материал наберет марку прочности, соответствующую его составу. По окончанию работ ПНСВ остается в толще бетона и служит дополнительным армирующим элементом.

Этапы прогрева бетонаЭтапы прогрева бетона

Нужно отметить, что применять кабель КДБС или ВЕТ значительно проще, поскольку их можно подключать напрямую к сети 220 В через щитовую или розетку. Они разделены на секции, что помогает избежать перегрузки. Но эти кабели стоят дороже ПНСВ, поэтому реже применяется при строительстве крупных объектов.

Еще одна популярная технология – использование опалубки с ТЭН и электродами, когда арматура вставляется в раствор и подключается к сети, используя сварочный аппарат или понижающий трансформатор другого типа. Этот способ прогрева не требует специального греющего кабеля, но более энергозатратен, поскольку вода в бетоне играет роль проводника, а его сопротивление при затвердевании значительно возрастает.

Расчет длины

Чтобы рассчитать длину провода ПНСВ для прогрева бетона требуется учесть несколько основных факторов. Главный критерий – количество тепла, подаваемого на монолит для его нормального затвердевания. Оно зависит от температуры окружающего воздуха, влажности, наличия теплоизоляции, объема и формы конструкции.

В зависимости от температуры определяется шаг укладки кабеля со средней длиной петли от 28 од 36 м. При температуре до -5°C расстояние между жилами или шаг составляет 20 см, с понижением температуры на каждые 5 градусов, он уменьшается на 4 см, при -15°C он составляет 12 см.

При расчете длины важно знать потребляемую мощность нагревательного провода ПНСВ. Для самого популярного диаметра 1,2 мм она равна 0,15 Ом/м, у проводов с большим сечением сопротивление ниже диаметр 2 мм имеет сопротивление 0,044 Ом/м, а 3 мм – 0,02 Ом/м. Рабочий ток в жиле должен быть не более 16 А, поэтому потребляемая мощность одного метра ПНСВ диаметром 1,2 мм равна произведению квадрата силы тока на удельное сопротивление и составляет 38,4 Вт. Чтобы подсчитать суммарную мощность необходимо этот показатель умножить на длину уложенного провода.

Подобным образом рассчитывается и напряжение понижающего трансформатора. Если уложено 100 м ПНСВ диаметром 1,2 мм, то его общее сопротивление составит 15 Ом. Учитывая, что сила тока не более 16 А, находим рабочее напряжение, равное произведению силы тока на сопротивление в данном случае оно будет равно 240 В.

Зимнее бетонированиеЗимнее бетонирование

Применение провода ПНСВ – один из самых дешевых способов прогрева бетона. Но он больше годится для применения профессиональными строителями, поскольку для его подключения требуются специальное знание и оборудование. Этот кабель можно применять и в бытовых условиях, правильно рассчитав потребляемую мощность. Снизить расходы при прогреве раствора поможет применение теплоизоляционных материалов, в этом случае нагрев произойдет быстрее, а снижение температуры будет происходить равномернее, что улучшит качество бетона.

Расчёт нагревательного провода ПНСВ. Статьи компании «ТОО » Эпицентр Техно KZ» +7/727/222-39-64»

Расчёт нагревательного провода ПНСВ

Твердение бетона при низких температурах воздуха существенно замедляется, и при ее значениях ниже 5°С бетон необходимо прогревать. Прогрев бетона осуществляется специальным греющим проводом, укладываемым в конструкцию до её бетонирования.

Нагревательный провод ПНСВ (Провод нагревательный со стальной жилой, с изоляцией из поливинилхлоридного пластиката или полиэтилена). Используется для ускорения прогрева бетона монолитных конструкций в зимнее время.

Свойства ПНСВ таковы, что рабочий ток погруженного в бетон провода следует выбирать в 14–16 А. При таком токе (14–16 А) провод ПНСВ будет нормально работает в бетоне, однако на воздухе быстро выходит из строя, поэтому «холодные концы» ПНСВ выполняются из провода АПВ–4 длиной 0,5–1 метр.

Поэтому провод ПНСВ четко отрезают на отрезки определённой длины, чтобы ток в проводе, погруженном в бетон, составлял 14–16 А.

Такими «нитками» прогревочного провода ПНСВ укладываем внутри вашей бетонной конструкции

Шаг витками нагревателей 50–150 мм, если ж/б конструкция контактирует с грунтом (подготовки под полы, фундамент и т. п.), шаг 150–200 мм в местах подливках под колонны и местных заделках шаг 25–70 мм

Такая «нитка» провода ПНСВ обогревает конструкцию толщиной 100 мм, если конструкция толще, то провода ПНСВ внутри вашей конструкции укладывают в ярусы с шагом 80–100 мм по высоте.

Напряжение прогрева = 75 В (третия ступень прогревочных станций). Одной понижающей трансформаторной подстанцией типа СПБ-80, КТПТО-80/86 обогревают 20-30 м³ бетона. Возможно греть небольшие объемы бетона трансформатором 380/36 В. Обычно для провода ПНСВ-1,2 для КТПТО (то есть на 75 В): «нитка» = 28 метров, «отрезок для тройки» = 17 метров.

Подача напряжения осуществляется после окончания бетонирования (температура заливаемого бетона в зимнее время должна быть не ниже +5 °С).

Электропрогрев бетона ведётся в трёхстадийном режиме:

  • разогрев бетона, при скорости подъёма температуры не более 10 °С/ч
  • изотермический прогрев, при этом максимальная температура бетона должна быть не более 80 °С
  • остывание бетона со скоростью не более 5 °С/ч

Подъём температуры бетона происходит за счёт переключения положений трансформатора с 55 В до 95 В при длине нагревательного провода в бухте 28 м. Температуру прогреваемого бетона контролируют электронным термометром Отключение электропрогрева выполняется после набора бетоном прочности 70 % от проектной.

На практике укладку проводов ПНСВ в бетонную конструкцию используют соединением в «треугольник» или «звезду». Провода делят на три равные группы, провода каждой группы соединяют между собой параллельно, полученные три набора проводов соединяют концами в три узла и подключают к трем выходным зажимам станции — соединение «треугольник». При соединении нагрузки «звездой» в конструкции устанавливают набор «троек» — трех отрезков провода равной длины, соединенных предварительно одним концом в узел. Свободные концы всех «троек» соединяют в три узла и подключают к выходным зажимам трансформатора прогрева бетона.

Звезда
Треугольник

Расход пнсв на 1 м3 бетона

Калькулятор / Расчёт нагревательного провода ПНСВ

Твердение бетона при низких температурах воздуха существенно замедляется, и при ее значениях ниже 5°С бетон необходимо прогревать. Прогрев бетона осуществляется специальным греющим проводом, укладываемым в конструкцию до её бетонирования.

Нагревательный провод ПНСВ (Провод нагревательный со стальной жилой, с изоляцией из поливинилхлоридного пластиката или полиэтилена). Используется для ускорения прогрева бетона монолитных конструкций в зимнее время.

Свойства ПНСВ таковы, что рабочий ток погруженного в бетон провода следует выбирать в 14–16 А. При таком токе (14–16 А) провод ПНСВ будет нормально работает в бетоне, однако на воздухе быстро выходит из строя, поэтому «холодные концы» ПНСВ выполняются из провода АПВ–4 длиной 0,5–1 метр.

Поэтому провод ПНСВ четко отрезают на отрезки определённой длины, чтобы ток в проводе, погруженном в бетон, составлял 14–16 А.

Такими «нитками» прогревочного провода ПНСВ укладываем внутри вашей бетонной конструкции

Шаг витками нагревателей 50–150 мм, если ж/б конструкция контактирует с грунтом (подготовки под полы, фундамент и т. п.), шаг 150–200 мм в местах подливках под колонны и местных заделках шаг 25–70 мм

Такая «нитка» провода ПНСВ обогревает конструкцию толщиной 100 мм, если конструкция толще, то провода ПНСВ внутри вашей конструкции укладывают в ярусы с шагом 80–100 мм по высоте.

Напряжение прогрева = 75 В (третия ступень прогревочных станций). Одной понижающей трансформаторной подстанцией типа СПБ-80, КТПТО-80/86 обогревают 20-30 м³ бетона. Возможно греть небольшие объемы бетона трансформатором 380/36 В. Обычно для провода ПНСВ-1,2 для КТПТО (то есть на 75 В): «нитка» = 28 метров, «отрезок для тройки» = 17 метров.

Подача напряжения осуществляется после окончания бетонирования (температура заливаемого бетона в зимнее время должна быть не ниже +5 °С).

Электропрогрев бетона ведётся в трёхстадийном режиме:

  • разогрев бетона, при скорости подъёма температуры не более 10 °С/ч
  • изотермический прогрев, при этом максимальная температура бетона должна быть не более 80 °С
  • остывание бетона со скоростью не более 5 °С/ч

Подъём температуры бетона происходит за счёт переключения положений трансформатора с 55 В до 95 В при длине нагревательного провода в бухте 28 м. Температуру прогреваемого бетона контролируют электронным термометром Отключение электропрогрева выполняется после набора бетоном прочности 70 % от проектной.

На практике укладку проводов ПНСВ в бетонную конструкцию используют соединением в «треугольник» или «звезду». Провода делят на три равные группы, провода каждой группы соединяют между собой параллельно, полученные три набора проводов соединяют концами в три узла и подключают к трем выходным зажимам станции — соединение «треугольник». При соединении нагрузки «звездой» в конструкции устанавливают набор «троек» — трех отрезков провода равной длины, соединенных предварительно одним концом в узел. Свободные концы всех «троек» соединяют в три узла и подключают к выходным зажимам трансформатора прогрева бетона.

Звезда
Треугольник

Возможные наборы нагревающих проводов из практики

Трансформатор прогрева бетонаДиаметр ПНСВ, ммЧисло «ниток» (при L = 28 м)Число «троек» (при L луча = 17 м)
СПБ-401,224 (3 группы по 8 «ниток»)14
1,421 (3 группы по 7 «ниток»)12
2,09 (3 группы по 3 «нитки»)5
3,03 (3 группы по 1 «нитки»)2
СПБ-631,239 (3 группы по 13 «ниток»)22
1,433 (3 группы по 11 «ниток»)19
2,015 (3 группы по 5 «ниток»)8
3,06 (3 группы по 2 «нитки»)4
СПБ-801,248 (3 группы по 16 «ниток»)28
1,442 (3 группы по 14 «ниток»)24
2,018 (3 группы по 6 «ниток»)10
3,09 (3 группы по 3 «нитки»)5
СПБ-1001,260 (3 группы по 20 «ниток»)35
1,451 (3 группы по 17 «ниток»)29
2,021 (3 группы по 7 «ниток»)12
3,012 (3 группы по 4 «нитки»)7
Трансформатор 380/36 мощностью 6 кВт1,295
Трансформатор 380/36 мощностью 2,5 кВт1,232
Трансформатор 380/36 мощностью 2,0 кВт1,232

Применение

Прогрев бетона в зимнее время кабелем дает возможность решить две основные проблемы. При температурах ниже нуля вода в растворе превращается в кристаллики льда, в результате реакция гидратации цемента не просто замедляется, она прекращается полностью. Известно, что при замерзании вода расширяется, разрушая образовавшиеся в растворе связи, поэтому после повышения температуры он уже не наберет нужной прочности.

Раствор затвердевает с оптимальной скоростью и сохранением характеристик при температуре порядка 20°C. При падении температуры, особенно ниже нуля, эти процессы замедляются, даже с учетом того, что при гидратации выделяется дополнительное тепло. Чтобы выдержать технические условия, зимой не обойтись без прогрева бетона проводом ПНСВ или другим предназначенным для этого кабелем в таких ситуациях, когда:

  • не обеспечена достаточная теплоизоляция монолита и опалубки;
  • монолит слишком массивен, что затрудняет его равномерный прогрев;
  • низкая температура окружающего воздуха, при которой замерзает вода в растворе.

Характеристики провода

Кабель для прогрева бетона ПНСВ состоит из стальной жилы с сечением от 0,6 до 4 мм², и диаметром от 1,2 мм до 3 мм. Некоторые виды покрываются оцинковкой, чтобы снизить воздействие агрессивных компонентов в строительных растворах. Дополнительно он покрыт термоустойчивой изоляцией их поливинилхлорида (ПВХ) или полиэстера, она не боится перегибов, истирания, агрессивных сред, прочна и обладает высоким удельным сопротивлением.
Кабель ПНСВ обладает следующими техническими характеристиками:

  • Удельное сопротивление составляет 0,15 Ом/м;
  • Стабильная работа в температурном диапазоне от -60°C до +50°C;
  • На 1 кубометр бетона расходуется до 60 м провода;
  • Возможность применения до температур до -25°C;
  • Монтаж при температурах до -15°C.

Кабель подключается к холодным концам через провод АПВ из алюминия. Питание может осуществляться через трехфазную сеть 380 В, подключаясь к трансформатору. При правильном расчете ПНСВ может подключаться и к бытовой сети 220 вольт, длина при этом не должна быть менее 120 м. По системе, находящейся в бетонном массиве должен протекать рабочий ток 14-16 А.

Технология прогрева и схема укладки

Перед установкой системы прогрева бетона в зимнее время монтируется опалубка и арматура. После этого раскладывается ПНСВ с интервалом между проводами от 8 до 20 см, в зависимости от наружной температуры, ветра и влажности. Провод не натягивается и прикрепляется к арматуре специальными зажимами. Нельзя допускать изгибов радиусом менее 25 см и перехлестов токоведущих жил. Минимальное расстояние между ними должно составлять 1,5 см, это поможет не допустить короткого замыкания.

Наиболее популярная схема укладки ПНСВ – «змейка», напоминающая систему «теплый пол». Она обеспечивает обогрев максимального объема бетонного массива при экономии греющего кабеля. Перед заливкой в опалубку раствора необходимо убедиться в том, что в ней нет льда, температура смеси не ниже +5°C, а монтаж схемы подключения проведен правильно, на достаточную длину выведены холодные концы.

К проводу ПНСВ прикладывается инструкция, с которой нужно ознакомиться перед тем, как прогреть бетон. Подключение осуществляется через секции шинопроводов двумя способами через схему «треугольник» или «звезда». В первом случае систему разделяют на три параллельных участка, подключаемых к выводам трехфазного понижающего трансформатора. Во втором – три одинаковых провода соединяются в один узел, потом три свободных контакта аналогично подключаются к трансформатору. Питающее устройство устанавливается не далее, чем в 25 м от места подключения, прогреваемый участок обносится ограждением.

Система подключается после полной заливки всего объема строительного раствора. Технология прогрева бетона греющим кабелем ПНСВ включает в себя несколько этапов:

  1. Разогрев осуществляется со скоростью не более 10°C в час, что обеспечивает равномерное прогревание всего объема.
  2. Нагрев при постоянной температуре длится до тех пор, пока бетон не наберет половину технологической прочности. Температура не должна превышать 80°C, оптимальный показатель 60°C.
  3. Остывание бетона должно происходить со скоростью 5°C в час, это поможет избежать растрескивания массива и обеспечит его монолитность.

При соблюдении технологических требований материал наберет марку прочности, соответствующую его составу. По окончанию работ ПНСВ остается в толще бетона и служит дополнительным армирующим элементом.

Нужно отметить, что применять кабель КДБС или ВЕТ значительно проще, поскольку их можно подключать напрямую к сети 220 В через щитовую или розетку. Они разделены на секции, что помогает избежать перегрузки. Но эти кабели стоят дороже ПНСВ, поэтому реже применяется при строительстве крупных объектов.

Еще одна популярная технология – использование опалубки с ТЭН и электродами, когда арматура вставляется в раствор и подключается к сети, используя сварочный аппарат или понижающий трансформатор другого типа. Этот способ прогрева не требует специального греющего кабеля, но более энергозатратен, поскольку вода в бетоне играет роль проводника, а его сопротивление при затвердевании значительно возрастает.

Расчет длины

Чтобы рассчитать длину провода ПНСВ для прогрева бетона требуется учесть несколько основных факторов. Главный критерий – количество тепла, подаваемого на монолит для его нормального затвердевания. Оно зависит от температуры окружающего воздуха, влажности, наличия теплоизоляции, объема и формы конструкции.

В зависимости от температуры определяется шаг укладки кабеля со средней длиной петли от 28 од 36 м. При температуре до -5°C расстояние между жилами или шаг составляет 20 см, с понижением температуры на каждые 5 градусов, он уменьшается на 4 см, при -15°C он составляет 12 см.

При расчете длины важно знать потребляемую мощность нагревательного провода ПНСВ. Для самого популярного диаметра 1,2 мм она равна 0,15 Ом/м, у проводов с большим сечением сопротивление ниже диаметр 2 мм имеет сопротивление 0,044 Ом/м, а 3 мм – 0,02 Ом/м. Рабочий ток в жиле должен быть не более 16 А, поэтому потребляемая мощность одного метра ПНСВ диаметром 1,2 мм равна произведению квадрата силы тока на удельное сопротивление и составляет 38,4 Вт. Чтобы подсчитать суммарную мощность необходимо этот показатель умножить на длину уложенного провода.

Подобным образом рассчитывается и напряжение понижающего трансформатора. Если уложено 100 м ПНСВ диаметром 1,2 мм, то его общее сопротивление составит 15 Ом. Учитывая, что сила тока не более 16 А, находим рабочее напряжение, равное произведению силы тока на сопротивление в данном случае оно будет равно 240 В.

Применение провода ПНСВ – один из самых дешевых способов прогрева бетона. Но он больше годится для применения профессиональными строителями, поскольку для его подключения требуются специальное знание и оборудование. Этот кабель можно применять и в бытовых условиях, правильно рассчитав потребляемую мощность. Снизить расходы при прогреве раствора поможет применение теплоизоляционных материалов, в этом случае нагрев произойдет быстрее, а снижение температуры будет происходить равномернее, что улучшит качество бетона.

>Провод ПНСВ

Изготавливается по ТУ.

Код ОКП 35 5813 04.

Входит в » Единый перечень продукции, подлежащей обязательной сертификации».

Изготавливается по ТУ.

>Описание и конструкция провода ПНСВ

Токопроводящая жила — стальная, однопроволочная, круглой формы.

Изоляция — ПВХ пластикат или полиэтилен.

Условия монтажа и эксплуатации провода ПНСВ

Диапазон рабочих температур от -60°C до +50°C.

Диапазон прокладки и монтажа не ниже -15°C.

Провода стойки к воздействию воды и 20% водного раствора поваренной соли или 30% раствора щелочей Ca (OH)2 или NaOH.

Радиус изгиба проводов при монтаже должен быть не менее 5 наружных диаметров.

Смонтированные провода не должны пересекаться или прикасаться друг к другу, расстояние между проводами должно быть не менее 15 см.

Режим работы проводов повторно-кратковременный или длительный.

Подводка питания к нагревательной секции осуществляется «холодными» концами, места соединения нагревательного провода и «холодного» конца рекомендуется выводить за пределы обогреваемой зоны. Соединение «холодного» конца с нагревательными проводами рекомендуется производить методом пайки с применением бандажа из медной проволоки, посредством клеммных коробок и гильз. Допускается любой другой метод, обеспечивающий надежность соединения при эксплуатации проводов. Для достижения равномерности теплового поля смонтированный провод ПНСВ рекомендуется покрывать металлической фольгой толщиной 0,2 -0,5 мм.

Допускается изготовление нагревательных секций из 2-3 отрезков проводов, при этом соединение токопроводящих жил отрезков может производиться любым способом, обеспечивающим качество соединения.

Минимальный срок службы 16 лет.

Элементы констркуции проводов ПНСВ:

Жила — стальная, однопроволочная, круглой формы
Изоляция — ПВХ пластикат или полиэтилен
ОБЛАСТЬ ПРИМЕНЕНИЯ проводов ПНСВ
Провода предназначены для обогрева при фиксированном монтаже объектов нефтяной и газовой промышленности, монолитного бетона и железобетона, а также для напольных нагревателей при напряжении до 380 В переменного тока номинальной частотой 50 Гц или постоянного тока до 1000 В.
ЭКСПЛУАТАЦИОННЫЕ ХАРАКТЕРИСТИКИ проводов ПНСВ
Провода стойки к смене температуры окружающей среды: от -60°до +50°С
Максимально допустимая температура эксплуатации: +80°С
Прокладка проводов должна проводиться при температуре окружающей среды не ниже -15°С
Провода стойки к воздействию воды и 20-ти процентного водного раствора поваренной соли или 30-ти процентного раствора щелочей Са(ОН)2 или NaOH.
Радиус изгиба проводов при монтаже должен быть: не менее 5 наружных диаметров
Минимальный радиус изгиба: 25 мм
Смонтированные провода не должны пересекаться или прикасаться друг к другу, расстояние между проводами должно быть : не менее 15 мм
Режим работы проводов — повторно-кратковременный или длительный
Подводка питания к нагревательной секции осуществляется «холодными» концами, места соединения нагревательного провода и «холодного» конца рекомендуется выводить за пределы обогреваемой зоны
Соединение «холодного» конца с нагревательными проводами рекомендуется производить методом пайки с применением бандажа из медной проволоки, посредством клеммных коробок или гильз. Допускается любой другой метод, обеспечивающий надежность соединения при эксплуатации

Для достижения равномерности теплового поля смонтированные провода рекомендуется покрывать металлической фольгой толщиной 0.2-0.5 мм
Допускается изготовление нагревательных секций из 2-3 отрезков проводов, при этом соединение токопроводящих жил отрезков может производиться любым способом, обеспечивающим качество соединения
Электрическое сопротивление изоляции проводов, пересчитанное на 1 км длины и измеренное при температуре (20±5)°С : не менее 1 МОм
Гарантийный срок эксплуатации: 2 года со дня ввода в эксплуатацию
Срок службы проводов ПНСВ: не менее 16 лет

При строительстве монолитных бетонных конструкций в зимнее время применяется несколько технологий для создания необходимых температурных условий. Это может быть установка специальных тепляков, применение тепломатов или специального провода для прогрева бетона. Первый способ наиболее энергоемкий, поэтому экономически невыгоден, второй вариант подразумевает установку тепловых станций, прогревающих только верхние слои, что также вносит ряд ограничений на применение. Последний вариант наиболее востребован, о нем и пойдет речь в данной публикации.

Виды нагревательных проводов и кабелей

Чаще всего для электроподогрева бетона применяются провода ПНСВ. Это объясняется его относительно невысокой стоимостью и простым монтажом. Ниже представлен внешний вид термопровода, его конструктивные особенности и расшифровка маркировки.

Внешний вид провода ПНСВ (А), расшифровка маркировки (В) и конструкция (С)

В качестве альтернативы может применяться аналог – ПНСП, основное отличие которого заключается в изоляции, она выполнена из полипропилена, что позволяет незначительно повысить максимальную мощность тепловыделения.

Таблица основных параметров проводов ПНСВ и ПНСП

Обратим внимание, что провода данного типа могут использоваться в качестве напольных обогревателей, которые работают по принципу теплого пола.

Основная трудность, связанная с применением термопроводово данного типа, заключается в необходимости произвести расчет их длины. Небольшие просчеты можно исправить регулируя уровень напряжения, поступающего с прогревочного трансформатора.

Подробно о том, как производится монтаж ПНСВ, а также описание связанных с этим процедур (расчет длины проводов, схема укладки, составление технологической карты и т.д.) будет приведено в другом разделе.

Разновидности и особенности кабелей КДБС и ВЕТ

Основной недостаток описанных выше термопроводов – необходимость дополнительного оборудования, позволяющего регулировать мощность тепловыделения путем изменения напряжения. Значительно упростить задачу можно применяя двужильные секционные саморегулирующие термокабели, а именно финский ВЕТ или отечественный КДБС. Они не требуют для подогрева дополнительного оборудования и подключаются напрямую к сети 220 вольт. Устройство прогревочного кабеля представлено ниже.

Основные элементы конструкции кабеля обогревочного

Обозначение:

  • А – Выходы нагревательных жил.
  • В – Установочный кабель, служащий для подключения КДБС к сети 220в, для этой цели можно использовать любой соединительный провод, например АПВ.
  • С – Муфта, для подключения нагревательной секции.
  • D – Концевая изоляторная муфта.
  • Е – Нагревательная секция фиксированной длины.

Конструктивно кабель ВЕТ практически не отличается от рассмотренного выше отечественного аналога, что касается основных технических характеристик, то они приведены в сравнительной таблице ниже.

Таблица сравнительных характеристик кабелей ВЕТ и КДБС

Что касается маркировки, то отечественные изделия данного типа кодируются в следующем виде: ХХКДБС YY, где ХХ – характеристика линейной мощности, а YY – длина секции. В качестве примера можно привести маркировку 40КДБС 10, которая указывает мощность 40 Вт на метр, а сама секция десятиметровой длины.

Технология прогрева с использованием ПНСВ

Принцип действия довольно простой: при подаче напряжения происходит нагрев провода, который в свою очередь нагревает бетонную смесь. Поскольку для нагрева рекомендуется ограничится напряжением 70 В, потребуется понижающий трансформатор (далее ПТ) соответствующей мощности.

Трансформаторная подстанция КТПТО 80 для работы с термопроводом

Перед тем, как осуществлять монтаж, необходимо рассчитать длину прогревочного провода. При этом необходимо принимать во внимание его тип и характеристики, напряжение трансформаторной подстанции, объема бетонной смеси, температуры окружающей среды, а также характер конструкции (предполагается заливка колоны, балки) и т.д. Чтобы не запутаться в расчетах, можно воспользоваться онлайн калькулятором для расчета нагревательного проводника ПНСВ или другого кабеля (ПНБС, ПТПЖ и т.д.).

Для нагрева бетонной смеси, объемом один кубометр необходимо около 1200-1300 Вт. Если мы будем использовать провод данной марки сечением 1,20 мм, то потребуется прогревочник 30-45 м (для точного расчета длины необходимо знать температурные условия).

Помимо этого необходимо учитывать силу тока, для нормальной работы погруженного в раствор кабеля допустимо 14,0 – 18,0 Ампер (в зависимости от схемы подключения).

Электрическая схема подключения ПНСВ А) звездой В) треугольником

Монтаж ПНСВ

Приведем краткое руководство стандартной методики:

  1. Выбираем диаметр провода согласно техкарте, как правило это 1,20-4,0 мм. Если планируется обогрев армированных конструкций, то рекомендуется остановиться на ПВХ изоляции, поскольку она более прочная. Для неармированных конструкций допускается применять провод с полипропиленовым покрытием.
  2. Нарезка производится сегментами равной длины, после чего их сворачивают спиралью (Ø 30,0-45,0 мм).
  3. Укладка спиральных ниток производится в арматурный каркас или их располагают в фанерном или деревянном каркасе (опалубке).
  4. Характеристики ПНСВ не предполагают его работу в качестве обогревателя за пределами бетонной смеси. При таких условиях он сразу выходит из строя. Для исправления ситуации используется любой монтажный провод большего сечения, который подключают к выводам сегмента. Пример как подключить ПНСВ с помощью холодных концов
  5. После того, как опалубку зальют бетонной смесью, дожидаются, пока она начнет схватываться, после чего производится включение трансформаторной подстанции. С ее помощью осуществляют установку необходимой температуры путем увеличения или уменьшения напряжения.

Обратим внимание, принцип и схема укладки ПНСП, ПНБС, ПТПЖ практически не отличается от ПНСВ.

Использование сварочного аппарата в качестве ПТ.

Такой способ подогрева вполне возможен, приведем пример как это можно реализовать такой метод. Допустим, нам необходимо залить плиту объемом 3,7 кубических метра, при температуре на улице – 10°С. Для этой цели потребуется сварочная установка на 200,0-250ампер, клещи для измерения тока, провод ПНСВ, холодные концы и тканевая изоляционная лента.

Нарезаем восемь сегментов по 18,0 метров, каждый такой может выдержать ток до 25,0 А. Мы оставим небольшой запас и возьмем для подключения к сварочному аппарату на 250,0 А восемь таких сегментов.

К каждому выходу отрезка подсоединяем на скрутке монтажный провод (подключаем холодные концы). Производим укладку ПНСВ, ее схема будет приведена ниже. Соединение холодных концов (плюс и минус отдельно) желательно делать при помощи клеммника, размещенном на текстолите или любом другом изоляционном материале.

Подключение ПНСВ к сварочному аппарату

Завершив заливку, подключаем прямой и обратный выход аппарата (полярность не имеет значения), предварительно выставив ток на минимум. Проводим измерение тока нагрузки на отрезках, он должен быть порядка 20,0 А. В процессе нагрева сила тока может немного «проседать», когда это происходит, увеличиваем ее на сварке.

Монтаж секционного обогревочного кабеля

Поскольку такие нагреватели для бетона поставляются не в бухтах, а готовыми секциями, снимается вопрос с обрезкой. Все что необходимо для сбора установки для зимнего бетонирования это рассчитать мощность сегмента исходя из того сколько кубов бетона в конструкции, после чего выбрать кабель соответствующей длины.

Начнем с краткого руководства по расчетам и небольших рекомендаций по монтажу:

  • В инструкции к технологии ТМО бетона указывается, что на обогрев кубометра смеси требуется от 500 до 1500 Вт (зависит от температуру воздуха). Расход электроэнергии можно существенно снизить, если применить несколько несложных технических приемов:
  1. Использовать специальные присадки для смеси, позволяющие понизить точку замерзания раствора.
  2. Утеплить опалубку.
  • Если производится заливка балки или перекрытия, расчет обогревочного кабеля производится из 4 погонных метров на 1 м2 площади поверхности. При возведении объемных элементов, таких как двутавровые бетонные балки, электрообогрев укладывают ярусами, с расстоянием между ними не более 40,0 см.
  • Защита кабеля позволяет приматывать его к арматуре.
  • Расстояние от поверхности конструкции до уложенного внутри электрообогревателя должно быть как минимум 20,0 см.
  • Чтобы бетонная смесь прогревалась равномерно, нагреватели должны быть уложены на одинаковом расстоянии.
  • Между разными контурами должно быть не менее 40,0 мм.
  • Запрещено пересечение греющих проводников.

Преимущества и особенности сегментированного кабеля

К несомненным положительным качествам продукции данного типа следует отнести:

  • Для организации прогрева бетона при помощи не требуется наличие дорогостоящего дополнительного оборудования (ПТ).
  • В отличие от сушки электродами вероятность поражения электричеством минимальна.
  • Легкий монтаж и несложный расчет длины сегмента.

Особенности:

ВЕТ кабель стоит существенно дороже, чем провод для прогрева бетона ПНСВ. Отечественный КДБС, например производимый компанией ЭТМ в Красноярске, несколько улучшает положение, но не намного. Именно поэтому данные кабели применяются при возведении небольших бетонных и ЖБТ конструкций.

В качестве заключения.

Мы описали только один способ обогрева бетона, на самом деле их значительно больше. Они будут рассмотрены в других публикациях.

В завершении считаем необходимым ответить на вопрос, неоднократно встречающийся в сети, почему нельзя для прогрева бетона использовать нихромовые провода. Во-первых, это удовольствие было бы очень дорогим, во-вторых, правилами техники безопасности запрещено. Именно поэтому не стоит калькулятор для расчета числа витков нихрома, чтобы сделать обогрев трубы или бетона.

схема подключения и укладки, технология

При строительстве монолитных бетонных конструкций в зимнее время применяется несколько технологий для создания необходимых температурных условий. Это может быть установка специальных тепляков, применение тепломатов или специального провода для прогрева бетона. Первый способ наиболее энергоемкий, поэтому экономически невыгоден, второй вариант подразумевает установку тепловых станций, прогревающих только верхние слои, что также вносит ряд ограничений на применение. Последний вариант наиболее востребован, о нем и пойдет речь в данной публикации.

Зачем нужен прогрев бетона?

В холодное время года, когда температура окружающего воздуха опускается ниже точки замерзания воды, возникают проблемы с гидратацией бетонного раствора. Проще говоря, смесь частично замерзает, а не полностью затвердевает. После повешения температуры окружающей среды начинается процесс оттаивания, монолитность смеси может быть нарушена, что отрицательно отразится на монолитности конструкции, ее сопротивлению проникновения воды, что приведет к снижению долговечности.

Последствия заливки раствора на морозеПоследствия заливки раствора на морозе, в этом случае не поможет даже гидрошпонка Аквабарьер или другая гидроизоляция

Чтобы избежать перечисленных последствий, обязательно необходимо зимой делать электропрогрев бетонной смеси. При этом изотермическом процесс не возникает нарушений в ее структуре, что положительно отражается на прочности возводимой конструкции.

Виды нагревательных проводов и кабелей

Чаще всего для электроподогрева бетона применяются провода ПНСВ. Это объясняется его относительно невысокой стоимостью и простым монтажом. Ниже представлен внешний вид термопровода, его конструктивные особенности и расшифровка маркировки.

Внешний вид провода ПНСВ (А), расшифровка маркировки (В) и конструкция (С)Внешний вид провода ПНСВ (А), расшифровка маркировки (В) и конструкция (С)

В качестве альтернативы может применяться аналог – ПНСП, основное отличие которого заключается в изоляции, она выполнена из полипропилена, что позволяет незначительно повысить максимальную мощность тепловыделения.

Основные параметры проводов ПНСВ и ПНСПТаблица основных параметров проводов ПНСВ и ПНСП

Обратим внимание, что провода данного типа могут использоваться в качестве напольных обогревателей, которые работают по принципу теплого пола.

Основная трудность, связанная с применением термопроводово данного типа, заключается в необходимости произвести расчет их длины. Небольшие просчеты можно исправить регулируя уровень напряжения, поступающего с прогревочного трансформатора.

Подробно о том, как производится монтаж ПНСВ, а также описание связанных с этим процедур (расчет длины проводов, схема укладки, составление технологической карты и т.д.) будет приведено в другом разделе.

Разновидности и особенности кабелей КДБС и ВЕТ

Основной недостаток описанных выше термопроводов – необходимость дополнительного оборудования, позволяющего регулировать мощность тепловыделения путем изменения напряжения. Значительно упростить задачу можно применяя двужильные секционные саморегулирующие термокабели, а именно финский ВЕТ или отечественный КДБС. Они не требуют для подогрева дополнительного оборудования и подключаются напрямую к сети 220 вольт. Устройство прогревочного кабеля представлено ниже.

Основные элементы конструкции кабеля обогревочногоОсновные элементы конструкции кабеля обогревочного

Обозначение:

  • А – Выходы нагревательных жил.
  • В – Установочный кабель, служащий для подключения КДБС к сети 220в, для этой цели можно использовать любой соединительный провод, например АПВ.
  • С – Муфта, для подключения нагревательной секции.
  • D – Концевая изоляторная муфта.
  • Е – Нагревательная секция фиксированной длины.

Конструктивно кабель ВЕТ практически не отличается от рассмотренного выше отечественного аналога, что касается основных технических характеристик, то они приведены в сравнительной таблице ниже.

Сравнительные характеристики кабелей ВЕТ и КДБС в виде таблицыТаблица сравнительных характеристик кабелей ВЕТ и КДБС

Что касается маркировки, то отечественные изделия данного типа кодируются в следующем виде: ХХКДБС YY, где ХХ – характеристика линейной мощности, а YY – длина секции. В качестве примера можно привести маркировку 40КДБС 10, которая указывает мощность 40 Вт на метр, а сама секция десятиметровой длины.

Технология прогрева с использованием ПНСВ

Принцип действия довольно простой: при подаче напряжения происходит нагрев провода, который в свою очередь нагревает бетонную смесь. Поскольку для нагрева рекомендуется ограничится напряжением 70 В, потребуется понижающий трансформатор (далее ПТ) соответствующей мощности.

Трансформаторная подстанция КТПТО 80Трансформаторная подстанция КТПТО 80 для работы с термопроводом

Перед тем, как осуществлять монтаж, необходимо рассчитать длину прогревочного провода. При этом необходимо принимать во внимание его тип и характеристики, напряжение трансформаторной подстанции, объема бетонной смеси, температуры окружающей среды, а также характер конструкции (предполагается заливка колоны, балки) и т.д. Чтобы не запутаться в расчетах, можно воспользоваться онлайн калькулятором для расчета нагревательного проводника ПНСВ или другого кабеля (ПНБС, ПТПЖ и т.д.).

Для нагрева бетонной смеси, объемом один кубометр необходимо около 1200-1300 Вт. Если мы будем использовать провод данной марки сечением 1,20 мм, то потребуется прогревочник 30-45 м (для точного расчета длины необходимо знать температурные условия).

Помимо этого необходимо учитывать силу тока, для нормальной работы погруженного в раствор кабеля допустимо 14,0 – 18,0 Ампер (в зависимости от схемы подключения).

Электрическая схема подключения ПНСВЭлектрическая схема подключения ПНСВ А) звездой В) треугольником

Монтаж ПНСВ

Приведем краткое руководство стандартной методики:

  1. Выбираем диаметр провода согласно техкарте, как правило это 1,20-4,0 мм. Если планируется обогрев армированных конструкций, то рекомендуется остановиться на ПВХ изоляции, поскольку она более прочная. Для неармированных конструкций допускается применять провод с полипропиленовым покрытием.
  2. Нарезка производится сегментами равной длины, после чего их сворачивают спиралью (Ø 30,0-45,0 мм).
  3. Укладка спиральных ниток производится в арматурный каркас или их располагают в фанерном или деревянном каркасе (опалубке).
  4. Характеристики ПНСВ не предполагают его работу в качестве обогревателя за пределами бетонной смеси. При таких условиях он сразу выходит из строя. Для исправления ситуации используется любой монтажный провод большего сечения, который подключают к выводам сегмента. Пример подключения ПНСВ с помощью холодных концовПример как подключить ПНСВ с помощью холодных концов
  5. После того, как опалубку зальют бетонной смесью, дожидаются, пока она начнет схватываться, после чего производится включение трансформаторной подстанции. С ее помощью осуществляют установку необходимой температуры путем увеличения или уменьшения напряжения.

Обратим внимание, принцип и схема укладки ПНСП, ПНБС, ПТПЖ практически не отличается от ПНСВ.

Использование сварочного аппарата в качестве ПТ.

Такой способ подогрева вполне возможен, приведем пример как это можно реализовать такой метод. Допустим, нам необходимо залить плиту объемом 3,7 кубических метра, при температуре на улице – 10°С. Для этой цели потребуется сварочная установка на 200,0-250ампер, клещи для измерения тока, провод ПНСВ, холодные концы и тканевая изоляционная лента.

Нарезаем восемь сегментов по 18,0 метров, каждый такой может выдержать ток до 25,0 А. Мы оставим небольшой запас и возьмем для подключения к сварочному аппарату на 250,0 А восемь таких сегментов.

К каждому выходу отрезка подсоединяем на скрутке монтажный провод (подключаем холодные концы). Производим укладку ПНСВ, ее схема будет приведена ниже. Соединение холодных концов (плюс и минус отдельно) желательно делать при помощи клеммника, размещенном на текстолите или любом другом изоляционном материале.

Подключение ПНСВ к сварочному аппаратуПодключение ПНСВ к сварочному аппарату

Завершив заливку, подключаем прямой и обратный выход аппарата (полярность не имеет значения), предварительно выставив ток на минимум. Проводим измерение тока нагрузки на отрезках, он должен быть порядка 20,0 А. В процессе нагрева сила тока может немного «проседать», когда это происходит, увеличиваем ее на сварке.

Плюсы и минусы ПНСВ

Прогревать таким способом бетон довольно выгодно. Это объясняется как низкой стоимостью провода и относительно небольшим расходом электричества. Отдельно необходимо отметить устойчивость проволоки к щелочному и кислотному воздействию, что позволяет использовать данный способ при добавлении в смесь различных присадок.

Основные недостатки:

  • сложность расчетов при расчете длины провода;
  • необходимость использования ПТ.

Понижающие станции стоят довольно дорого, а учитывая длительность процесса брать их в аренду не выгодно (такие услуги обходятся в 10% от себестоимости изделия). Использование сварочных аппаратов делает возможным обогрев небольших конструкций, но поскольку она не рассчитана на такой режим работы, выход ее из строя и последующий дорогостоящий ремонт довольно вероятны.

Монтаж секционного обогревочного кабеля

Поскольку такие нагреватели для бетона поставляются не в бухтах, а готовыми секциями, снимается вопрос с обрезкой. Все что необходимо для сбора установки для зимнего бетонирования это рассчитать мощность сегмента исходя из того сколько кубов бетона в конструкции, после чего выбрать кабель соответствующей длины.

Начнем с краткого руководства по расчетам и небольших рекомендаций по монтажу:

  • В инструкции к технологии ТМО бетона указывается, что на обогрев кубометра смеси требуется от 500 до 1500 Вт (зависит от температуру воздуха). Расход электроэнергии можно существенно снизить, если применить несколько несложных технических приемов:
  1. Использовать специальные присадки для смеси, позволяющие понизить точку замерзания раствора.
  2. Утеплить опалубку.
  • Если производится заливка балки или перекрытия, расчет обогревочного кабеля производится из 4 погонных метров на 1 м2 площади поверхности. При возведении объемных элементов, таких как двутавровые бетонные балки, электрообогрев укладывают ярусами, с расстоянием между ними не более 40,0 см.
  • Защита кабеля позволяет приматывать его к арматуре.
  • Расстояние от поверхности конструкции до уложенного внутри электрообогревателя должно быть как минимум 20,0 см.
  • Чтобы бетонная смесь прогревалась равномерно, нагреватели должны быть уложены на одинаковом расстоянии.
  • Между разными контурами должно быть не менее 40,0 мм.
  • Запрещено пересечение греющих проводников.

Преимущества и особенности сегментированного кабеля

К несомненным положительным качествам продукции данного типа следует отнести:

  • Для организации прогрева бетона при помощи не требуется наличие дорогостоящего дополнительного оборудования (ПТ).
  • В отличие от сушки электродами вероятность поражения электричеством минимальна.
  • Легкий монтаж и несложный расчет длины сегмента.

Особенности:

ВЕТ кабель стоит существенно дороже, чем провод для прогрева бетона ПНСВ. Отечественный КДБС, например производимый компанией ЭТМ в Красноярске, несколько улучшает положение, но не намного. Именно поэтому данные кабели применяются при возведении небольших бетонных и ЖБТ конструкций.

В качестве заключения.

Мы описали только один способ обогрева бетона, на самом деле их значительно больше. Они будут рассмотрены в других публикациях.

В завершении считаем необходимым ответить на вопрос, неоднократно встречающийся в сети, почему нельзя для прогрева бетона использовать нихромовые провода. Во-первых, это удовольствие было бы очень дорогим, во-вторых, правилами техники безопасности запрещено. Именно поэтому не стоит калькулятор для расчета числа витков нихрома, чтобы сделать обогрев трубы или бетона.

выбор, расчет и применение в работе

Любая стройка не обходиться без бетона. Из него устраивают фундаменты, монолитное перекрытие, стены, полы. В зимний период время застывания бетона значительно больший из-за низких температур. Это не только продлевает срок строительства, но и негативно влияет на прочностные характеристики. Для этого используют провод для прогрева бетона.

Для чего греют бетон

Прогрев бетона в зимнее время осуществляют по следующим причинам:

  • При низких температурах вся вода в растворе превращается в лед. Из-за этого процесс гидратации останавливается. Попросту говоря процесс схватывания прекращается полностью. В этом момент раствор теряет практически все прочностные характеристики.
  • При использовании такого провода смесь набирает свою прочность более быстро, чем в оптимальных условиях. Использовать кабель можно в любое время года.

Какие бывают греющие провода

На рынке предоставлен широкий выбор этой продукции с разными рабочими характеристиками. Кабель для прогрева бетона должен иметь хорошую изоляцию, иначе возможно короткое замыкание или пожар. Это так же позволяет избежать перегиба и перелома. Наиболее подходящий диаметр провода – 1.2 мм, а сопротивление 0.15 Ом/м. Как правило, выпускают провода с одной жилой, но бывают и с двумя.

Разновидности и особенности

На рынке предлагают следующие виды провода для прогрева бетона:

  • Кабель двухжильный для бетона в секциях — КДБС. Этот кабель можно подключать к сети напрямую, из-за чего уже можно отказаться от трансформатора. Его очень просто укладывать и монтировать. Но цена такого вида кабеля «кусается». Кроме того он используется только раз. После затвердевания конструкции достать кабель невозможно.
  • Кабель для прогрева бетона – ВЕТ. Имеет две жилы стали. Для их работы не нужен трансформатор. Главное преимущество – очень экономичен.
  • Кабель ПНСВ. Самый доступный и известный вид. Стоимость нагревательного провода ПНСВ начинается от 1-го рубля за метр. Для работы необходим трансформатор. Есть возможность использовать несколько раз. Чаще всего используют провод прогревочный пнсв сечением 1х1.
  • Провод ПТПЖ. Его технические характеристики схожи с кабелем ПНСВ, в том числе и изоляция под высоким давлением. Различие – количество жил, в данном случае их две.

Технология укладки греющего провода

Перед укладкой кабеля проводят подготовительные работы:

  1. По правилам устанавливают опалубку и арматуру. Важно, чтоб на этих элементах не было наледи.
  2. На верхнем и нижнем поясе арматурного каркаса, с помощью хомутов или скрепок, укладывают кабель.
  3. Шаг между проводами ПНСВ – 80-200 мм. Точное число зависит от температуры воздуха. Уложенные провода не должны соприкасаться и пересекаться.
  4. Не более чем за 25 метров от опалубки устанавливают трансформатор. Возле него раскладывают резиновые коврики.
  5. Участок, где расположена опалубка с тэном и электродами, ограждают.
  6. Устанавливают шинопровода и соединяют с кабелем.
  7. Подключают шинопровод к сети 220 В и тестируют его сначала на холостом ходу.

Какие есть особенности укладки греющего провода?

Прогрев бетона проводом ПНСВ выполняют по схеме треугольник или звезда. В первом случае прогрев обеспечивается за счет разделения кабеля на три равных группы, которые соединяют параллельно. Их объединяют в узлы и подключают к сети. Способ прогрева «звездой» заключается в соединении трех равных проводов в один узел, а свободные концы подключают к зажимам.

Технология прогрева бетона в зимнее время очень проста и не требует особых умений и знаний. Выполнив все рекомендации, греющим проводом можно быстро получить стяжку с необходимыми прочностными характеристиками.

Принципы использовании

Технологическая карта данного процесса должна учитывать следующие нюансы:

  • Жилы кабеля выполнены из стали, которая имеет высокое удельное сопротивление, а, значит, она отдает больше тепла. На воздухе при таких температурах изоляция плавится, поэтому непосредственное подключение кабеля прогрева к сети выполняется с помощью проводника с меньшим удельным сопротивлением.
  • Самое минимальное расстояние между проводами – 15 мм. Иначе вся изоляция расплавится.
  • Кабель укладывают змейкой. Минимальный радиус закругления – 25 мм.
  • Минимальная температура воздуха, при которой можно проводить работы: -15 градусов Цельсия, так как изоляция у большинства проводов выполнена из пластмассы, которая теряет свою гибкость. В результате она может потрескаться.
  • Чтоб нагрев был равномерный, провода накрывают фольгой.
  • Прогрев проводят поэтапно.

Нюансы при расчете необходимой длины

Перед началом проведения работ очень важно правильно рассчитать длину провода ПНСВ для прогрева. При расчете длины учитывают следующие факторы:

  • форму конструкции;
  • температуру воздуха,;
  • марку бетона;
  • теплоизоляцию;
  • ветер.

Учитывают также удельную мощность.
Расход провода для прогрева бетона зависит от типа конструкции – с арматурой и без.
Если трансформатор не используют, то для обогрева бетона используют кабель с минимальной длиной 120 м.

Рассчитать количество провода ПНСВ можно по специальной таблице. Существует несколько вариантов таблиц, в которых учитываются разные нюансы. Специалисты рекомендуют использовать сразу несколько таблиц, чтоб более точно определить количество провода прогревочного ПНСВ 1*1.

Когда можно приступать к обработке бетона после прогрева

Многие специалисты считают, что бетон нельзя обрабатывать после нагрева и до набора бетоном марочной прочности. Такое мнение ошибочно. После прогрева можно выполнять работы, но не все. С ударными нагрузками необходимо повременить. Но можно резать материал. Для этого используют инструмент с алмазными насадками, которые не должны создавать трещины на конструкции.
Прогрев бетона кабелем очень напоминает устройство теплых полов. Поэтому имея опыт – мастер без проблем справиться с прогревом бетона.

схема укладки, характеристики провода ПНСВ, расчёт длины

Укладка провода пнсв для прогрева бетонаРабота с бетоном при отрицательных температурах сопряжена со сложностями. Невозможно достичь технической прочности застывшего материала, если вода в растворе замёрзнет, а зимой увеличивается срок высыхания бетона. Электропрогрев позволит решить задачу при низких финансовых расходах. При установке обогревающего оборудования важно соблюдать схему укладки провода ПНСВ для прогрева бетона.

Сферы применения метода

Невысокая стоимость и универсальность провода ПНСВ позволяют использовать этот способ подогрева бетона повсеместно. В соответствии с нормами СП 70.13330.2012, технология подходит для всех видов строительства. После затвердения материала кабель остаётся внутри, поэтому возможность приобрести недорогое и надёжное изделие позволит рассчитывать на максимальную выгоду. В зимнее время низкие температуры становятся источником дискомфорта для строителей и останавливают гидратацию цемента. Образовавшийся лёд повреждает связи в растворе, материал теряет прочность.

Чтобы бетон затвердел быстро и его характеристики не снижались, температура раствора должна составлять около 20 °C. Неоптимальные условия сделают процесс застывания долгим. Прогрев бетона ПНСВ проводом или аналогичными кабелями незаменим в таких случаях:

  • Сферы применения методаутепление монолита и опалубки отсутствует либо недостаточно;
  • значительный объем монолитной конструкции исключает равномерный прогрев;
  • неблагоприятные погодные условия;
  • важно строгое выполнение сроков строительства.

С должным подогревом, технические условия будут соблюдены.

Оптимальные характеристики кабеля

Монтаж кабеляПроверенные схемы прогрева бетона допускают использование кабеля со стальной жилой достаточной толщины — не менее 0,6 мм². Диаметр провода должен находиться в пределах 1,2−3 мм. Если в растворе содержатся агрессивные компоненты, лучше отдать предпочтение оцинкованному нагревательному элементу. Изоляция — ПВХ или полиэстер, что гарантирует высокое удельное сопротивление, обладает прочностью, устойчивостью к истиранию, не повреждается при сгибании. Технические свойства ПНСВ провода:

  1. Удельное сопротивление — 0,15 Ом/м.
  2. Рабочий температурный режим в пределах от -60°C до 50 °C.
  3. Расход — не более 60 м кабеля на кубометр раствора.
  4. Безопасный монтаж при -15°C.

Питание системы происходит посредством трехфазной сети 380 В. Для этого алюминиевый провод АВП подключают к холодным концам. Можно питать систему и с помощью бытовой сети 220 В, но важно сделать верные расчёты и использовать не менее 120 м кабеля.

Особенности монтажа

Оптимальные характеристики кабеляКабель ПНСВ укладывается «змейкой» (схема сходна с системами «тёплый пол») после монтажа опалубки и арматуры. Интервал зависит от погодных условий и может составлять 8−20 см. В проводе не допускаются натяжения, изделие крепится к арматуре посредством зажимов. Важно, чтобы токоведущие жилы не соприкасались, а радиус изгиба не был меньше 25 см. Такой подход обеспечит качественный обогрев бетона нагревательными проводами. Схема позволяет расходовать кабель экономно.

К заливке раствора приступают после вывода холодных концов и монтажа схемы подключения. Допустимо низкая температура бетона 5 °C. К проводу ПНСВ прилагается инструкция, с описанием вариантов подключения системы к источнику питания.

Подсчет длины провода

При расчёте прогрева бетона проводом ПНСВ важно учесть показатели влажности, температуры воздуха, формы будущей конструкции, её объёма, теплоизоляции. От этих нюансов зависит количество тепла, необходимое для корректного застывания бетона. Расстояние между жилами при укладке, а значит и длина нужного кабеля, изменяется исходя из температурного режима. Шаг равен 20 см, если на улице -5°C. Дальнейшее понижение температуры на 5 градусов приводит к уменьшению шага на 4 см.

Подсчет длины провода

Потребляемая мощность также важна в подсчётах. Произведение удельного сопротивления на силу тока, возведённую в квадрат, позволит узнать этот показатель для 1 метра кабеля. Сила тока в системе не должна превышать 16 А, а удельное сопротивление для провода ПНСВ 1,2 мм составляет 0,15 Ом/м.

Альтернативные системы

Кабели ВЕТ и КДБС также позволяют добиться хороших результатов. Их преимущество — простое подключение к сети 220 В через розетку или щит. Перегрузки исключены, ведь провода разделены на секции. Но цена изделий выше, финансовые потери на строительстве крупных объектов будут ощутимыми.

Технология опалубки с ТЕНТехнология опалубки с ТЕН и электродами заслуживает внимания. Посредством сварочного аппарата арматура в растворе подключается к сети. Подойдут понижающие трансформаторы прочих типов. Схема работает без провода, но расход электроэнергии возрастает. Вода — отличный проводник, а сопротивление раствора растёт во время процесса застывания.

Подогрев бетона кабелем ПНСВ популярен благодаря доступной стоимости. Его использование в быту осложнено тем, что подключение системы невозможно без знаний и оборудования.

Параллельно применяют теплоизоляцию, что ускорит процесс нагревания раствора, а снижение температуры сделает равномерным.

Утепление бетона проволокой ПНСВ: схема и методика укладки

Утепление бетона проводом ПНСВ, схема укладки которого будет описана ниже, используется для наружных работ зимой. Такие манипуляции необходимы по той причине, что при понижении температуры раствор постепенно начинает набирать силу, в результате чего вода просто начинает превращаться в лед. Более длительное затвердевание бетона приводит к тому, что работы откладываются на недели и месяцы, кроме того, вполне вероятно, что конструкция не достигнет необходимой прочности, разрушится в процессе эксплуатации.

Принцип действия проволоки

Технология утепления бетона с помощью проволоки ПНС заключается в том, что перед началом заливки берется кабель нужного сечения и напряжения, укладывается, а затем заливается. Затем кабель подключается к сети. Не бойтесь, что качество бетона изменится под воздействием высоких температур, пузырьки не появятся, как и трещины после затвердевания, но процесс затвердевания не будет остановлен низкими температурами, что даст прочную и надежную конструкцию ,

Технические характеристики проволоки для бетона

Проволока для утепления бетона ПНСВ, как правило, имеет некоторые особенности. Обычно это проводящий сердечник с изоляционным покрытием. Защита может быть выполнена из полиэстера или поливинилхлорида. Диаметр составляет 1,2 мм, но среднее сопротивление эквивалентно 0,15 Ом / м. Может использоваться в диапазоне температур -60- + 50 ° C. При работе ток может составлять 14-16 А.

Укладка может выполняться при -25- + 50 ° С. Перед покупкой необходимо определить, сколько будет использоваться провод, поэтому на 1 м на 3 раствора потребуется около 55 м.

Зимний прогрев бетона с помощью провода ПНСВ полностью безопасен, так как в производстве изделие получает высококачественную изоляцию, которая предотвращает возгорание. Нет почти никакой опасности, что вена будет сломана, потому что она достаточно сильна. Не работайте с проводом, пока он не погружен в раствор. В противном случае произойдет выгорание из-за повышенного тока. Однако такие явления не опасны для выводов, поскольку имеют в структуре проволоку более внушительного поперечного сечения, представляющего собой так называемые холодные концы.Они изготовлены из APV-4, максимальная длина которого составляет 1 м.

Область применения

Способ утепления бетона проволокой ПНСВ предполагает возможность его использования не только в бытовом, но и в промышленном масштабе. Иногда в

установка

фундаментов и заборов.

Выполнение монтажа кабеля

Работа с кабелем предполагает ответственные манипуляции. Прежде чем начать процесс укладки, необходимо освободить поверхность от мусора и посторонних предметов, а также тех элементов, которые могут повредить проволоку.Во время этого важно убедиться, что кабель не изгибается. Для этого рекомендуется устанавливать полукругом, но не должно быть никаких пустых областей. Змея — самый простой способ укладки.

После переключения необходимо соблюдать осторожность. Таким образом, не должно быть падений напряжения, для этого необходимо применять стабилизатор, иначе провод просто сгорит, и удалить его будет невозможно.

В статье приведена схема утепления бетона проволокой ПНСВ.После того, как вы реализуете это на практике, вы можете заполнить и подключить, что включает подключение кабеля к источнику питания. Рекомендуется использовать трансформатор при подключении. Как правило, специалисты рекомендуют использовать станции для отопления марок СПБ-40, СПБ-80.

Соединение может быть выполнено двумя электрическими цепями, первая из которых называется «звездой», а вторая — «треугольником». В последнем случае провода в проводе разделены на 3 равные части, и провода каждой из них соединены параллельно.Сгенерированные наборы должны быть подключены к 3 узлам и подключены к 3-му терминалу станции.

Особенности прогрева

Прежде чем начать, вам необходимо знать время прогрева бетонной проволоки с помощью PNSV.

В течение первого периода раствор будет нагреваться, при этом недопустимо повышать температуру более чем на 10 0 С в течение двух часов. Второй период должен сопровождаться повышением температуры не более 80 0 С.На последнем этапе происходит охлаждение. В этом случае тоже не следует спешить, и уменьшение не должно превышать 5 0 С в течение часа.

Утепление бетона проводом ПНСВ, схема укладки которого описана здесь, мало чем отличается от технологии монтажа системы «теплый пол». Кроме того, этот кабель можно использовать для достижения таких целей. Однако в этом случае систему придется немного модифицировать, построив TET из проводов, а сверху система должна быть защищена изоляцией.

Стоимость нагревательного кабеля

Перед приобретением необходимо ознакомиться с ценой на кабель. В разных районах это может стоить по-разному, но средняя цена остается неизменной, она равна 2 руб / м. Не покупайте продукт, не проверив, соответствует ли он установленным стандартам ГОСТ, поэтому кабель изготовлен в соответствии со стандартами 12.1.013-78.

Обработка бетона после прогрева

Многие строители задаются вопросом, могут ли они манипулировать резанием или сверлением бетона после того, как он приобрел прочность.Эта проблема связана с тем, что во время отключения отопления конструкция

.
Калькулятор размеров электрических проводов и кабелей (медь и алюминий)

Калькулятор размеров медных и алюминиевых проводов и кабеля

Сегодня у нас появился еще один комплексный калькулятор размеров медных и алюминиевых проводов.

Как мы подробно обсудили тему «Как правильно рассчитать размер провода для электропроводки. Теперь вы можете воспользоваться этим калькулятором, чтобы сделать эту работу.

Wire Cable Size Calculator-Copper-Aluminum-AWG Wire Cable Size Calculator-Copper-Aluminum-AWG

Формула расчета размера провода / кабеля для однофазных цепей

Миллиметрические характеристики провода = 2 x ρ x I x L / (% допустимого падения напряжения напряжения источника)

Формула расчета размера провода / кабеля для трехфазных цепей

Проволочные круглые мил = √3 x 2 x ρ x I x L / (% допустимого падения напряжения источника напряжения)

Где;

  • ρ = Удельное сопротивление или удельное сопротивление проводника
  • D = Расстояние в футах (в одну сторону) i.е. ½ общая длина цепи
  • I = ток нагрузки

Примечание: здесь значение ρ = удельное сопротивление или удельное сопротивление проводника для меди и алюминия составляет 11,2 и 17,4 соответственно при 53 ° C (127 ° F)

  • Также проверьте раздел «Полезно знать» после калькулятора.

Введите значения, и нажмите на рассчитать. Результат покажет необходимое количество.

Полезно знать:

Если размер провода больше, чем у всех датчиков (т.е.e 0000 — наибольший размер провода в), то инженер-электрик измеряет его в СМ, кСМ или МСМ вместо дюймов, потому что дюйм — это небольшая единица таких проводов. Куда;

круговой мил (СМ) — это единица круглой площади диаметром один мил (одна тысячная дюйма). Это соответствует 5,067 × 10 -4 мм².

Где:

1000 СМ (круглые милы) = 1 МСМ или 1 км3 = 0,5067 мм², т. Е. 2 ​​км3.

Это единица для обозначения площади провода с круглым поперечным сечением.

Вы также можете прочитать:

.
Как рассчитать требования к кВт для типичных применений нагревателя

Расчеты отопления резервуара

При выборе нагревателя для обогрева резервуара вы должны сначала определить, требует ли приложение поддержания температуры или ее нужно повысить. Ниже приведены расчеты для каждого приложения. Вы также можете посетить наш веб-сайт и использовать наш онлайн-калькулятор; найдите ссылку на бесплатный калькулятор в верхней части страницы.

Поддерживать температуру

Чтобы рассчитать киловатт-килограмм, необходимый для поддержания температуры резервуара, вам необходимо определить площадь поверхности резервуаров, температуру технологического процесса, которую необходимо поддерживать, минимальную температуру окружающей среды и R-значение изоляции.

Площадь поверхности:

Круглый бак —

A (фут²) = (2 x p x r x h) + (2 x p x r²)

р = 3,14

r = радиус (футы)

h = высота (футы)

Прямоугольный резервуар —

A (фут²) = 2 x [(l x w) + (l x h) + h x w)]

л = длина (футы)

w = ширина (футы)

h = высота (футы)

После определения площади поверхности резервуаров можно рассчитать поддерживающую КВт следующим образом:

кВт = (A x (1 / R) x ΔT (° F) x SF) / 3412

A = площадь поверхности

R = R-значение изоляции

  • Используйте 0.5 как R-значение неизолированного стального резервуара
  • См. Таблицу ниже для типичных примеров
  • R-значение = толщина (дюймы) / k-фактор

ΔT = разница между заданной температурой процесса и самой низкой температурой окружающей среды

SF = коэффициент безопасности, рекомендуется 1,2

3412 = преобразование BTU в KW

Таблица 1

Тип изоляции R-значение / дюйм толщины
Стекловолокно R-3
Минеральное волокно R-3.7
Силикат кальция R-2
полиуретановая пена с открытыми порами R-3.6
полиуретановая пена с закрытыми порами R-6
Полиизоциануратная распыляемая пена R-6

Пример:

Резервуар для сырой нефти диаметром 42 дюйма и высотой 40 дюймов с изоляцией R-6 необходимо поддерживать при температуре 75 ° F при минимальной температуре окружающей среды 10 ° F.

A = (2 x 3,14 x 21 x 40) + (2 x 3,14 x 21²)

A = 8044,68 фут²

кВт = (8044,68 х 1/6 х 65 х 1,2) / 3412

кВт = 30,65

Повышение температуры

Расчет KW для повышения температуры материала в резервуаре (разогрев) начинается с той же информации, которая требуется в приложении для технического обслуживания. Кроме того, нам понадобится вес нагреваемого материала, удельная теплоемкость материала и время, необходимое для нагрева материала от его начальной температуры до конечной температуры.Расчет KW для повышения температуры выглядит следующим образом:

KWtotal = KWheat-up + KWmaintain

KWeat-up = [(M x Cp x ΔT x SF) / 3412] / т

M = вес материала в фунтах

Cp = Удельная теплоемкость, см. Примеры в таблице

ΔT = разница между заданной (конечной) температурой процесса и начальной температурой

SF = коэффициент безопасности, рекомендуется 1,2

3412 = преобразование BTU в KW

т = время в часах

KWmaintain = (A x (1 / R) x ΔT (° F) x SF) / 3412

A = площадь поверхности

R = R-значение изоляции

  • Используйте 0.5 как R-значение неизолированного стального резервуара

ΔT = разница между заданной температурой процесса и самой низкой температурой окружающей среды

SF = коэффициент безопасности, рекомендуется 1,2

3412 = преобразование BTU в KW

Пример:

Бак 4 ’x 6’ x 12 ’с 1800 галлонами воды должен быть нагрет от 60 ° F до 95 ° F за 3 часа. Резервуар имеет изоляцию R-4, а минимальная температура окружающей среды составляет 0 ° F.

Для начала нам нужно перевести галлоны воды в фунты:

фунтов = G x D1

G = галлоны

D1 = фунт на галлон из графика ниже

фунтов = 1800 х 8.34

фунтов = 15,012

Если объем бака указан в кубических футах (фут3), формула выглядит следующим образом:

фунтов = C x D2

C = кубический фут материала

D2 = фунтов на фут³ из таблицы ниже

Таблица 2

Масса
Материал D 1

фунтов / галлон

D 2

фунтов / фут³

Удельная теплоемкость
вода 8.34 62,4 1
# 1 мазут 6,8 50,5 0,47
# 2 мазута 7,2 53,9 0,44
# 3,4 мазута 7,5 55,7 0,425
# 5,6 мазута 7,9 58,9 0,41
Бункер С 8,15 61 0.5
SAE 10-50 Масло 7,4 55,4 0,43
этиленгликоль 9,4 70 0,55
50% этиленгликоль / вода 8,8 65,8 0,76
воздух 0,073 0,24
азот 0,073 0.25

KWheat-up = [(15,012 x 1 x 35 x 1,2) / 3412] / 3

KWheat-up = 61,6

плюс

KWmaintain = (288 x 1/4 x 95 x 1,2) / 3412

KWmaintain = 2.4

кВт = 64

Расчеты по подогреву воздуха в воздуховоде

Как только объем воздуха в стандартных кубических футах в минуту (SCFM) и требуемое повышение температуры в ° F (ΔT) известны, требуемая мощность в киловаттах (кВт) нагревателя может быть определена по следующей формуле:

кВт = (SCFM x ΔT) / 3193

Обратите внимание, что CFM дается при стандартных условиях (SCFM): 80 ° F и нормальное атмосферное давление 15 фунтов на квадратный дюйм.CFM при более высоком давлении (P) и температуре воздуха на входе (T) можно рассчитать следующим образом:

SCFM = ACFM x (P / 15) x [540 / (T + 460)]

Пример:

Сушильная печь, работающая при давлении 25 фунтов на квадратный дюйм (манометрическое давление 10 фунтов на квадратный дюйм), рециркулирует 3000 кубических футов воздуха в минуту через нагреватель, который повышает ее температуру с 350 до 400 ° F.

Чтобы выбрать подходящий нагреватель:

Шаг 1: конвертируйте 3000 CFM при 25 фунт / кв.дюйм и 350 ° F в CFM при стандартных условиях, используя приведенную выше формулу:

3000 x (25/15) x [540 / (350 ° F + 460)] = 3333 SCFM

Шаг 2: Рассчитайте требуемое значение KW:

[3333 SCFM x (400–350 ° F)] / 3193 = 52 кВт

Расчеты для циркуляционных нагревателей

При расчете мощности, необходимой для нагрева материала, протекающего через циркуляционный нагреватель, может применяться приведенное ниже уравнение KW.Это уравнение основано на критериях отсутствия испарения в нагревателе. Уравнение KW включает в себя 20% -ный коэффициент безопасности, учитывающий тепловые потери оболочки и трубопровода, отклонения напряжения и допустимой мощности элементов.

кВт = (М х ΔТ х х Ср х S.F.) / 3412

Где:

кВт = мощность в киловаттах

M = расход в фунтах / час

ΔT = повышение температуры в ° F (Разница между минимальной температурой на входе и максимальной температурой на выходе.)

Cp = удельная теплоемкость в БТЕ / фунт ° F

S.F. = коэффициент безопасности, 1,2

3412 = преобразование BTU в KWH

Пример нагрева воды:

У нас есть 8GPM воды с температурой на входе 65 ° F и температурой на выходе 95 ° F. Сначала преобразуйте скорость потока в фунты / час.

8 галлонов x 1 фут³ x 60 мин = 64,17 фут³ / час
мин. 7.48 галлонов 1 час

Перевести в фунты / час, получить плотность и удельную теплоемкость из таблицы 2 выше.

64,17 фут³ / час x 62,4 фунта / фут³ = 4004 фунта / час

Теперь вычислите KW:

кВт = 4004 фунта / час x (95-65) ° F x 1 БТЕ / фунт ° F x 1.2
3412
кВт = 42

Пример газового отопления:

Воздух течет при давлении 187 кубических футов в минуту и ​​давлении 5 фунтов на кв. Дюйм.Его необходимо нагреть от температуры на входе 90 ° F до температуры на выходе 250 ° F. Сначала преобразуйте скорость потока в SCFM, используя формулу, приведенную ранее.

187 x (20/15) x [540 / (90 ° F + 460)] = 243,7 SCFM

Перевести в фунты / час, снова ссылаясь на таблицу 2 для плотности и удельной теплоемкости.

243,7 ЮФКМ x 60 мин x 0,073 фунта = 1067,4 фунта / час
1 час фут³

Теперь вычислите KW:

кВт = 1067.4 фунта / час x (250-90) ° F x 0,24 БТЕ / фунт F 1,2 1,27474
3412
кВт = 14,4

Если вам понравился этот пост, рассмотрите возможность оставить комментарий или подписаться на канал RSS , чтобы в будущем читатели читали ваши статьи. ,
Коэффициент теплопередачи из переработанного бетонного кирпича в сочетании с EPS-изоляционной стеной

Были проведены четыре образца тектонических форм для проверки их коэффициентов теплопередачи. Анализируя и сравнивая значения испытаний и теоретические значения коэффициента теплопередачи, был предложен метод расчета скорректированных значений для определения коэффициента теплопередачи; предложенный метод оказался обоснованно правильным. Результаты показали, что коэффициент теплопередачи из вторичного бетона кирпичной стены выше, чем у глиняной кирпичной стены, коэффициент теплопередачи из вторичного бетона кирпичной стены может быть эффективно уменьшен в сочетании с теплоизоляционной плитой EPS, а изоляция типа сэндвич лучше чем у внешней теплоизоляции.

1. Введение

По мере того, как урбанизация постепенно расширяется, растут быстрые темпы строительства зданий и выдающиеся достижения в области энергосбережения [1]. Энергосбережение играет важную роль в национальных энергетических стратегиях, смягчая существенное давление на ресурсы и окружающую среду [2, 3]. В компонентах частоколов здания площадь внешней стены занимает большую долю по сравнению с крышей здания, дверьми, окнами и т. Д. [4, 5].Тепловые характеристики сохранности наружной стены являются ключом к достижению энергоэффективности в зданиях [5, 6]. Наружные стены отличаются среди строительных материалов, типов конструкций и зависит от условий окружающей среды. Глиняный кирпич, широко используемый во многих существующих зданиях, вызвал большое разрушение земельных ресурсов. Процесс высокотемпературного обжига в печи также привел к увеличению выбросов парниковых газов. Поэтому возникла растущая потребность в исследовании строительных материалов с зелеными стенами, их сохранности и теплоизоляции.Переработанный бетонный кирпич, сделанный из измельченного бетона, широко используется в каменных конструкциях в качестве экологически чистых строительных материалов. Было проведено много исследований его механических свойств, но только несколько измерений его теплоизоляционных свойств [7]. Кроме того, наиболее распространенным типом теплоизоляции было добавление материалов, сохраняющих тепло, снаружи наружной стены, с самым большим ограничением срока службы [8, 9]. Вспениваемый полистирол (EPS), используемый для теплоизоляции, играл очевидную термическую сохранность и эффективность теплоизоляции.Тем не менее, разнообразные материалы для наружных стен с различными формами структурных типов сохранения тепла EPS, независимо от того, отличаются ли различия их теплоизоляционных свойств, традиционно не были предметом внимания в контексте сохранения тепла стены и энергосбережения.

Коэффициент теплопередачи () обычно использовался в качестве показателя для измерения теплового сохранения и теплоизоляции стенок корпуса и определялся главным образом коэффициентом теплопроводности () материалов.Считается, что тепловая и влажная среда влияют на теплопередачу стенок корпуса [10–12]. Коэффициент теплопроводности изменялся в зависимости от температуры воздуха и влажности, что приводило к отклонению между фактическим значением и теоретическим значением. Однако предполагалось, что характеристики параметров материала не изменятся, или коэффициент теплопроводности () материалов был выражен как постоянный во многих исследованиях. Поэтому существует растущая потребность в изучении скорректированного коэффициента теплопроводности материала в различных средах и его расширенного применения в энергосберегающих конструкциях.

Переработанный бетонный кирпич имеет все больший потенциал развития и использования. Его отличная комбинация с изоляционной плитой EPS имеет эффект зеленой защиты окружающей среды и энергосбережения. Понимание эффективности теплопередачи из переработанного бетонного кирпича в сочетании с изоляционной плитой EPS становится все более необходимым для количественной оценки их вклада в энергосбережение.

Цели данного исследования состояли в том, чтобы проверить коэффициент теплопередачи () стены из вторичного бетонного кирпича, напрямую сравнить тепловые характеристики различных решений для строительных стен и предложить исправленный расчетный метод коэффициента теплопередачи при оптимизации энергии здания. ,

2. Испытание коэффициента теплопередачи

В настоящее время не существует официального стандарта для методов испытаний, которые непосредственно касаются динамических характеристик стен: основные эталонные нормы [13] включают измерение характеристик стационарного состояния отдельных материалов и многослойных структур. при стандартизированных граничных условиях. В этом исследовании был проведен экспериментальный анализ с климатической камерой для сравнения влияния коэффициента теплопередачи элементов оболочки, которые характеризуются эквивалентными установившимися характеристиками.

2.1. Типы стен и свойства материалов

В этом исследовании были сделаны четыре различных образца для количественной оценки их тепловых характеристик. Четыре образца, которые были выбраны среди типологий стен, подробно представлены на рисунке 1 и в таблице 1.

0,029 0,020 0,029

Типы образцов Слои Толщина
(м)
Проводимость
( Вт м -1 К -1 )
Плотность
(кг м −3 )

SJ0 Глиняный кирпич настенный 0.240 0.508 1662

SJ1 Кирпич вторичный бетонный настенный 0.240 0,708 1887

SJ2 0,029

0,930 [16] 1990
2 Изоляционная плита EPS 0,060 0,042 [16] 29.50
3 кирпича из вторичного бетона, стена 0.240 0,708 1887

SJ3 1 стена из вторичного бетона 0,115 0,708 1887
2 цементный раствор 0,010 0,930 [16] 1990
3 Изоляционная плита EPS 0,060 0,042 [16] 29.50
4 цементный раствор 0,010 0.930 [16] 1990
5 стена из вторичного бетонного кирпича 0,115 0,708 1887

SJ0 — стена из глиняного кирпича; SJ1 была переработана бетонная стена кирпича; SJ2 был добавлен односторонний шаблон EPS на основе SJ1; SJ3 был добавлен шаблон EPS в середине SJ1.

2.2. Испытательный прибор

В соответствии со стандартами и исследованиями, касающимися этого типа испытаний [14, 15], в экспериментальном исследовании использовался стационарный прибор для измерения теплопередачи (CD-WTFl515, Шэньян, Китай).Условия теплопередачи в испытанной ограждающей конструкции здания моделируются на основе стандарта GB / T 13475-2008 и принципа однонаправленной устойчивой теплопередачи для измерения

.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *