Как проверить ноль в розетке: Как определить фазу, ноль и заземление самому, подручными средствами? – RozetkaOnline.COM

Содержание

Как определить фазу, ноль и заземление самому, подручными средствами? – RozetkaOnline.COM

Любой человек, занимаясь электромонтажными работами у себя дома или просто решивший установить люстру, бра или подключить розетку, обязательно столкнется с вопросом – как определить фазу, ноль и заземление у проводов, в месте монтажа?

В наших статьях и инструкциях, мы часто выкладываем схемы подключения, правила монтажа и подсоединения электрооборудования к сети, а также многое другое, где для правильного выполнения всех операций необходимо знать, где у вас фазный провод, где нулевой (рабочий ноль), а где заземляющий (защитный ноль). Для опытного электрика определить где фаза и ноль или найти землю, обычно не составляет труда, а вот как быть остальным?

Давайте попробуем разобраться, как в домашних условиях, не обладая сложными специализированными измерительными инструментами и электронными приборами, самому определить где фаза, где ноль, а где земля в проводке.

Из всех известных методов, наиболее простого определения фазы и ноля, мы отобрали самые, по нашему мнению, доступные в реализации и в то же время безопасные. По этой причине, в статье вы не увидите советов – как найти фазу с помощью картошки или же призывов к кратковременному касанию проводов различными частями тела.

 
На самом деле, вариантов определения фазы, нуля или заземления, например, в розетке, без применения специализированного оборудования не так уж и много, и порой, в зависимости от ваших целей и задач, бывает достаточно лишь знать стандарт цветовой маркировки электрических проводов принятый у нас, чтоб их различить.

Маркировка проводов по цвету

Действительно, самый простой способ определить фазу, ноль и землю у электрического провода, это посмотреть цветовую маркировку и сравнить с принятым стандартом. Каждая жила в современных проводах, применяемых в электропроводке, а также электрооборудовании имеет индивидуальную расцветку. Зная какому цвету жил какая соответствует функция (фаза, ноль или заземление), легко можно выполнять дальнейший монтаж.

Довольно часто, этого вполне достаточно, особенно в случаях, когда установка производится в новостройках или местах с довольно новой электропроводкой, сделанной профессиональными, компетентными электромонтажниками по всем современным правилам и стандартам.

В нашей стране, как и в Европе в целом, действует стандарт IEC 60446 2004 года, который жестко регламентирует цветовую маркировку электрических проводов. 

Согласно этому стандарту для квартирной электросети:

Рабочий ноль (нейтраль или ноль) – Синий провод или сине-белый

Защитный ноль (земля или заземление) – желто-зеленый провод

Фаза – Все остальные цвета среди которых – черный, белый, коричневый, красный и т.д.

 

Теперь, зная стандарт цветовой маркировки проводов, вы сможете без труда определять, какой провод какую функцию выполняет. Это касается большинства случаев, исключение могут составлять провода, подходящие к выключателям, переключателям и т.д., в силу принципиально иной схемы работы этого электрооборудования.

Если же вы не уверены в точном соответствии цветов жил проводов стандарту IEC 60446 2004, у вас старая проводка, вы не исключаете возможность ошибок или даже халатного отношения электромонтажников к своей работе, а может электриками проложены провода другого стандарта и соответственно иной цветовой маркировки, тогда переходим к практическому методу определения фазы и нуля (рабочего и защитного).  

КАК САМОМУ ОПРЕДЕЛИТЬ ФАЗУ, НОЛЬ и ЗАЗЕМЛЕНИЕ У ПРОВОДОВ

Итак, начнем по порядку:

ОПРЕДЕЛЕНИЕ ФАЗЫ

Для большего удобства, сперва всегда лучше определять какой из имеющихся проводов фаза. О том, как найти фазу цифровым мультиметром мы уже писали, а как быть если его нет, читайте ниже.

 

ОПРЕДЕЛЕНИЕ ФАЗЫ ИНДИКАТОРНОЙ ОТВЕРТКОЙ

 

 

Самый простой способ обнаружения фазного провода – это поиск с помощью индикаторной отвертки. Этот простейший инструмент должен быть у любого домашнего мастера, занимающегося электрикой в квартире – будь то полный электромонтаж, простая замена ламп или установка светильников, розеток и выключателей.

Принцип работы индикаторной отвертки прост – при касании жалом отвертки проводника под напряжением и одновременном касании контакта, на задней стороне отвертки, пальцем руки – загорается индикаторная лампа в корпусе инструмента, которая и сигнализирует о наличии напряжения. Таким образом легко можно узнать, какой провод фазный.

 

 

Принцип действия индикаторной отвертки прост – внутри индикаторной отвертки расположена лампа и сопротивление(резистор), при замыкании цепи (касании нами заднего контакта) лампа загорается. Сопротивление защищает нас от поражения электрическим током, оно снижает ток до минимального, безопасного уровня. 

Этот вариант определения фазы своими силами, наиболее предпочтителен и мы рекомендуем пользоваться именно им, тем более что стоимость индикаторной отвертки более чем доступная. Главным недостатком этого способа, является вероятность ошибочного срабатывания, когда индикаторная отвертка, реагируя на наводки, определяет наличие напряжения там, где его нет.

ОПРЕДЕЛЕНИЕ ФАЗЫ, НУЛЯ И ЗАЗЕМЛЕНИЯ КОНТРОЛЬНОЙ ЛАМПОЙ

 

Еще один способ, которым можно определить фазный, нулевой и провод заземления в современной трехпроводной электрической сети, это использование контрольной лампы. Способ неоднозначный, но действенный, требующий особой осторожности.

Чтоб начать определение, в первую очередь необходимо собрать само устройство контрольной лампы. Самый простой способ использовать патрон, с вкрученной туда лампой, а в клеммах патрона закрепить провода со снятой на концах изоляцией. Если же под рукой нет электрического патрона или нет времени что-то мастерить, можно воспользоваться обычной настольной лампой с электрической вилкой.

Технология определения фазы, нули и земли с помощью контрольной лампы максимально проста – поочередно соединяя провода лампы к проводам требующим определения, каждый с каждым. 

Определить фазу и ноль из двух проводов

В случае определения контрольной лампой фазного провода среди двух проводов вы лишь сможете узнать, есть фаза или нет, а какой именно из проводников фазный определить не удастся. Если при соединении проводов контрольной лампы к определяемым жилам она загорится, то значит один из проводов фазный, а второй скорее всего ноль. Если же не загорится, то скорее всего фазы среди них нет, либо нет нуля, чего тоже исключать нельзя.

Таким способом, скорее, удобнее проверять работоспособность проводки и правильность её монтажа. Определять фазу лучше индикаторной отверткой, а вот наличие нуля узнавать так.

 

Определить фазный провод в таком случае можно подключив один из концов, идущих от контрольной лампы, к заведомо известному нулю (например, к соответствующей клемме в электрощите), тогда при касании вторым концом к фазному проводнику, лампа загорится. Оставшийся провод соответственно ноль.

Найти фазу, ноль и заземление из трех проводов:

В такой трехпроводной системе часто возможно точно определить фазный, нулевой и заземляющий провод контрольной лампой.
Соединяем контакты, идущие от контрольной лампы поочередно к жилам требующего определения кабеля.

Действуем методом исключения: 

Находим положение, в котором лампа горит, это будет значить, что один из проводов фаза, а другой ноль.

 

 

 

После чего меняем положение одного из контактов контрольной лампы, далее возможны несколько вариантов:

– Если лампа не загорится (при наличии УЗО или дифференциального автомата защиты проверяемой линии они также могут сработать) значит оставшийся свободным провод – ФАЗА, а проверяемые НОЛЬ и ЗЕМЛЯ.

 

 

– Если после смены положения лампа ненадолго вспыхнет, при этом сразу сработает УЗО или диф. автомат (если они есть), значит оставшийся свободным провод – НОЛЬ, а проверяемые это ФАЗА и ЗАЗЕМЛЕНИЕ.

– Если линия не защищена устройством защитного отключения (УЗО) или дифференциальным автоматом, и свет будет гореть в двух положениях. В этом случае узнать какой провод рабочий ноль (нуль), а какой защитный (заземление), можно просто отключив в щите учета и распределения электроэнергии вводной кабель от клеммы заземления. После чего так же проверить контрольной лампой все жилы и, опять же методом исключения, в положении, когда лампа не горит опознать проводник заземления.

 

 

Как видите, в различных ситуациях, при разных схемах электропроводки, реализованных в квартире, способы и методы определения нуля, фазы и заземления меняются. Если вы столкнулись с ситуацией, не описанной в этой статье, обязательно пишите в комментариях к статье, мы постараемся вам помочь.

А если вы знаете еще, простые способы того, как в домашних условиях, без специализированного инструмента определить фазу, ноль и землю, пишите в комментариях. Статья будет обязательно дополнена. Главное требование, к методам определения, это простота, возможность обойтись в поиске лишь подручными, бытовыми средствами, имеющимися у многих.

Как определить фазу и ноль мультиметром: инструкции, фото, видео

Чтобы правильно подключить приборы освещения, розетки и другие электроустройства нужно знать, где фаза и ноль. Для этого можно воспользоваться очень полезным и функциональным измерителем — мультиметром. Несмотря на кажущуюся простоту этого прибора, нужно научиться им пользоваться, в некоторых случаях одно неверное действие может привести к неприятным и даже плачевным результатам. Мы расскажем вам, как определить фазу и ноль мультиметром, и вы сможете безопасно организовать электричество в своём доме.

Для неискушённых пользователей: что такое фаза и ноль

Чтобы понять, как определить фазу и ноль мультиметром, нужно сначала узнать, что такое «фаза и ноль». Здесь нам пригодится элементарная физика. Вспомним определение электротока, знакомое многим из нас со школы, — это упорядоченное движение заряженных частиц, то есть электронов. Все электросети сгруппированы так:

  1. С постоянным током, когда частицы движутся в едином направлении.
  2. С переменным, когда направление носит переменчивый характер.

Нам нужен второй вид. Переменная сеть включает в себя две части:

  1. Фаза (официальное название — рабочая фаза), по которой идёт рабочее напряжение.
  2. Ноль или пустая фаза, необходимая для образования замкнутой сети, чтобы подключались и работали электроприборы. Кроме того, она используется для сетевого заземления.

Когда электроприборы включаются в однофазку, расположение этих двух фаз не имеет значения. Но для монтажа электропроводки и её присоединения к общедомовой сети без этих знаний не обойтись.

О том, как проверить мультиметром фазу и ноль, мы и поговорим далее, но сначала вспомним простейшие меры безопасности.

Самое важное: правила безопасности

  1. Не используйте нерабочие щупы.
  2. Не используйте измеритель там, где царит высокая влажность.
  3. При выборе диапазона измерений переключатель важно сразу ставить к наибольшему значению во избежание поломки мультиметра.
  4. Не изменяйте измерительные границы или режим тестера прямо в ходе замеров. Проще говоря, не вертите переключатель мультиметра, когда делаете измерение.
  5. Перед эксплуатацией мультиметра прочитайте руководство по его применению. Есть разные модели и обозначения. Чтобы правильно расставить щупы, выбрать точный режим и диапазон значений, изучите руководство к своей модели тестера. Полезно прочитать и наш материал о том, как пользоваться мультиметром.

Как определить фазу мультиметром

Для начала включите тестер и выберете функцию тестирования напряжения переменного тока. Чаще всего она отмечена знаком V~. Сразу ставим максимальный предел измерения, например, 750В. Не забудьте правильно установить щупы в гнезда. Обычно черный подключается к отверстию с надписью COM, а красный к VΩmA.

Кстати, если вы хотите убедиться в работоспособности определённого тестера (а это очень важно!), проверьте свою розетку. Сделать это очень просто: вставить щупы в розеточные гнёзда. О полярности не беспокойтесь, здесь она значения не имеет. Главное правило — не касайтесь руками частей щупов, которые проводят ток. Если с вашим тестером всё в порядке, нет затруднений с электроснабжением и подключением розетки, на дисплее вы увидите значение около 220-230В.

Теперь можно продолжить рассказывать о том, как найти мультиметром фазу в розетке 220В.

Проще всего обстоят дела, если перед нами три проводка: земля, ноль и фаза. Всё, что нужно сделать в такой ситуации — проверить напряжение всех пар. Между землей и нулём напряжения почти нет, значит, другой проводок — фаза.

Если же перед вами два проводка, всё немного иначе. Теперь нам нужно организовать подходящие условия для движения электричества по прибору. Итак, дальнейшие действия для проверки фазы мультиметром:

  1. Наконечником алого провода тестера дотрагиваемся до исследуемого проводка.
  2. Наконечник темного провода мультиметра прижимаем пальцами или касаемся им заземленного предмета (второй вариант предпочтительнее!). Им может быть стальной каркас рядом стоящей стены, отопительная батарея и т.п. Главное — выбрать заземленный предмет.
  3. Смотрим на показания мультиметра. Если вы видите показания, приближенные к 220В, значит, вы нашли фазу. Цифра может чуть отличаться в зависимости от условий, но будет находиться в пределах указанного значения. Если проверяемый вами кабель не является фазой, значит, вы увидите на дисплее 0 или немного вольт.

Есть ли риск в этом методе? Да, но он очень маленький. Дело в том, что сетевое напряжение движется через значительное сопротивление резистора, который встроен в наш измерительный прибор. Поэтому удара током нет. А рабочий этот резистор или нет, мы предварительно проверяем с помощью розетки способом, который описали выше.

Без рабочего резистора, конечно, складываются отличные предпосылки для короткого замыкания, а его не заметить невозможно.

И лучше всего не зажимать наконечник пальцами, а использовать для этого заземлённые устройства. Но это возможно не всегда. Если вы будете использовать свою руку, советуем не пренебрегать такими принципами безопасности, как резиновый коврик под ногами или диэлектрические ботинки. Кроме того, прикоснитесь к щупу правой рукой сначала быстро: если нет никаких неприятных ощущений, то выполняйте измерения.

Рекомендуем посмотреть видео о том, как узнать мультиметром фазу и ноль:

Конечно, не забудьте перед описанными манипуляциями выбрать режим измерения именно напряжения переменного тока.

Если же вы не уверены, что всё пройдет благополучно, не беритесь за это дело, а доверьте опытным электрикам. Кроме того, можно использовать вместо мультиметра индикаторную отвертку (её индикатор загорается/не загорается при проверке).

А вот ещё одно интересное видео в тему, как мультиметром узнать, где фаза:

Как найти ноль мультиметром

Логично предположить, что ноль располагается по отношению к фазе, поэтому искать его легко: если вы нашли фазу, второй проводок из пары — ноль. Но не всё так просто, потому что другой провод может также быть землей. Ноль и заземление почти одинаковы. Иногда эти два провода связываются в щите и выявить их весьма нелегко. Как определить ноль мультиметром?

Советуется выключить кабель ввода от заземлительной шины в щитке. В таком варианте, когда будет проверяться напряжение между землёй и фазой, 220В не будет, как при тестировании ноля и фазы. Если в щитке имеется дифференциальная защитная система, она проявит себя, когда будут проверяться заземлительные проводки относительно иного проводника, даже если он нулевой.

Как проверить ноль мультиметром в розетке:

  1. Красный провод мультиметра подвести к дырке, где фаза.
  2. Черный провод соединить сначала с одним контактом, потом с другим.
  3. Зафиксировать оба напряжения. Где оно меньше — там земля, где чуть больше — ноль.

Теперь вы знаете, как определить фазу и ноль мультиметром. Делитесь в комментариях своим опытом.

Желаем безопасных и точных измерений!

Вопрос — ответ

Вопрос: Как определить фазу цифровым мультиметром?

Ответ: Включите тестер и выберете функцию тестирования напряжения переменного тока. Чаще всего она отмечена знаком V~. Поставьте максимальный предел измерения, например, 750В. Не забудьте правильно установить щупы в гнезда. Обычно черный подключается к отверстию с надписью COM, а красный к VΩmA.

 

Вопрос: Как безопасно найти фазу мультиметром?

Ответ: Для этого нужно убедиться в работоспособности мультиметра с помощью проверки розетки. Вставьте щупы в розеточные гнёзда, не касайтесь руками частей щупов, которые проводят ток. Если с вашим тестером всё в порядке, нет затруднений с электроснабжением и подключением розетки, на дисплее вы увидите значение около 220-230В.

 

Вопрос: Как правильно проверить фазу и ноль мультиметром?

Ответ: Сначала можно найти фазу. Как это сделать, зависит от количества проводов: два или три. В первом случае наконечником алого провода тестера дотрагиваемся до исследуемого проводка. Наконечник темного провода мультиметра прижимаем пальцами или касаемся им заземленного предмета (второй вариант предпочтительнее!).

После определения фазы можно найти ноль и заземление.

 

Вопрос: Как можно найти фазу в розетке 220В мультиметром?

Ответ: Проще всего это сделать, если три проводка: земля, ноль и фаза. Нужно только проверить напряжение всех пар. Между землей и нолём напряжения почти нет, значит, другой проводок — фаза. Если провода два, нужно организовать подходящие условия для движения электричества по прибору.

 

Вопрос: Как лучше всего найти ноль мультиметром?

Ответ: Нужно выключить кабель ввода от заземлительной шины в электрощитке. Когда будет проверяться напряжение между землёй и фазой, 220В не будет, как при проверке ноля и фазы. Если в щитке имеется дифференциальная защитная система, она проявит себя, когда будут проверяться заземлительные проводки относительно иного проводника, даже если он нулевой.

 

Как понять где фаза а где ноль в проводах: 5 способов узнать

Согласно нормам ПУЭ к выключателю должен подсоединяться фазный провод. При ремонте или реконструкции электропроводки могут возникнуть и другие ситуации, при которых имеет значение, какой из проводов нейтраль, а какой фаза.

При наличии бирок на концах проводников это несложно, но как понять где фаза, а где ноль в проводах, если маркировка на проводах отсутствует? В этом случае необходимо иметь минимальные знания электротехники или внимательно изучить следующую статью.

Зачем нужно определять, где фаза, а где ноль

Для работы электроприборов не имеет значения, к какой клемме присоединяется фазный, а к какой нулевой проводник, но для повышения безопасности людей, живущих в доме, эти провода в некоторых ситуациях должны подключаться определённым образом:

  • К выключателю освещения необходимо подводить фазный провод, а к лампе нулевой. Это обеспечивает отсутствие напряжения в светильнике при выключенном освещении и позволяет производить замену лампы и ремонт осветительной аппаратуры без отключения автоматического выключателя. Это требование так же указано в «библии» электромонтёров — ПУЭ п. 6.6.28.
  • Наличие в схеме электропроводки УЗО. Использование вместо нулевого проводника заземляющего при подключении электроприборов, освещения и розеток приводит к появлению тока утечки, нарушению равенства токов в нейтрали и фазном проводе и срабатыванию дифзащиты

Простые способы, как найти фазу

Для поиска фазного провода в электропроводке используются различные методы.

По цветовой маркировке

Это самый простой метод, позволяющий выполнить эту работу без каких-либо приборов, однако он применим только к электропроводке, выполненной согласно стандарту IEC 60446, принятому в 2004 году.

В этом случае согласно правилам цветовой маркировки изоляции проводов фазный провод в однофазной электропроводке и двух- или трёхжильных кабелях чаще всего окрашен в коричневый цвет, а в трёхфазной проводке и четырёх- или пятижильных кабелях оболочка может быть любого цвета, кроме синего и жёлто-зелёного.

С помощью индикаторной отвертки

Этот инструмент позволяет определить фазный контакт даже в закрытой розетке. Принцип работы индикаторной отвёртки основан на протекании через него активного тока, причём жало индикатора должно касаться проверяемого проводника, а вторым проводником является тело человека.

Принципиальная схема индикатора состоит из следующих узлов:

  • Жало отвёртки. Является одним из контактов электросхемы инструмента.
  • Индикатор. В старых моделях это неоновая лампочка, в более новых светодиод или ЖК дисплей.
  • Токоограничивающий элемент. В аппаратах с неонкой это резистор номиналом 1 МОм, в индикаторах со светодиодом или дисплеем ток ограничивается электронной схемой с питанием от батареек.
  • Контактное кольцо или площадка. Находится в рукоятке и служит для замыкания цепи через тело и перед тем, как найти фазу и ноль индикаторной отверткой, следует дотронуться к нему пальцами.

При прикосновении жала к фазному проводу, а человека к контактному кольцу в рукоятке ток начинает идти по цепи «жало-неонка-резистор-контакт-тело-пол» и лампа загорается.

Важно! При помощи индикаторной отвёртки с гарантией можно найти только фазный провод. Отсутствие сигнала не указывает на нулевой проводник, он может быть отключённым или оборванным, а при подаче питания на нём так же может появиться напряжение.

Как найти фазу указателем напряжения

Более надёжными являются индикаторы напряжения, как старые, которые использовались ещё в советское время, ПИН-90, так и более современные, имеющие встроенную функцию указания фазы.

Принцип действия этих устройств аналогичен индикаторной отвёртке, но конструкция прибора позволяет кроме фазного найти так же заземляющий и нейтральный проводники.

Для определения фазы один из щупов должен касаться проверяемого провода, а рукой при этом необходимо, в зависимости от конструкции, касаться второго щупа или специального вывода. При контакте с фазой на приборе загорится лампочка, светодиод или прозвучит звуковой сигнал.

С помощью мультиметра

Этот прибор можно применять для поиска фазы аналогично индикаторной отвёртке, однако необходимо использовать цифровой мультиметр. Он имеет встроенный усилитель сигнала и является более чувствительным, чем стрелочный прибор, требующий больший ток для работы показания которого составят менее 1 В. Есть два варианта, как найти фазу с помощью мультиметра.

Более надёжным способом является поиск фазного проводника при контакте тела с прибором:

  1. 1. перед тем, как найти фазу мультиметром, следует подключить щупы к прибору;
  2. 2. переключить мультиметр для измерения переменного напряжения ACV на предел 750В;
  3. 3. один из щупов взять за металлический наконечник незащищённой рукой;
  4. 4. вторым щупом поочерёдно дотронуться до всех проверяемых проводов.

При прикосновении к фазному контакту дисплей прибора покажет наличие напряжения. Его величина зависит от многих факторов и находится в диапазоне 20-100 Вольт. Так же, как и индикатор напряжения, после определения фазного проводника мультиметром можно найти нулевой провод и заземляющий.

Такой метод поиска фазы не указан в инструкции к прибору, поэтому для большей безопасности можно использовать «бесконтактный» метод, при котором нет необходимости дотрагиваться рукой до второго щупа. Показания мультиметра при этом составят 3-15 Вольт, что достаточно для поиска фазы.

При помощи контрольной лампы

Кроме методов, требующих специальных инструментов, существует достаточно опасный способ, как понять, где фаза, а где ноль в проводах при помощи контрольной лампы или контрольки. Для этого достаточно иметь обычную лампу, патрон и два куска провода. Для сборки этого приспособления провода с зачищенными концами подключают к патрону и закручивают в него лампу.

Для определения фазного провода один из проводов присоединяют к заведомо заземлённому элементу — нейтральному или заземляющему проводнику, шине заземления в электрощитке или контуру заземления здания, а вторым проводом поочерёдно прикасаются к проверяемым проводам. В случае контакта с фазным проводом лампа загорится.

В трёхпроводной электропроводке с заземляющим контактом контрольную лампу последовательно подключают попарно ко всем трём проводам. Тот проводник, при присоединении к которому лампа будет светиться с обоими другими проводами является фазным, оставшиеся являются нейтралью и заземлением.

Этот метод проверки наличия напряжения запрещён ПТБЭЭП и другими нормативными документами. Из-за высокого тока потребления контрольная лампа загорится только при низком сопротивлении электропроводки. Включённая последовательно с проверяемым контактом лампа или плохой контакт в скрутке или клеммнике не позволят лампочке включиться, однако прикосновение к этим проводам опасно для жизни.

Кроме того, возможна ситуация, при которой в кабеле будет обрыв в нулевом и заземляющем проводниках. При этом во всех вариантах подключения контролька светиться не будет, что позволит сделать ошибочный вывод об отсутствии напряжения в сети.

Как определить фазу и ноль

Далеко не всегда достаточно определить, какой из проводников является фазным. Очень часто, особенно в трёхпроводной однофазной системе электроснабжения, нужно найти нулевой контакт. Это необходимо при подключении розеток или освещения и не всегда, если один из проводов фазный, то второй обязательно нейтраль.

Он может быть отключённым, оборванным или замыкать на ту же или другую фазу. Поэтому необходимо проверку производить для всех проводов и существуют разные способы, как понять, где фаза, а где ноль в проводах.

Информация! Для поиска нулевого, фазного и заземляющего проводов можно использовать те же приборы, которые применялись для определения фазы.

По цветовой маркировке

Это самый простой способ, позволяющий определить фазный и нулевой провод без каких-либо приборов, «на глаз». Единственный недостаток этого метода заключается в том, что он применим только к электропроводке, проложенной после 2004 года при полной уверенности, что при этом были соблюдены правила цветовой маркировки изоляции проводов:

  • нейтраль N — синий или голубой;
  • заземление РЕ — в продольную жёлто-зелёную полосу;
  • фаза L — в однофазной электропроводке коричневая, в трёхфазной проводке оболочка может быть любого цвета кроме синего(голубого) и жёлто-зелёного.

Важно! Цветовая маркировка проводов не всегда и далеко не всеми электриками соблюдается. Поэтому этот метод является лишь косвенным, по которому нельзя судить есть напряжение на проводе или нет.

При помощи контрольной лампы, индикатора или вольтметра

В двухпроводной схеме электроснабжения это сделать несложно. После определения фазного проводника необходимо узнать, является ли оставшийся проводник нейтралью. Для этого достаточно любым способом проверить потенциал между ними.

Если прибор покажет напряжение сети 220В, значит эти провода, соответственно, ноль и фаза. В противном случае ноль на этом контакте отсутствует из-за аварии или неправильного монтажа.

В трёхпроводной системе с заземляющим проводом выполнить поиск ноля сложнее. Для этого необходимо:

  1. 1. перед тем, как определить фазу и ноль, в электрощитке от вводного автомата нужно отключить нейтральную клемму;
  2. 2. найти фазный провод;
  3. 3. определить, с каким из двух оставшихся проводников и фазным прибор показывает наличие напряжения.

Этот контакт является заземлением.

Определение ноля и заземления при помощи УЗО

Один из самых простых методов различить нейтральный и заземляющий контакты — это при помощи контрольной лампы и УЗО или дифавтомат.

Лампочка или другой электроприбор должны иметь мощность не менее 10 Вт, а УЗО уставку срабатывания не более 30мА.

Для поиска ноля и заземления необходимо:

  • найти фазу одним из вышеперечисленных способов;
  • отключить вводной автоматический выключатель;
  • подключить к фазному проводу и одному из оставшихся контрольную лампу;
  • включить автомат;
  • если сработает дифференциальная защита, то выбранный проводник является заземляющим, в противном случае это нейтраль.

Для надёжности данную последовательность действий желательно повторить для второго провода.

Совет! При отсутствии в схеме УЗО его допускается установить временно, снаружи электрощита. Подключение при этом можно выполнить при помощи отрезков гибкого провода.

Вывод

В связи с тем, что определение фазы при помощи цветовой маркировки имеет ограниченную область применения — новая электропроводка, причём выполненная профессионалами, а использование контрольной лампы запрещено ПТБЭЭП и может быть опасным для жизни, существует только три надёжных способа, как узнать, где ноль, а где фаза. Это индикаторная отвёртка, индикатор напряжения с функцией поиска фазы и мультиметр, причём два последних устройства позволяют найти не только фазный проводник, но так же нейтраль и заземление.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

 

Как проверить заземление в розетке мультиметром, как найти фазу и ноль

В старых домах еще сохранились двухклеммные розетки. В этом случае проверить устройство можно просто с помощью тестера фазы. Нужно взять тестер (индикаторную отвертку), вставить его в любой разъем розетки. Приложить палец к металлическому колпачку на рукоятке. Когда неоновая лампочка загорится, она тем самым покажет «фазу». Вторая клемма должна быть нулевой. Но так случается не всегда.

Расцветка, индикаторная отвертка или мультиметр

Самый простой способ проверить заземление, это обратить внимание на цвет изоляции.

У заземляющего провода она должна быть желтой с зелеными полосами, а у нулевого светло-синей. Но не всегда это требование выполняется.

В некоторых домах старой постройки электропроводка сделана отдельными проводниками. Если хозяину пришлось проводить изменения в распределительной коробке, то вполне возможен вариант, когда на розетку приходят только два фазных или нулевых проводника. Поэтому необходимо проверить оба гнезда. При касании нуля неоновая лампочка на индикаторе напряжения не должна загораться.

В современных зданиях используются трехклеммные розетки. На нее приходят фазовый, нулевой и заземляющий проводники. Контакты должны соответствовать своему функциональному назначению.

Иначе, возможны несчастные случаи при использовании стиральной машины или бойлера. Поэтому возникают вопросы, как проверить заземление в розетке, чтобы избежать ошибок при монтаже и спокойно, без страха пользоваться своими приборами.

Индикаторная отвертка гарантированно определяет только фазу. Отличить ноль от земли она не может. Маленькой наводки недостаточно для загорания неоновой лампочки. Тогда найдем фазу и ноль мультиметром или вольтметром.

Варианты показания мультиметра

Любой прибор, индикаторную отвертку или тестер, необходимо проверить на работоспособность и только после этого применять. Изоляция должна быть целой, без трещин и разрывов. Острие щупа должно отделяться от держателя диэлектрической шайбой, для защиты от случайных прикосновений.

Корпус измерительного устройства должен быть целым. Перед замером штекеры вставляются в гнезда прибора, которые соответствует измерению переменного напряжения. Убедившись в исправности устройства, нужно перевести его в режим измерения переменного напряжения со шкалой 750 V. Это необходимо на случай измерения линейного напряжения, когда по ошибке на розетку завели две фазы.

Этот способ проверки розетки годится, если проверяющий уверен, что заземляющий контакт действительно земля. Тогда стоит задача найти ноль. Один щуп касается заземляющего контакта, а второй вставляется в любое гнездо розетки. Могут быть следующие варианты:

  • прибор показывает 220 V, значит контакт фазовый;
  • если 0 или единицы вольт, то это нулевой провод.

Если мультиметр относительно заземляющего показывает 0 вольт на гнездовых контактах, значит все они где-то замкнуты между собой.

Показания в несколько вольт говорят, что это ноль. Но как определить ноль, когда дом снабжается электричеством по системе энергоснабжения TN — C и повторным заземлением рядом со зданием? Ведь и в этом случае будут нулевые показания прибора.

Чтобы убедиться, что данный проводник нулевой, нужно отключить заземление в подъездном электрическом щите. Затем замерить напряжение между гнездовыми контактами розетки. Прибор показывает 220 V – найден ноль розетки. Мультиметр ничего не показывает – найдено заземление.

При показаниях прибора 220 V на каждом контакте относительно заземляющего, нужно произвести дополнительное измерение между двумя гнездами розетки. Прибор показывает 0, значит, одна фаза заведена на оба гнезда. В противном случае прибор покажет 380 V, что означает присутствие на розетке двух фаз.

Определение назначения проводников

При работе с электропроводкой обязательно нужно перепроверять назначения проводников розетки. Нет никакой гарантии, что электрик или предыдущий владелец помещения не перепутал провода. Поэтому, если тестер показывает напряжение 220 V относительно клеммы по внешнему виду являющейся заземляющей, это не значит, что она таковой и является.

Это значит, что один из контактов является фазой, а второй нулем или землей. Если тестер покажет 0, то здесь присутствуют нулевой и заземляющий проводник. Точно понять, что есть что, невозможно.

При отсутствии стопроцентной уверенности в назначении заземляющей клеммы розетки действуют иначе. Сначала нужно исключить наличие двух фаз. Проверяем напряжение между всеми контактами. Если прибор 380 V нигде не показывает, а только 220, значит, к розетке подведен один фазный проводник. Теперь нужно приступить к поиску заземления.

Сначала надо отключить заземляющий проводник в этажном щитке. Он присоединен через болтовое соединение к специальной шине, приваренной к корпусу электрического щита.

После этого замеряется напряжение между гнездовыми коннекторами.

Если прибор показывает 220 V, значит гнездовые контакты – это фазный и нулевой провод, а заземляющая клемма действительно таковой является. Теперь зная точно, где находится земля, можно определить остальные коннекторы, но предварительно нужно обратно присоединить «землю» к шине заземления.

Проводим измерение напряжения относительно земляной клеммы. Одно гнездо показывает 220 V – это фаза, второе – 0, то это нулевой контакт.

Если мультиметр показывает 0, значит, земля была присоединена к одному из гнездовых контактов, а второй является нулевым или фазным. Теперь измерения проводим между гнездовым и заземляющим контактом розетки. Если напряжение отсутствует, значит, это гнездо и есть настоящее заземление.

Показания в 220 V говорят сами за себя.

Проверка электропроводки

Проверка заземления электропроводки происходит примерно так же, как с розеткой. Для измерения параметров сети понадобятся мультиметр трехфазный или однофазный, а также индикаторная отвертка.

При ремонте электропроводки и подключении стиральной машины, электрического обогревателя, плиты, духовки и других приборов приходится менять кабели и соединения в распределительных коробках. В этом случае нужно выяснить назначение каждого проводника, необходимо проверить наличие заземления в нужных местах.

Вначале нужно отключить входной автомат на этажном щите. Затем вскрыть распределительную коробку. Развести провода в разные стороны, чтобы они не соприкасались между собой, и снять изоляцию в местах соединения.

После этого входной автомат включается. Индикаторной отверткой находятся фазные провода. Они могут принадлежать одной, двум или трем фазам.

При наличии трехфазного мультиметра, можно сразу проверить состояние сети. Однофазным мультиметром определение количества фаз происходит дольше. К примеру, если напряжения между тремя проводами составляют по 0 вольт, то это фазные провода от одной фазы.

Если прибор показывает напряжение между двумя проводами 380 V, а между двумя другими 0, то две фазы. При напряжении 380 V между всеми проводниками можно говорить о наличии трех фаз.

Определение заземления происходит, как и в случае с розеткой, только здесь проводов будет больше. Сначала отключается заземляющий провод в этажном щитке. Затем один щуп мультиметра цепляется за фазовый провод, а второй за проводник пока неизвестного назначения.

Если прибор покажет напряжение 220 V – этот провод нулевой, если ноль, то это и есть земля.

Дальше отключают входной автомат. Присоединяется заземляющий провод. Когда проверка закончена, выполняется правильное подсоединение всех элементов электросети, места соединений изолируются, коробка закрывается. Автомат защиты включается.

Как найти фазу и ноль в розетке и проводах

Для отыскания фазного провода или клеммы в розетке, вам понадобится один из приборов — индикаторная отвертка или мультиметр.

Определение фазы индикаторной отверткой

Наиболее простой метод определения фазы, который подойдет для любого обывателя — это использование индикаторной отвертки, или как ее еще называют «контрольки».

Контрольная отвертка по внешнему виду очень похожа на обычную, за исключением своей внутренней начинки. Не советую использовать жало отвертки для откручивания или завинчивания винтов. Именно это чаще всего и приводит ее к выходу из строя.

Как определить фазу и ноль этой отверткой? Все очень просто:

  • жалом отвертки прикасаетесь к контакту
  • нажимаете или дотрагиваетесь пальцем до металлической кнопки в верхней части отвертки
  • если светодиод внутри отвертки загорелся — это фазный проводник, если нет — нулевой

Не перепутайте индикаторную отвертку с отверткой для прозвонки. Последняя в своей конструкции имеет батарейки. Здесь для того, чтобы определить фазу и ноль, при касании жалом контактов, не нужно дотрагиваться пальцем до металлической площадки на конце. Иначе отвертка будет светиться в любом случае.

По правилам, лампочка индикатора рассчитанного на 220-380В, должна светиться при напряжении от 50В и более.

Аналогичным образом определяется фаза в розетке, выключателе и любом другом оборудовании.

Меры безопасности при работе с «пробником»

  • никогда не дотрагивайтесь до нижней части отвертки при замерах
  • отвертка перед измерением должна быть чистой, иначе может произойти пробой изоляции
  • если индикаторной отверткой необходимо определить отсутствие напряжения, а не его наличие, для того чтобы безопасно можно было работать с проводкой, сначала проверьте работоспособность прибора на оборудовании заведомо находящегося под напряжением.

Как определить фазу и ноль мультиметром или тестером

Здесь в первую очередь переключите тестер в режим измерения переменного напряжения. Далее замер можно сделать несколькими способами:

  • зажимаете один из щупов двумя пальцами. Второй щуп подводите к контакту в розетке или выключателе. Если показания на табло мультиметра будут незначительными (до 10 Вольт) — это говорит о том, что вы коснулись нулевого проводника. Если коснуться другого контакта — показания изменятся. В зависимости от качества вашего прибора, это может быть несколько десятков вольт, а также от 100В и выше. Делаем вывод, что в данном контакте фаза.
  • если вы боитесь в любом случае прикасаться руками к щупу, можно попробовать по другому. Один стержень вставляете в розетку, а другим просто дотрагиваетесь до стенки рядом с розеткой. Если у вас штукатурка, результат будет похожим с первым измерением.
  • еще один способ — одним из щупов прикасаетесь к заведомо заземленной поверхности (корпус щита или оборудования), а вторым прикасаетесь к измеряемому проводу. Если он будет фазным, тестер покажет наличие напряжения 220В.

Меры безопасности при работе с мультиметром:

  • обязательно перед определением фазы по первому способу (когда зажимаете пальцами щуп) убедитесь, что мультиметр включен в положение «замер напряжения» — значок ~V или ACV. Иначе может ударить током.
  • некоторые «опытные » электрики для определения фазы, используют так называемую контрольную лампочку. Не рекомендую рядовым пользователям такой метод, тем более он запрещен правилами. Используйте только исправные и проверенные измерительные приборы.

В современных квартирах в розетки и распредкоробки заходят трехжильные провода. Фазный, рабочий нулевой и защитный. Как отличить их между собой можно узнать из статьи 4 способа отличить заземляющий проводник от нулевого.

Статьи по теме

с какой стороны и как ее определить?

На сегодняшний день в электроэнергетике существует несколько разновидностей проводов. Электрики различают провода для питания и защиты. При подключении розеток или других приборов, вам нужно знать, где какой провод. В ином случае может возникнуть короткое замыкание.

Где в розетке фаза и ноль

В этой статье мы постарались разобраться, что такой фаза и ноль в розетке на примере обычного устройства. После изучения статьи у вас больше не возникнет вопрос о том, как найти фазу и ноль в розетке.

Фаза и ноль в старой розетке

Если рассмотреть обычную старую розетку, тогда можно сразу заметить, что розетка подключается всего при помощи двух проводов. Если присмотреться, тогда вы наверняка сможете заметить, что один из этих проводов имеет синий цвет. Именно так и определяется рабочий нулевой проводник. По нему будет проходить ток от источника питания к вашему устройству или наоборот. Если вы за него схватитесь, но не дотронетесь до второго провода, то ничего не произойдет. Он считается вполне безобидным.

Как распознать фазу и ноль?

На фото выше мы представили обозначение ноля и фазы на розетке. Фаза в розетке— это второй кабель. Обычно фазный провод выполнен в коричневом цвете. Угловые розетки на кухне также имеют разноцветные провода. Этот провод всегда находится под напряжением, так как по нему всегда поступают заряженные частицы. Если вы дотронетесь до него, тогда, несомненно, получите удар током. Помните, что любое напряжение выше 50 вольт может убить человека. Поэтому определиться, где в розетке фаза и ноль лучше всего заранее.

Индикаторы для определения напряжения

Чтобы определить, где в розетке фазный провод нужно воспользоваться индикатором напряжения. Их внешний вид напоминает отвертку или лопатку. Рукоятка индикаторной отвертки обычно изготавливается из специального прозрачного пластика, внутри которого находится диод.

Проверка фазы и ноля с помощью индикатора

Верхняя часть рукоятки металлическая. Если напряжение пройдет, тогда лампочка индикатора загорится. В этом случае провод лучше не трогать.

Важно знать! Если вы дотронетесь до нулевого проводника, тогда свечение диода не произойдет. Это связано с тем, что пока нулевой провод не соприкасается с фазным в нем нет напряжения.

Для определения фазы в розетке также можно воспользоваться мультиметром. У нас есть статья, как определить фазу мультиметром.

Фаза и ноль в современной розетке

Обычно современные розетки имеют три провода. Кроме фазного и нулевого провода здесь присутствует заземление. Этот проводник чаще всего имеет желто-зеленую окраску. При возникновении короткого замыкания этот заземляющий проводник забирает лишний ток и направляет его в землю. Конечно, он правильно будет выполнять свои функции только в том случае, если в квартире или доме присутствует система заземления.

Фаза ноль и заземление в современной розетке

Даже если вы прикоснетесь к оборудованию, то не ощутите удара электрическим током. Электрическая розетка с заземлением подключается с помощью фазы, ноля и заземляющего провода. Дело в том, что ток не ищет легких путей. Он выберет путь, где будет наименьшее сопротивление. Сопротивление тела человек составляет 1000 Ом, а нулевого проводника всего 0,1 Ом.

Чтобы обеспечить безопасность в своем доме нужно использовать только современные устройства. Теперь вы знаете куда в розетке подключать фазу и ноль. При подключении нужно действовать осторожно, так как если провода подключены неправильно произойдет короткое замыкание.

Прочтите также: vse-elektrichestvo.ru/rozetki/oboznachenie-rozetok-i-vyklyuchatelej.html.

Фаза и ноль в розетке

Чтобы разобраться в том, что такое фаза и ноль в розетке, обычному человеку (не специалисту) нет необходимости углубляться в электротехнические дебри. В качестве примера приведем обычную штепсельную розетку, куда поступает переменный ток.

К розетке идут два электропровода — нулевой и фазный. Ток поступает только по одному из них — фазному (еще его называют рабочей фазой). Второй провод — нулевой (или нулевая фаза).

Ноль и фаза в старых розетках

Чтобы подключить старую розетку, используют два проводника. Одни из них синего цвета (рабочий нулевой проводник). По этому проводу идет ток от источника электричества к бытовому прибору. Если взяться за токоведущий провод, но не дотрагиваться до второго провода, удара током не произойдет.

Второй провод в розетке — фазный. Он бывает самых разных цветов, в том числе синим, зелено-желтым или голубым.

Обратите внимание! Любое напряжение, превышающее 50 вольт, опасно для жизни.

Фаза и ноль в современной розетке

В устройствах современного типа есть три провода. Фаза бывает любого цвета. Помимо фазы и нуля имеется еще один провод (защитный нулевой). Цвет этого проводника — зеленый или желтый.

Через фазу подается напряжение. Ноль используется для защитного зануления. Третий провод нужен как дополнительная защита — для забора лишнего тока во время замыкания. Ток перенаправляется в землю или в обратную сторону — к источнику электричества.

Обратите внимание! Не имеет практического значения, справа или слева расположены фаза и ноль. Однако чаще всего фаза расположена слева, а ноль — справа.

Определение фазы и ноля мультиметром или отверткой

Мультиметр

Прибор представляет собой комбинированное электроизмерительное устройство, способное выполнять несколько функций. Минимальная комплектация включает вольтметр, омметр и амперметр. Отдельные модификации выполнены в виде токоизмерительных клещей. Выпускаются как аналоговые, так и электронные измерители.

Чтобы начать процесс замера, следует переключиться в режим измерения переменного напряжения. Замер осуществляется одним из нескольких методов:

  1. Зажимаем один из имеющихся щупов двумя пальцами. Второй щуп направляем к контакту, который расположен в выключателе или розетке. Если данные на мониторе несущественные (не превышают 10 вольт), речь идет о нуле. Если же прикоснуться к другому контакту, показатель будет выше — это фаза.
  2. Если имеются опасения относительно необходимости притрагиваться к щупу, есть другой путь. Один из стержней направляем в розетку. Вторым стержнем прикасаемся непосредственно к стене рядом с розеткой. Результат будет примерно таким же, как и в случае, описанном выше.
  3. Существует третий способ измерения с помощью мультиметра. Прикасаемся щупом к заземленной поверхности (например, корпусу оборудования). Вторым щупом касаемся измеряемой поверхности. Если провод является фазой, мультитестер обнаружит напряжение в 220 вольт.

Индикаторная отвертка

Индикатор — простой способ определения фазы, доступный даже человеку, впервые занявшемуся этим делом. Контрольная отвертка внешне напоминает стандартную. Отличие состоит в наличии внутреннего устройства у индикаторной отвертки. Рукоять отвертки производится из специального прозрачного пластика. Внутри находится диод. Верхняя часть изготовлена из металла.

Обратите внимание! Нельзя использовать индикаторную отвертку не по назначению. Она не предназначена для отвинчивания и закручивания винтов. Нецелевое использование контрольной отвертки станет причиной выхода ее из строя.

Чтобы найти фазу и ноль при помощи отвертки, нужно выполнить такую последовательность операций:

  1. Концом отвертки касаемся контакта.
  2. Нажимаем пальцем на металлическую кнопку вверху отвертки.
  3. Если светодиод загорелся, речь идет о фазе. Если он не реагирует — это ноль.

Обратите внимание! Индикаторная лампа, рассчитанная на 220–380 вольт, будет светиться при напряжении, превышающем 50 вольт.

При работе с индикаторной отверткой рекомендуется придерживаться следующих мер безопасности:

  1. Не дотрагиваться до нижнего конца отвертки во время проведения замеров.
  2. Держать отвертку в чистоте, иначе велик риск нарушения изоляции.
  3. Если нужно определить отсутствие напряжения, вначале проверить работоспособность прибора, совершенно точно находящегося под напряжением.

Совет! В сети постоянного тока полярность контактов определяется очень простым способом. Для этого достаточно опустить провода в емкость с водой. Возле одного из проводов станут образовываться пузыри — это минус. Второй провод — плюс.

Не следует путать индикаторную отвертку с приспособлением для прозвона. Отвертка для прозвона снабжена батарейками. При работе с таким устройством для определения нуля и фазы не нужно нажимать на кнопку, так как отвертка будет светиться в любой из возможных ситуаций.

.net — Как я могу проверить, подключен ли (отключен) сокет (TCP) в C #?

Смерть сокета меняет его поведение несколькими способами, поэтому оба эти метода действительны 🙂

С помощью обоих методов вы фактически проверяете те части поведения сокета, которые меняются после отключения.

Я действительно не понимаю его утверждения о вызове метода Receive (), чтобы убедиться, что удаленная конечная точка действительно получила все отправленные мной данные. (Блокируют ли сокеты прием, пока буфер отправки не опустеет?)

TCP — надежный протокол, это означает, что каждый отправляемый вами пакет должен быть подтвержден.Подтверждение подразумевает отправку пакетов с установленным битом ACK . Эти пакеты могут содержать или не содержать дополнительные (полезные) данные.

Когда сокет подключен, Receive () будет блокироваться до тех пор, пока сокет не получит пакет с непустой полезной нагрузкой. Но когда сокет отключен, Receive () вернется, как только прибудет последний пакет ACK .

Вызов Receive () гарантирует, что вы либо получите , что последний пакет ACK от удаленной конечной точки, либо произойдет таймаут отключения, и вы не сможете получить больше ничего на этом сокете.

Пример на той же странице показывает, как это сделать. (Интересно, почему он выделяет 1-байтовый массив, даже если он вызывает Send с длиной 0?) Но в сообщении Яна Гриффитса говорится, что я должен читать из сокета, а не отправлять через него.

Когда send () загружается в сокет, вы фактически пытаетесь добавить некоторые данные в конец очереди сокета. Если в буфере осталось какое-то место, тогда ваш Send () немедленно вернется, если нет, Send () блокируется, пока не останется какое-то место.

Когда сокет находится в отключенном состоянии, стек TCP / IP предотвращает все дальнейшие операции с буфером, поэтому Send () возвращает ошибку.

Send () реализует базовую проверку указателя, это означает, что она не выполняется, когда ей передается указатель NULL . Вы, вероятно, можете передать любую ненулевую константу в качестве указателя, но вам лучше выделить 1 байт вместо того, чтобы увеличивать константу — на всякий случай.


Вы можете использовать любой метод, который вам нравится, поскольку ни один из них не требует значительных ресурсов.Пока они используются для проверки подключения к сокету, они идентичны.

Что касается меня, я бы предпочел Receive () , так как это то, что вы обычно запускаете в цикле и ждете. Вы получаете ненулевое значение от Receive () , вы обрабатываете данные; вы получаете ноль, вы обрабатываете отключение.

Socket Tester Pro Outlet Detector RCD GFCI test Outlet Ground Live Zero Line Polarity Phase Check Voltage Tool HT106, package 2, UK Plug —

.


  • Убедитесь, что это подходит введя номер вашей модели.
  • AST01 — это безопасный и эффективный детектор / тестер розеток с небольшим корпусом и 8 тестовыми состояниями. Это необходимо для повседневной жизни и проверки домашней электросети. Датчик напряжения AVD05 + тестер розеток AST01. Ваш идеальный комплект для проверки безопасности цепей.
  • Измеритель может быстро проверить розетку, соединяющую положительный и отрицательный полюс по запросу, а также проверить, работают ли бытовые системы защиты электропитания или нет для обеспечения электробезопасности дома.
  • Управляя одной кнопкой, этот универсальный тестер проверяет розетки электропитания ER / US на правильность подключения и функцию отключения для RCD / GFCI.Он проверяет вашу систему защиты для обеспечения электробезопасности дома. Лучше защитить вашу безопасность от риска поражения электрическим током.
  • В соответствии со стандартами безопасности CE, FCC, RoHS. Как общий инструмент измерения и широко используется в школах, лабораториях, фабриках и других социальных сферах. Это сэкономит вам много времени при диагностике проблем с розетками.
› См. Дополнительные сведения о продукте

Определение процессоров и сокетов — Обновлено!

Итак, некоторое время назад я разместил эту статью в нашей старой системе групп порталов.Это было довольно популярно и вызвало немало хороших разговоров. Я делаю репост здесь и попытался учесть некоторые из замечательных комментариев, которые мы получили от сообщества. Как и все в этом волнующем мире открытого исходного кода, есть буквально десятки способов снять шкуру с этой кошки. Поэтому, пожалуйста, продолжайте читать и дайте нам знать, если у вас есть другие варианты, которыми мы можем поделиться.

Мне недавно пришло электронное письмо от одного из моих клиентов. Его организация была готова пройти несколько проверок лицензирования, и он был в некотором недоумении.У него было несколько сторонних продуктов, по которым им нужно было вести учет, и каждый продукт был лицензирован с использованием другой модели. К сожалению, у них не было какой-либо CMDB, которая могла бы помочь (база данных управления конфигурацией — что-то очень удобное, когда дело доходит до просмотра инвентаря вашего сервера). Я вспомнил годы, когда руководил большой командой Enterprise * NIX, и содрогнулся; легко раз в месяц кто-нибудь приходил и задавал мне одни и те же вопросы.

Итак, мы работали над несколькими простыми командами, которые можно использовать для получения этих данных.Сначала мы попробовали это:

$ ЛСКПУ | grep ‘socket’
Количество ядер на сокет: 2
Количество сокетов ЦП: 1

В «ядре» этой команды [ха-ха, каламбур] мы получили именно то, что хотел мой приятель Том, и еще немного. Мы не только можем увидеть, сколько сокетов он использовал (о чем он и сообщал), но мы также узнали, сколько ядер было в каждом сокете.

Затем мы попробовали что-то, хотя и менее красивое, но сосредоточенное на точных требованиях:

$ cat / proc / cpuinfo | grep «физический идентификатор» | sort -u | туалет -l
1

Это точно нам подсказало, сколько у нас розеток.физический / proc / cpuinfo | xargs -l2 echo | sort -u
физический идентификатор: 0 идентификатор ядра: 0
физический идентификатор: 0 идентификатор ядра: 1

Итак, Том вернулся к работе, счастливый и готовый дать своим начальникам ТОЧНО то, что им нужно (он был так счастлив, что у него появился новый скриптовый проект, с которым можно было поработать). Эти команды работали с RHEL6 обратно на RHEL4, поэтому почти каждый должен иметь возможность их использовать. Поэтому, если вы заинтересованы в их использовании, есть также несколько официальных решений, разработанных нашим уважаемым Райаном Сохиллом, которые вы также можете просмотреть. :

Проверить, является ли сервер виртуальной машиной?

dmidecode | grep -i продукт

  Название продукта: Виртуальная платформа VMware
  

Получить номер CPU

  grep -i "физический идентификатор" / proc / cpuinfo | sort -u | туалет -l
  

dmidecode | grep -i процессор

Обозначение разъема: CPU1

  Обозначение разъема: CPU2
    Обозначение разъема: CPU3
    Обозначение разъема: CPU4
            ПРОЦЕССОР.Socket.1
            CPU.Socket.2
            CPU.Socket.3
            CPU.Socket.4
  

Чтобы проверить это несколькими способами:

Проверить, включен ли HyperThreading

  # братьев и сестер = # ядер

    cat / proc / cpuinfo | egrep 'sibling | cores'
    grep -i "процессор" / proc / cpuinfo | sort -u | туалет -l
  

Hyperthreading также можно найти с lscpu:

  # lscpu | grep -i thread
Потоков на ядро: 2
  
  #cat / proc / cpuinfo | grep "физический идентификатор" | sort -u | туалет -l
0
  

Но dmidecode все еще показывает сокеты:

  # dmidecode -t4 | egrep 'Обозначение | Статус'
        Обозначение разъема: CPU 1
        Статус: заселен, включен
        Обозначение разъема: CPU 2
        Статус: заселен, включен
  

И, несомненно, лучшим скрытым самородком из предыдущей статьи был инструмент, который я очень часто использую здесь в течение дня, помогая поддерживать клиентов: xsos

Я использую xsos, чтобы посмотреть информацию, представленную в sosreports, но у него много замечательных применений (например, наш вопрос о proc / socket здесь).Приобрести xsos можно здесь:

https://github.com/ryran/xsos

Yum repo доступно для xsos — инструмент для системных администраторов

На машине здесь, в лаборатории, я запустил xsos, поэтому вы можете увидеть типичный результат:

  # xsos
Операционные системы
  Имя хоста: LINUXizTHAawesome
  Дистрибутив: Red Hat Enterprise Linux Workstation, выпуск 6.4 (Сантьяго)
  Ядро: 2.6.32-358.18.1.el6.x86_64
  Уровень выполнения: N 5 (по умолчанию: 5)
  SELinux: принудительное (по умолчанию: принудительное)
  Системное время: 12 сентября, четверг, 08:17:11 EDT 2013
  Время загрузки: Вт, 10 сентября, 07:29:28 EDT 2013 (1378812568)
  Время работы: 2 дня, 47 мин., 2 пользователя
  LoadAvg: 0.13 (3%), 0,14 (4%), 0,10 (2%)
  Время ЦП с момента загрузки:
    us 7%, ni 0%, sys 1%, idle 91%, iowait 1%, irq 0%, sftirq 0%, steal 0%
  procs_running (procs_blocked):
    2 (0)
  Проверка на заражение ядра: 0 (ядро не повреждено)

<снип>
Процессор
  4 логических процессора (2 ядра ЦП)
  1 процессор Intel Core i7-2640M @ 2,80 ГГц (флаги: aes, ht, lm, pae, vmx)
  └─4 потока / по 2 ядра
<снип>
  

Так БАМ! Вот именно то, что мы хотели, в красиво оформленном выводе.

Итак, у нас есть несколько официальных статей, на которые вы также можете ссылаться:

Как определить количество сокетов ЦП в системе

и

Разница между физическим процессором, ядрами процессора и логическим процессором

Так что ты думаешь? Это полезный материал? Сэкономит ли это ваше время или даже поможет ли вам запустить собственную CMDB? Мы хотели бы услышать от вас!

Ура,

CRob
Технический менеджер по работе с клиентами
Red Hat Inc.

Как проверить, находится ли розетка в розетке?

Легко проверить, находится ли штепсельная розетка под напряжением и исправна ли она. Самый простой и точный в использовании инструмент — мультиметр. Он сообщит вам, есть ли мощность в розетке, и ее фактическое количество.

Если у вас нет под рукой мультиметра, вы также можете использовать тестер розеток или тестер напряжения.

Начнем с мультиметра.

Прочтите, чтобы узнать больше о том, как проверить, находится ли штепсельная розетка под напряжением.

Как использовать мультиметр для проверки розетки

Преимущество использования мультиметра в том, что он показывает, какое именно напряжение выдает розетка.

Это не только говорит вам, что розетка находится под напряжением, но также может помочь вам диагностировать, неисправна ли розетка (слишком низкое или слишком высокое напряжение).

Вы также можете использовать мультиметр, чтобы проверить правильность подключения розетки.

  1. Сначала настройте мультиметр. Подключите красный и черный щупы к правым отверстиям.Черный зонд входит в отверстие, помеченное как COM, а красный зонд входит в отверстие вольт / Ом.
  2. Установите шкалу мультиметра на переменное напряжение, которое обычно отображается как V с волнистой линией рядом или сверху.
  3. Выберите наименьшее напряжение на мультиметре, которое выше напряжения розетки. Стандартное напряжение для розеток UK составляет 230 В. На большинстве мультиметров это 600 В. Некоторые мультиметры имеют функцию автоматического выбора диапазона, что означает, что вам не нужно выбирать диапазон.
  4. Держа провода мультиметра в одной руке, чтобы ток не протекал через ваше тело, вставьте черный провод в нейтральный слот, а красный — в горячий / активный слот (обратите внимание, что не имеет значения, какой провод идет в какой слот. .Вы можете подключить красный к нейтрали, а черный к живому).

Краткое примечание по определению разъемов под напряжением, нейтрали и заземления в розетке. В Великобритании слот live находится справа, а нейтральный слот — слева. Слот для земли — это отверстие наверху.

Если вы хотите быть уверенным в полярности вдвойне, отвинтите крышку гнезда и проверьте провода под ней. Коричневый провод подключается к клемме под напряжением, синий — к клемме нейтрали, а желто-зеленый провод — к клемме заземления.

Вы можете подключить выводы мультиметра непосредственно к открытым клеммам.

  • Подключив провода мультиметра к нулевому и токоведущему гнездам или клеммам, проверьте показания мультиметра. Если розетка находится под напряжением, показание будет 230 В, хотя оно может быть немного выше или ниже.
  • Если мультиметр показывает ноль или близкий к нулю, розетка не находится под напряжением.

Обратите внимание, что розетка может быть под напряжением, но неисправна. Если показания мультиметра намного ниже 230 В или намного выше, проблема с розеткой.

Чтобы проверить, перепутаны ли провода в розетке, вставьте один из выводов мультиметра в гнездо заземления (гнездо вверху), а другой — в гнездо под напряжением (гнездо справа). Вы должны получить показание 230 В или около того.

Если он показывает ноль или близок к нулю, поместите провод в левый слот. Если мультиметр показывает напряжение около 230 В, значит, провода пересеклись. Левый всегда должен быть нейтралью и не должен иметь разницы в напряжении с разъемом заземления, что означает, что показания мультиметра должны быть нулевыми или близкими (максимум 2 В).

Откройте крышку гнезда, чтобы подтвердить обратное соединение.

Использование тестера розеток

Тестер розеток — это небольшой портативный прибор, который подключается непосредственно к проверяемой розетке. В зависимости от сложности тестера вы можете проводить широкий спектр тестов на безопасность.

Базовый тестер розеток, предназначенный для домашнего использования, подскажет, находится ли розетка под напряжением. Тестеры розеток используют светодиодные индикаторы для индикации состояния каждого терминала. Если свет не загорается, значит, в розетке нет напряжения.

Другие вещи, которые вы можете проверить, включают правильное напряжение, наличие провода заземления, реверсирование провода под напряжением или заземления, а также правильность подключения розетки к сети.

Использование тестера напряжения

Если вам просто нужно проверить, не выводит ли розетка питание, используйте тестер напряжения.

Некоторые отвертки, используемые электриками, имеют встроенный тестер напряжения. Откройте крышку гнезда и коснитесь кончиком отвертки токоведущей клеммы.Отвертка должна загореться, если розетка находится под напряжением.

Вы также можете купить специальный тестер напряжения. Большинство из них бесконтактные, что обеспечивает безопасность.

С бесконтактным тестером напряжения открывать розетку не нужно. Просто поместите наконечник тестера рядом с активным (правым) слотом или внутрь него. Он должен загореться и издать звук, если розетка находится под напряжением.

MESTEK ST02B Тестер розеток Тестер напряжения Детектор розеток Штекер US Plug Ground Zero Line Plug Полярность Проверка фаз Поиск прерывателя

Описание продукта

Характеристики :

1.Миниатюрный портативный дизайн, удобный для переноски и простой в использовании.

2. Тест УЗО (или GFCI).

3. Проверка напряжения (с ЖК-дисплеем).

4. Может быстро и точно определить состояние проводки розетки.

5. Широко используется в школе, лаборатории, фабрике и других социальных сферах.

Технические характеристики:

Торговая марка: МЕСТЭК

Модель: ST02B

Стандарт штекера: штекер США

Рабочее напряжение: 90-250 В / 45-65 Гц

Измерьте напряжение: 90 — 250 В / 45 — 65 Гц

Точность: ± (2.0% + 2)

Высота: 2000 м

Тест УЗО: 30 мА

Рабочее напряжение УЗО: 220 В ± 20 В

Тест GFCI:> 5 мА

Рабочее напряжение GFCI: 110 В ± 20 В

В комплект входит :

1 тестер розеток
1 руководство пользователя на английском языке

Подробные изображения:


При заказе на RenhotecIC.com вы получите электронное письмо с подтверждением. Как только ваш заказ будет отправлен, вам будет отправлено электронное письмо с информацией об отслеживании доставки вашего заказа.Вы можете выбрать предпочтительный способ доставки на странице информации о заказе во время оформления заказа.

Общее время, необходимое для получения вашего заказа, показано ниже:

Общее время доставки рассчитывается с момента размещения вашего заказа до момента его доставки вам. Общее время доставки делится на время обработки и время доставки.

Время обработки: Время, необходимое для подготовки ваших товаров к отправке с нашего склада.Это включает в себя подготовку ваших товаров, выполнение проверки качества и упаковку для отправки.

Время доставки: Время, в течение которого ваши товары могут добраться с нашего склада до места назначения.

Доставка с вашего местного склада значительно быстрее. Может взиматься некоторая плата.

Кроме того, вы можете выбрать способ доставки, который вы предпочитаете при оформлении заказа, разные способы доставки будут иметь разные тарифы и время доставки. Подробности см. Ниже:

Способ доставки Тарифы на доставку Сроки доставки
Плоская доставка (электронный пакет / морем)
Около 10 25343 $ 35 дней для доставки по всему миру
DHL / FedEx в зависимости от веса Примерно 5-7 дней для доставки по всему миру
UPS в зависимости от веса Примерно 5-7 дней для доставки по всему миру
SF в зависимости от веса Доставка по всему миру примерно за 7-10 дней

Кроме того, время доставки зависит от того, где вы находитесь, от выбранного вами способа доставки и от того, откуда приходит ваша посылка.Мы будем держать вас в курсе любых проблем, чтобы помочь вам получить заказ как можно скорее.

Если вы хотите получить дополнительную информацию, свяжитесь со службой поддержки клиентов, заполнив контактную форму или [адрес электронной почты защищен]. Мы решим вашу проблему в кратчайшие сроки. Приятных покупок!

Mestek st02b розетка тестер напряжение тестер розетка детектор вилка сша заземление нулевая линия вилка полярность проверка фазы искатель выключателя продажа

Способы доставки

Общее приблизительное время, необходимое для получения вашего заказа, показано ниже:

  • Вы размещаете заказ
  • (Время обработки)
  • Отправляем Ваш заказ
  • (время доставки)
  • Доставка!

Общее расчетное время доставки

Общее время доставки рассчитывается с момента размещения вашего заказа до момента его доставки вам.Общее время доставки делится на время обработки и время доставки.

Время обработки: Время, необходимое для подготовки ваших товаров к отправке с нашего склада. Это включает в себя подготовку ваших товаров, выполнение проверки качества и упаковку для отправки.

Время доставки: Время, в течение которого ваши товары могут добраться с нашего склада до места назначения.

Ниже приведены рекомендуемые способы доставки для вашей страны / региона:

Отправить по адресу: Корабль из

Этот склад не может быть доставлен к вам.

Способ (ы) доставки Время доставки Информация для отслеживания

Примечание:

(1) Вышеупомянутое время доставки относится к расчетному времени в рабочих днях, которое займет отгрузка после отправки заказа.

(2) Рабочие дни не включают субботу / воскресенье и праздничные дни.

(3) Эти оценки основаны на нормальных обстоятельствах и не являются гарантией сроков доставки.

(4) Мы не несем ответственности за сбои или задержки в доставке в результате любых форс-мажорных обстоятельств, таких как стихийное бедствие, плохая погода, война, таможенные проблемы и любые другие события, находящиеся вне нашего прямого контроля.

(5) Ускоренная доставка не может быть использована для почтовых ящиков

Расчетные налоги: Может взиматься налог на товары и услуги (GST).

Способы оплаты

Мы поддерживаем следующие способы оплаты.Нажмите, чтобы получить дополнительную информацию, если вы не знаете, как платить.

* В настоящее время мы предлагаем оплату наложенным платежом для Саудовской Аравии, Объединенных Арабских Эмиратов, Кувейта, Омана, Бахрейна, Катара, Таиланда, Сингапура, Малайзии, Филиппин, Индонезии, Вьетнама, Индии. Мы отправим код подтверждения на ваш мобильный телефон, чтобы проверить правильность ваших контактных данных. Убедитесь, что вы следуете всем инструкциям, содержащимся в сообщении.

* Оплата в рассрочку (кредитная карта) или Boleto Bancário доступна только для заказов с адресами доставки в Бразилии.

ZF1 — плоская гибкая кабельная розетка 1,00 мм с нулевым усилием вставки

Новая высокоскоростная кабельная система, обеспечивающая передачу сигналов PAM4 со скоростью 112 Гбит / с, может использоваться в приложениях средней платы, средней платы к передней панели и панели-панели. Это видео с выставки DesignCon 2021 демонстрирует живую демонстрацию продукта с кабельной системой Samtec NovaRay®, Flyover®, работающей на …

За последние несколько месяцев мы обсудили некоторые из последних тенденций в оборонной и аэрокосмической отраслях, чтобы совпасть с публикацией в начале этого года страницы Samtec Industrial Application.В этих статьях мы рассмотрели, как технологии Samtec помогают дизайнерам, так что …

21 век — это цифровой мир. Датчики — от микрофонов до термометров — преобразуют аналоговые сигналы реального мира в цифровые. Сообщество датчиков и электроники фокусируется на обнаружении, обработке, соединении и анализе данных, необходимых для проведения цифровых экспериментов…

Потребности медицинской профессии выходят за рамки безопасных условий операционной и больницы. Многие пациенты получают помощь в других условиях — в кабинетах врачей, медицинских центрах и все чаще — на дому. Это особенно актуально для пациентов, которым требуется длительный …

Системные архитекторы и инженеры-проектировщики заинтересованы в высочайшей производительности.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *