Символ переменного тока: ⏦ — Знак переменного тока: U+23E6

Содержание

⏦ — Знак переменного тока: U+23E6

Значение символа

Знак переменного тока. Разнообразные технические символы.

Символ «Знак переменного тока» был утвержден как часть Юникода версии 5.0 в 2006 г.

Свойства

Версия
5.0
БлокРазнообразные технические символы
Тип парной зеркальной скобки (bidi)Нет
Композиционное исключениеНет
Изменение регистра23E6
Простое изменение регистра23E6

Кодировка

Кодировкаhexdec (bytes)decbinary
UTF-8E2 8F A6226 143 1661484791011100010 10001111 10100110
UTF-16BE23 E635 230919000100011 11100110
UTF-16LEE6 23230 355891511100110 00100011
UTF-32BE00 00 23 E60 0 35 230919000000000 00000000 00100011 11100110
UTF-32LE
E6 23 00 00
230 35 0 0386105344011100110 00100011 00000000 00000000

⎓ — Символ постоянного тока формирует два: U+2393

Значение символа

Символ постоянного тока формирует два. Разнообразные технические символы.

Символ «Символ постоянного тока формирует два» был утвержден как часть Юникода версии 3.0 в 1999 г.

Свойства

Версия3.0
Блок
Разнообразные технические символы
Тип парной зеркальной скобки (bidi)Нет
Композиционное исключениеНет
Изменение регистра2393
Простое изменение регистра
2393

Кодировка

Кодировкаhexdec (bytes)decbinary
UTF-8
E2 8E 93
226 142 1471484763511100010 10001110 10010011
UTF-16BE23 9335 147910700100011 10010011
UTF-16LE93 23
147 35
3766710010011 00100011
UTF-32BE00 00 23 930 0 35 147910700000000 00000000 00100011 10010011
UTF-32LE93 23 00 00147 35 0 0
2468544512
10010011 00100011 00000000 00000000

Вставка символов и знаков на основе латинского алфавита в кодировке ASCII или Юникод

Вставка символа ASCII или Юникода в документ

Если вам нужно ввести только несколько специальных знаков или символов, можно использовать таблицу символов или сочетания клавиш. Список символов ASCII см. в следующих таблицах или статье Вставка букв национальных алфавитов с помощью сочетаний клавиш.

Примечания: 

  • Многие языки содержат символы, которые не удалось сжатить, в 256-символьный набор extended ACSII. Таким образом, существуют варианты ASCII и Юникода, которые должны включать региональные символы и символы, и см. таблицы кодов символов Юникода по сценариям.

  • Если у вас возникают проблемы с вводом кода необходимого символа, попробуйте использовать таблицу символов.

Вставка символов ASCII

Чтобы вставить символ ASCII, нажмите и удерживайте клавишу ALT, вводя код символа. Например, чтобы вставить символ градуса (º), нажмите и удерживайте клавишу ALT, затем введите 0176 на цифровой клавиатуре.

Для ввода чисел используйте цифровую клавиатуру

, а не цифры на основной клавиатуре. Если на цифровой клавиатуре необходимо ввести цифры, убедитесь, что включен индикатор NUM LOCK.

Вставка символов Юникода

Чтобы вставить символ Юникода, введите код символа, затем последовательно нажмите клавиши ALT и X. Например, чтобы вставить символ доллара ($), введите 0024 и последовательно нажмите клавиши ALT и X. Все коды символов Юникода см. в таблицах символов Юникода, упорядоченных по наборам.

Важно: Некоторые программы Microsoft Office, например PowerPoint и InfoPath, не поддерживают преобразование кодов Юникода в символы. Если вам необходимо вставить символ Юникода в одной из таких программ, используйте таблицу символов.

Примечания: 

  • Если после нажатия клавиш ALT+X отображается неправильный символ Юникода, выберите правильный код, а затем снова нажмите ALT+X.

  • Кроме того, перед кодом следует ввести «U+».  Например, если ввести «1U+B5» и нажать клавиши ALT+X, отобразится текст «1µ», а если ввести «1B5» и нажать клавиши ALT+X, отобразится символ «Ƶ».

Использование таблицы символов

Таблица символов — это программа, встроенная в Microsoft Windows, которая позволяет просматривать символы, доступные для выбранного шрифта.

С помощью таблицы символов можно копировать отдельные символы или группу символов в буфер обмена и вставлять их в любую программу, поддерживающую отображение этих символов. Открытие таблицы символов

  • В Windows 10 Введите слово «символ» в поле поиска на панели задач и выберите таблицу символов в результатах поиска.

  • В Windows 8 Введите слово «символ» на начальном экране и выберите таблицу символов в результатах поиска.

  • В Windows 7: Нажмите кнопку Пуск, а затем последовательно выберите команды Программы, Стандартные, Служебные и Таблица знаков.

Знаки группются по шрифтам. Щелкните список шрифтов, чтобы выбрать набор символов. Чтобы выбрать символ, щелкните его, нажмите кнопку «Выбрать», щелкните в документе правую кнопку мыши в том месте, где он должен быть, а затем выберите «Вировать».

К началу страницы

Коды часто используемых символов

Полный список символов см. в таблице символов на компьютере, таблице кодов символов ASCII или таблицах символов Юникода, упорядоченных по наборам.

Глиф

Код

Глиф

Код

Денежные единицы

£

ALT+0163

¥

ALT+0165

¢

ALT+0162

$

0024+ALT+X

ALT+0128

¤

ALT+0164

Юридические символы

©

ALT+0169

®

ALT+0174

§

ALT+0167

ALT+0153

Математические символы

°

ALT+0176

º

ALT+0186

221A+ALT+X

+

ALT+43

#

ALT+35

µ

ALT+0181

<

ALT+60

>

ALT+62

%

ALT+37

(

ALT+40

[

ALT+91

)

ALT+41

]

ALT+93

2206+ALT+X

Дроби

¼

ALT+0188

½

ALT+0189

¾

ALT+0190

Знаки пунктуации и диалектные символы

?

ALT+63

¿

ALT+0191

!

ALT+33

203+ALT+X

ALT+45

ALT+39

«

ALT+34

,

ALT+44

.

ALT+46

|

ALT+124

/

ALT+47

\

ALT+92

`

ALT+96

^

ALT+94

«

ALT+0171

»

ALT+0187

«

ALT+174

»

ALT+175

~

ALT+126

&

ALT+38

:

ALT+58

{

ALT+123

;

ALT+59

}

ALT+125

Символы форм

25A1+ALT+X

221A+ALT+X

К началу страницы

Коды часто используемых диакритических знаков

Полный список глифов и соответствующих кодов см. в таблице символов.

Глиф

Код

Глиф

Код

Ã

ALT+0195

å

ALT+0229

Å

ALT+143

å

ALT+134

Ä

ALT+142

ä

ALT+132

À

ALT+0192

à

ALT+133

Á

ALT+0193

á

ALT+160

Â

ALT+0194

â

ALT+131

Ç

ALT+128

ç

ALT+135

Č

010C+ALT+X

č

010D+ALT+X

É

ALT+144

é

ALT+130

È

ALT+0200

è

ALT+138

Ê

ALT+202

ê

ALT+136

Ë

ALT+203

ë

ALT+137

Ĕ

0114+ALT+X

ĕ

0115+ALT+X

Ğ

011E+ALT+X

ğ

011F+ALT+X

Ģ

0122+ALT+X

ģ

0123+ALT+X

Ï

ALT+0207

ï

ALT+139

Î

ALT+0206

î

ALT+140

Í

ALT+0205

í

ALT+161

Ì

ALT+0204

ì

ALT+141

Ñ

ALT+165

ñ

ALT+164

Ö

ALT+153

ö

ALT+148

Ô

ALT+212

ô

ALT+147

Ō

014C+ALT+X

ō

014D+ALT+X

Ò

ALT+0210

ò

ALT+149

Ó

ALT+0211

ó

ALT+162

Ø

ALT+0216

ø

00F8+ALT+X

Ŝ

015C+ALT+X

ŝ

015D+ALT+X

Ş

015E+ALT+X

ş

015F+ALT+X

Ü

ALT+154

ü

ALT+129

Ū

ALT+016A

ū

016B+ALT+X

Û

ALT+0219

û

ALT+150

Ù

ALT+0217

ù

ALT+151

Ú

00DA+ALT+X

ú

ALT+163

Ÿ

0159+ALT+X

ÿ

ALT+152

К началу страницы

Коды часто используемых лигатур

Дополнительные сведения о лигатурах см. в статье Лигатура (соединение букв). Полный список лигатур и соответствующих кодов см. в таблице символов.

Глиф

Код

Глиф

Код

Æ

ALT+0198

æ

ALT+0230

ß

ALT+0223

ß

ALT+225

Œ

ALT+0140

œ

ALT+0156

ʩ

02A9+ALT+X

ʣ

02A3+ALT+X

ʥ

02A5+ALT+X

ʪ

02AA+ALT+X

ʫ

02AB+ALT+X

ʦ

0246+ALT+X

ʧ

02A7+ALT+X

Љ

0409+ALT+X

Ю

042E+ALT+X

Њ

040A+ALT+X

Ѿ

047E+ALT+x

Ы

042B+ALT+X

Ѩ

0468+ALT+X

Ѭ

049C+ALT+X

FDF2+ALT+X

К началу страницы

Непечатаемые управляющие знаки ASCII

Знаки, используемые для управления некоторыми периферийными устройствами, например принтерами, в таблице ASCII имеют номера 0–31. Например, знаку перевода страницы/новой страницы соответствует номер 12. Этот знак указывает принтеру перейти к началу следующей страницы.

Таблица непечатаемых управляющих знаков ASCII

Десятичное число

Знак

Десятичное число

Знак

NULL

0

Освобождение канала данных

16

Начало заголовка

1

Первый код управления устройством

17

Начало текста

2

Второй код управления устройством

18

Конец текста

3

Третий код управления устройством

19

Конец передачи

4

Четвертый код управления устройством

20

Запрос

5

Отрицательное подтверждение

21

Подтверждение

6

Синхронный режим передачи

22

Звуковой сигнал

7

Конец блока передаваемых данных

23

BACKSPACE

8

Отмена

24

Горизонтальная табуляция

9

Конец носителя

25

Перевод строки/новая строка

10

Символ замены

26

Вертикальная табуляция

11

ESC

27

Перевод страницы/новая страница

12

Разделитель файлов

28

Возврат каретки

13

Разделитель групп

29

Сдвиг без сохранения разрядов

14

Разделитель записей

30

Сдвиг с сохранением разрядов

15

Разделитель данных

31

Пробел

32

DEL

127

К началу страницы

переменный символ — это… Что такое переменный символ?

переменный символ
flexible symbol

Большой англо-русский и русско-английский словарь. 2001.

  • переменный сигнал
  • переменный собственный вектор

Смотреть что такое «переменный символ» в других словарях:

  • Зодиак — Символ связей во вселенной, а также циклических и сезонных превращений. Это колесо сансары, архетип, гармония общего и частного, низвержение в материальный мир и спасение из него. Платон называет эти двенадцать знаков воротами небес. Птолемей… …   Словарь символов

  • Поражение электрическим током — Символ, предупреждающий об опасности поражения электрическим током Поражение электрическим током возникает при соприкосновении с электрической цепью, в которой присутствуют источ …   Википедия

  • ГОСТ Р 50030.5.1-2005: Аппаратура распределения и управления низковольтная. Часть 5. Аппараты и коммутационные элементы цепей управления. Глава 1. Электромеханические аппараты для цепей управления — Терминология ГОСТ Р 50030.5.1 2005: Аппаратура распределения и управления низковольтная. Часть 5. Аппараты и коммутационные элементы цепей управления. Глава 1. Электромеханические аппараты для цепей управления оригинал документа: (обязательное)… …   Словарь-справочник терминов нормативно-технической документации

  • Стационарные приборы — 7.2 Стационарные приборы с многоканальным питанием должны иметь предупреждающую надпись следующего содержания: «Внимание! Перед доступом к зажимным устройствам все цепи питания должны быть отключены» Такая предупреждающая надпись должна… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 52161.1-2004: Безопасность бытовых и аналогичных электрических приборов. Часть 1. Общие требования — Терминология ГОСТ Р 52161.1 2004: Безопасность бытовых и аналогичных электрических приборов. Часть 1. Общие требования оригинал документа: 3.4.2 безопасное сверхнизкое напряжение (safety extra low voltage): Напряжение, не превышающее 42 В между… …   Словарь-справочник терминов нормативно-технической документации

  • Железнодорожный транспорт в России — Пригородные электропоезда ЭМ2 и ЭР2 …   Википедия

  • Своп — (Swap) Своп это это соглашение между двумя контрагентами об обмене в будущем платежами в соответствии с определенными в контракте условиями Своп: валютный своп, сделка своп, кредитный своп, процентный своп, дефолтный своп, своп операции,… …   Энциклопедия инвестора

  • Электровакуумный диод — У этого термина существуют и другие значения, см. Диод (значения). Электровакуумный диод  вакуумная двухэлектродная электронная лампа. Катод диода нагревается до температур, при которых возникает термоэлектронная эмиссия. При подаче на анод… …   Википедия

  • FAT — (англ. File Allocation Table  «таблица размещения файлов»)  классическая архитектура файловой системы, которая из за своей простоты всё ещё широко используется для флеш накопителей. В недавнем прошлом использовалась в дискетах, на… …   Википедия

  • Восточно-сирийский обряд — Восточно сирийский (в русской литературе часто  восточно сирский) богослужебный обряд  богослужебный обряд, сохранившийся в долхалкидонской Ассирийской церкви Востока и в некоторых отделившихся от неё Восточнокатолических церквах… …   Википедия

  • Амвросианский обряд — (также иногда называется миланским обрядом, лат. ritus Ambrosianus)  один из латинских западных литургических обрядов, используется в архиепархии Милана (за исключением Монцы), а также в более 100 приходах епархий Павии, Бергамо (обе… …   Википедия

Машины переменного тока.



Трафарет Visio Машины переменного тока.

В трафарет Visio, входят базовые символы условных обозначений электрических машин переменного тока.

Выбором дополнительных характеристик и конструктивных особенностей, из контекстного меню и таблицы данных фигуры, можно получить все предусмотренные стандартами условные обозначения машин переменного тока, например:

Машина электрическая — обозначение упрощенное однолинейное.

В таблице Данные фигуры, для однолиненейного варианта условного обозначения, возможно выбрать один из вариантов типа машины: двигатель, двигатель синхронный, генератор, генератор синхронный, двигатель-генератор, преобразователь, сельсин


Двигатель.
Преобразователь.
Генератор.
Сельсин.

 


Двигатель синхронный.
Генератор синхронный.
Двигатель — генератор.

 

и дополнительные сведения, например для условного обозначения двигателя:


Двигатель постоянного тока.
Двигатель переменного тока трехфазный.
Двигатель трехфазный, соединение обмоток в треугольник.

 


Двигатель трехфазный, соединение обмоток в треугольник.
Двигатель трехфазный, соединение обмоток звезда + N.
Двигатель трехфазный, три раздельных обмотки.

 

 

Двигатель асинхронный трехфазный — символы условных обозначений.

Для условного обозначения двигателя асинхронного трехфазного, через контекстное меню фигуры Visio, можно показать или скрыть защитный провод заземления и символ заземления корпуса.

Расстояние между выводами обозначения электродвигателя можно изменить, перемещением маркера фигуры.


Двигатель асинхронный трехфазный.
Двигатель асинхронный трехфазный с защитным проводом заземления.
Двигатель асинхронный трехфазный, корпус заземлен.

 

Примеры для услоного обозначения двигателя асинхронного трехфазного с 6 выводами обмоток:


Двигатель асинхронный трехфазный, 6 выводов.
Двигатель асинхронный трехфазный, 6 выводов, защитный провод заземления.
Двигатель асинхронный трехфазный, 6 выводов, защитный провод заземления, заземленный корпус.

 

 

Посмотреть пример на видео:

 

Двигатель асинхронный трехфазный с фазным ротором — примеры условных обозначений.

Изменение условного обозначения двигателя с фазным ротором, аналогично изменению условного обозначения двигателя асинхронного трехфазного:


Двигатель асинхронный трехфазный с фазным ротором.
Двигатель асинхронный трехфазный с фазным ротором, корпус заземлен.
АД трехфазный с фазным ротором, с защитным проводом заземления и заземленным корпусом.

 

 

Двигатель асинхронный однофазный — примеры условных обозначений.

   Через контекстное меню фигуры обозначения можно показать или скрыть дополнительную обмотку, защитный провод заземления и символ заземления корпуса электрической машины.

   Расстояние между выводами обозначения электродвигателя можно изменить, перемещением маркера фигуры.


Двигатель асинхронный однофазный.
Двигатель асинхронный однофазный, корпус заземлен.
АД однофазный с дополнительной обмоткой и защитным проводом заземления.

 

 

Двигатель коллекторный — примеры условных обозначений.

Двигатель коллекторный однофазный последовательного возбуждения.
Двигатель коллекторный однофазный репульсионный.
Двигатель коллекторный трехфазный.

 

 

Машины синхронные однофазные — примеры символов условных обозначений.

Генератор синхронный однофазный.
Двигатель синхронный однофазный.

 

 

Машины синхронные трехфазные — примеры условных обозначений.

Именение рода машины и дополнительных сведений, осуществляется в таблице данных фигуры Visio.


Генератор синхронный трехфазный с обмотками, соединенными в треугольник.
Генератор синхронный трехфазный с обмотками, соединенными в звезду.
Генератор синхронный трехфазный с обмотками, соединенными в звезду, с выведенной нейтралью.

 


Двигатель синхронный трехфазный с обмотками, соединенными в треугольник.
Двигатель синхронный трехфазный с обмотками, соединенными в звезду.
Двигатель синхронный трехфазный с обмотками, соединенными в звезду, с выведенной нейтралью.

 


Генератор переменного тока синхронный трехфазный с постоянным магнитом.
Генератор синхронный трехфазный, оба конца каждой фазы выведены.
Двигатель синхронный трехфазный, оба конца каждой фазы выведены.

 

 

Преобразователь — условное обозначение.

Преобразователь одноякорный постоянно-переменного тока трехфазный.

 

Дополнительные символы определяющие тип электрических машин.
    Символы соединения обмоток электрической машины в треугольник, звезду или звезду с выведенной нейтральной точкой соединения обмоток. Переключение группы соединения проводятся в таблице данных фигуры. Символ шаговый двигатель. Символ линейный двигатель, направление движения вправо и влево. Символ линейный двигатель направление движения влево. Символ линейный двигатель, направление движения вправо. Символ автоматического пускателя. Символ термистора.

 

Любой из дополнительных символов, может быть добавлен в любую фигуру условного обозначения электрической машины.
 Некоторые примеры условных обозначений электрических машин, полученных добавлением дополнительных символов:


Двигатель асинхронный трехфазный с встроенным термистором.
Двигатель асинхронный трехфазный с обмотками, соединенными в звезду.
Двигатель асинхронный трехфазный шаговый.

 


Двигатель асинхронный трехфазный линейный, направление движения вправо и влево.
Двигатель асинхронный трехфазный со статором, соединенным звездой, с автоматическими пускателями в роторе.

 

Примечание: Если предполагается горизонтальное расположение условного обозначения двигателя на схеме, фигуру обозначения необходимо сначала повернуть горизонтально, а затем добавить дополнительный символ.


Посмотреть технологию вставки дополнительных символов в условные обозначения электрических машин на видео:


 

каким символом обозначается на электроустановках

Заряженные частицы, перемещаясь, создают такое явление, как электрический ток. Применимо к электричеству этими частицами являются электроны. Они движутся по проводнику в электрической цепи от источника, выдающего заряд, к объекту, который этот заряд потребляет. Если это движение неизменно во времени и не меняет своего направления, его называют постоянным. Если такие изменения имеют место, говорят о переменном токе.

Движение заряженных частиц

Что такое переменный ток

В цепях постоянного электричества отрицательно заряженные частицы движутся от плюса к минусу. Если рассматривать источник тока как некоторый двухполюсник, имеющий два электрода, к которым подключается питаемая цепь, то на одном всегда будет плюс, а на другом – минус.

Переменный ток не позволяет зафиксировать такую маркировку полюсов. У двухполюсника переменного тока нельзя чётко обозначить, какой заряд присутствует на том или ином выводе. Можно рассматривать только мгновенные значения зарядов в определённый промежуток времени. Изменение полярности имеет временную зависимость. Это значит, что переменный ток меняет своё направление с течением времени.

Важно! Переменное электричество изменяется по гармоническому синусоидальному закону. Его графиком на оси координат является синусоида, в то время как график постоянного движения электронов представляет собой прямую линию, параллельную оси ОХ.

Графическое изображение двух типов электричества

Источники электрической энергии

Мировое производство электроэнергии базируется на работе электростанций. Основной принцип работы станций заключается в том, что турбины установленных в них электрогенераторов вращаются с помощью других видов энергии. Они получили своё название соответственно типу используемой энергии:

  • тепловые (ТЭС) – в качестве сырья используются органические виды топлива: уголь, газ, мазут и другие;
  • гидроэлектростанции (ГЭС) – лопасти турбины вращает падающая вода, она же используется для охлаждения рабочих поверхностей генераторов;
  • атомные станции (АЭС) – один из видов ТЭС, где для получения пара, вращающего турбину, используют тепло, выделяемое в результате ядерной реакции.

Размещение тех или иных видов электростанций зависит от распределения по регионам сырьевых ресурсов, географического расположения рек и выбора подходящих мест для возведения АЭС.

Внимание! Основную долю производства мировой электроэнергии до сих пор берут на себя ТЭС. Опасность при эксплуатации АЭС пока является сдерживающим фактором для полного перехода на этот мощный вид производства электричества.

Неравномерная плотность проживания населения на планете не позволяет максимально приблизить такие источники энергии к местам потребления. Поэтому приходится передавать производимое электричество на дальние расстояния. Так как и потребление, и получение энергии происходит в реальном режиме, созданы энергосистемы, объединяющие электростанции между собой. Кроме того, сами системы организованы в более мощные энергосистемы. Это сделано для создания резерва рабочей мощности и возможности регулировать подачу электроэнергии к потребителям в бесперебойном режиме.

Разница в часовых поясах, сезонные колебания потребления – всё это нагружает одни станции и недогружает другие. Энергосистемы позволяют станциям подпитывать друг друга в случае перегрузок.

Кроме традиционных электростанций, хорошо зарекомендовали себя альтернативные источники: ветряные генераторы и солнечные батареи. С их помощью решают задачи по обеспечению электропитанием потребителей в отдельных случаях.

Что касается источников постоянного тока, то их можно разделить на два типа:

  • химические – гальванические элементы, использующие реакции окисления, и электролитические, генерирующие энергию посредством электролиза;
  • электромеханические – генераторы постоянного тока, превращающие энергию вращения в её электрический вид.

Гальванические элементы (батарейки) имеют конечный срок службы. Они конструктивно изготовлены так, что после окончания реакции окисления вырабатывание электричества прекращается. Электролитические элементы (аккумуляторы) имеют периодический режим работы. После разряда их можно заряжать, подавая на их полюса ток заряда, и использовать снова.

Источники электроэнергии

Обозначения на схемах и в приборах

Графическое обозначение тока постоянной полярности на схемы наносится в виде знаков плюс (+) и минус (-). Источник электричества постоянной полярности имеет вид двух вертикальных чёрточек, одна из которых вдвое длиннее. Та, что короче, – это минус, длинная – плюс. Запомнить различие можно легко. Если длинную черту разделить пополам, то из неё можно сложить знак «+». На корпусах приборов, блоков питания, на гнёздах подключения разъёмов питания можно увидеть буквенное обозначение DC (direct current). Это по-английски означает «однонаправленный ток». Рядом часто наносят графическое обозначение – длинная горизонтальная линия, под ней располагается пунктирная линия, у которой длина штрихов равна длине промежутков.

Обозначение переменного тока на схемах и на приборах осуществляется в буквенном изображении AC (Alternating Current) и графическим символом – отрезком синусоиды длиной в период. Число фаз может указываться цифрой или количеством волнистых линий, если это необходимо.

Обозначения постоянного и переменного электричества

Измерительные приборы и электрооборудование

Как обозначается ток на приборах, позволяющих измерять электрические характеристики? Обозначения те же самые, как и на приборах, его потребляющих. При измерении тока или напряжения прежде, чем прикасаться щупами к токоведущим частям электроустановок или открытых участков тоководов, необходимо выставить пределы измерения на приборе и род тока, которые соответствуют параметрам измеряемого участка.

Осторожно. Неправильная подготовка прибора к измерениям может вывести его из строя, привести к короткому замыканию измеряемого участка линии и поражению оператора электрическим током.

На корпуса электрооборудования, на защитные щиты и кожухи электродвигателей и генераторов наносятся опознавательные символы, информирующие о полярности, частоте, величине напряжения и других характеристиках.

Области применения DC напряжения

Постоянный ток, обозначение которого наносится на устройства, получают не только с помощью гальванических элементов. Преобразователи переменного электричества в постоянное имеют в своём составе выпрямительные устройства. Использование выпрямителей расширило область применения DC напряжения. Оно применяется в следующих сферах:

  • на линиях постоянного напряжения (ЛЭП) в электросетях;
  • при организации мини,- и микросетей для электропитания локальных потребителей постоянным током;
  • на транспорте;
  • в устройствах управления электроприводами;
  • в бытовой технике и электронике.

Цепи и устройства, работающие на постоянном напряжении, не только востребованы, но и подвергаются усовершенствованию и широкому повсеместному внедрению.

Расшифровка обозначения мощности AC  на схеме и корпусах

Из таблички на картинке ниже видно, как обозначается Р переменного тока. Она указывается в киловаттах (кВт). Такие же обозначения присутствуют и на электрических схемах. Это номинальная мощность оборудования, при которой оно работает в штатном режиме, и её КПД соответствует заявленному.

Характеристики электродвигателя на шильдике машины

Что означает AC и DC на панели мультиметра

На рабочей панели любого прибора DC – это обозначение постоянного напряжения. При установке переключателя на такие значки постоянного тока можно тестировать постоянные электрические величины.

Знак AC призван обозначать пределы, в которых тестер может работать с переменными значениями электричества.

Важно! Если численный порядок измеряемой величины не известен, то необходимо устанавливать максимально высокий предел измерения, постепенно снижая его до достижения необходимой точности тестирования. Если тип тока тоже не ясен, лучше предположить, что он изменяется во времени.

Обозначение переменного тока на схемах и приборах обязательно указывает его напряжение, частоту и количество фаз. Стандарты обозначений предусматривают однозначное и понятное для специалистов символьное отображение информации.

Видео

Расшифровка обозначений на мультиметре. Как обозначаются переменный и постоянный ток и напряжение

Мультиметр – один из самых необходимых и многофункциональных приборов электрика. Наверняка все помнят, как на уроках физики в школе измеряли напряжение вольтметром, сопротивление – омметром, силу тока – амперметром. Так вот, мультиметр воплотил в себе все эти измерительные приборы, а также несколько других, о которых чуть ниже расскажем подробнее.

Сам по себе мультиметр работать не будет, все зависит от знания мастера и умения пользоваться этим прибором. То есть, чтобы измерить какой-либо параметр, сначала нужно правильно выставить переключатель, знать какой щуп в какое гнездо воткнуть, и так далее. Поэтому, прежде чем брать прибор в руки, нужно научиться им правильно пользоваться.

Внимание! В данной статье описывается стандартный мультиметр с наиболее распространенными функциями. В зависимости от модели мультиметра, его функционал может быть больше и включать в себя дополнительные возможности. Здесь описываются только те, которые имеются практически в каждом приборе, а также расшифровка обозначений на мультиметре.

Вкратце опишем основные компоненты прибора:

  1. 1. Электронное табло
  2. 2. Шкала обозначений
  3. 3. Переключатель
  4. 4. Кнопка “ВКЛ/ВЫКЛ” (вместо нее бывает специальное положение для регулятора)
  5. 5. Разъемы для щупов
  6. 6. Специальные разъемы для проверки транзисторов (присутствуют на некоторых тестерах)
  7. 7. Индикатор прозвонки (зуммер и светодиод красного цвета)
  8. 8. Батарейка

Из всего вышеперечисленного самым важным моментом является шкала обозначений, так как если вы неправильно выставите регулятор, то можете сжечь измеряемую радиодеталь или сам прибор. Поэтому расшифровка обозначений на мультиметре очень важный момент при работе с этим прибором.

Обозначения на мультиметре

Шкала обозначений включает в себя круговой переключатель положений, а также символы, обозначающие те или иные параметры, разбитые на сектора.

Каждый сектор отвечает за измерение одного конкретного параметра (например сопротивления). Внутри сектора имеется несколько положений регулятора, каждое положение обозначает измеряемый номинал. Каждый сектор обозначается специальным символом. Все сектора разделяются между собой линиями.

Куда подключать щупы мультиметра

Щупы для мультиметра идут в комплекте. Один щуп – красный, второй – черный. Корпус щупа выполнен из диэлектрика, на конце – заостренный металлический стержень

Внимание! Помните золотое правило: красный – всегда плюс, черный – всегда минус. Поэтому важно не перепутать гнезда подключения, иначе есть риск запутаться. Красный щуп всегда кидаем на плюс, черный – на минус.

Щупы подключаются к специальным гнездам, также имеющим обозначения. Самих гнезд может быть три или четыре, в зависимости от модели мультиметра.

Гнезда для подключения щупов:

  • 1. Гнездо “СОМ” – обозначает минус (масса, общий). В него подключается щуп черного цвета. Всем известно, что при замере переменного напряжения, допустим, в розетке, полярность не имеет значения. Тем не менее, следуйте следующему правилу: если есть определенный провод (щуп) и для него имеется специальное отверстие, то нужно подключать этот провод именно в это отверстие, так как черный цвет провода недвусмысленно нам намекает на то что он – минусовой.
  • 2. Гнездо «VΩCX+» — обозначает плюс, к нему подключается красный провод. Это гнездо используется при измерении сопротивления, напряжения, частоты, температуры, проверки диодов и транзисторов. Проще говоря, это гнездо используется во всех измерениях, за исключением измерения силы тока.
  • 3. Гнездо “20А” – специальное гнездо. К нему подключается красный щуп, а функция этого гнезда – измерение силы тока величиной до 20 ампер. 20 ампер это очень большая сила тока, поэтому будьте осторожны. Опять же, очень важное правило: при измерении силы тока, прибор (в нашем случае – мультиметр) нужно подключать к цепи последовательно и только так. Если рядом с этим гнездом увидите надпись “UNFUSED”, то имейте ввиду, что измерение производится без использования предохранителя, поэтому постарайтесь не сжечь прибор. Также нужно знать, как обозначается постоянный ток на мультиметре.
  • 4. Гнездо “MACX” – гнездо для измерения силы тока малых значений микро- и миллиампер. Если рядом окажется надпись «0.2А MAX FUSED» — значит измерение производится с защитой прибора предохранителем, максимальное значение измерения – 0.2 ампера.

На приборе может быть нарисован красный треугольник с надписью “МАХ 600V” (значения могут отличаться в зависимости от модели мультиметра). Это максимальное значение измерения напряжения. Нельзя замерять напряжение выше этого параметра.

Внимание! Если вам неизвестны пределы измеряемого значения – устанавливайте регулятор на максимальное значение, по мере измерения – двигайтесь в меньшую сторону. Например, мы знаем, что измеряемый прибор (например, аккумулятор) имеет постоянное напряжение, но не знаем примерный диапазон (то-ли 24 вольта, то-ли 12 вольт, а может быть и 1.6 вольт). В этом случае устанавливаем регулятор на максимальное значение сектора измерения постоянного напряжения и двигаемся в меньшую сторону.

Очень важно! Проводя любые измерения, ни в коем случае не держитесь пальцами за металлическую часть щупа, особенно при каких-либо измерениях опасного напряжения или силы тока.

Диапазоны переключателя мультиметра

Сначала затронем тему включения и выключения мультиметра. Обычно присутствует кнопка “ON/OFF”, но на некоторых моделях мультиметров имеется специальный сектор с таким же названием. Также есть тестеры, которые выключаются самостоятельно, спустя некоторое время.

Сам же регулятор, или переключатель – кому как больше нравится, модно крутить хоть по часовой, хоть против часовой стрелки. Что измерить какой-либо параметр – просто переведите регулятор в нужный сектор на нужное значение.

Важно! Сектора обозначаются буквами, номиналы – цифрами.

Расшифровка обозначений на мультиметре, которую нужно запомнить раз и навсегда:

  1. 1. DCV – сектор измерения постоянного напряжения
  2. 2. ACV – сектор измерения переменного напряжения
  3. 3. DCA – сектор измерения силы постоянного тока
  4. 4. ACA – сектор измерения переменного тока

Как обозначается сопротивление на мультиметре

Из школьного курса физики мы помним, что сопротивление измеряется в Омах, в честь немецкого физика Георга Симона Ома. Обозначение на мультиметре — «Ω», номиналы сопротивления на стандартном приборе следующие: 20 Ом, 200 Ом, 2 кОм, 20 кОм, 200 кОм, 2 МОМ, 20 МОМ, 200 МОМ. В зависимости от модели используемого мультиметра диапазон значений может быть иным.

Измерение этого параметра является очень популярным как в радиоэлектронике, так и в электрике. С помощью сопротивления можно очень быстро проверить работоспособность лампочки, спирали, провода и т.д.

Для измерения сопротивления переставьте регулятор в сектор «Ω» и выберите нужное значение.

Обозначение постоянного напряжения на мультиметрах

Напряжение измеряется в Вольтах, в честь итальянского физика Алессандро Вольта. Выше мы уже писали, что сектор измерения постоянного напряжения обозначается аббревиатурой “DCV”. Но, на многих моделях вместо этого сокращения используют символ “V-”. В этом сокращении буква “V” обозначает напряжение, а символ “-” – постоянное.

Также, чтобы не перепутать сектор постоянного напряжения с переменным, запомните следующее: диапазон значений сектора постоянного напряжения шире, чем диапазон переменного.

Для измерения постоянного напряжения необходимо выставить регулятор на нужное значение в секторе “V-”.

Внимание! Если в процессе измерения вы перепутали полюса, то на дисплее отобразится то же самое значение, но со знаком “-”. В этом нет ничего страшного.

Обозначение переменного напряжения

Переменное напряжение также измеряется в Вольтах. Аббревиатура “ACV”, либо, как в предыдущем случае, сокращение “V~” – обозначение на мультиметре, расшифровка – “v” – напряжение, знак “~” — переменное.

Для электрика этот параметр является основной задачей, поскольку в розетках, выключателях и т.д. всегда используется переменное напряжение. Наши сети работают на 220 Вольт, а на мультиметре присутствуют значения 700 В (750В) и 200 В.

Один знакомый как-то раз спросил меня, для чего на мультиметре имеется значение в 200 Вольт, если в сети используется переменное напряжение 220, а переменка в 200 Вольт и ниже вообще не используется. Так вот, примите к сведению: практически вся Америка использует стандарт 110 Вольт переменного напряжения.

При замере переменного напряжения полярность не важна. То есть при измерении напряжения в розетке без разницы, в какой разъем розетки вы воткнете красный и черный щуп.

Как обозначается постоянный ток на мультиметре

Сила тока измеряется в Амперах в честь французского физика Анри Ампера. На мультиметре сектор измерения постоянного тока обозначается как DCA, либо просто DC. Регулятор, как и в предыдущих случаях, выставляется на нужное для измерения значение в секторе DC.

Не забывайте о том, что для измерения силы тока прибор подключается последовательно. Что это значит? Для измерения силы тока мы разрываем цепь.

Например, нам нужно замерить силу тока в фазном проводе. Нельзя просто взять и прикоснуться в двух местах щупами к проводу. Должен быть разрыв провода (или цепи), именно в этот разрыв мы подключаем прибор.

Как обозначается переменный ток на мультиметре

Не каждый тестер способен измерить силу переменного тока, но на некоторых моделях такая функция присутствует. На вопрос “как обозначается переменный ток на мультиметре” ответим: аналогично обозначению переменного напряжения, сектор переменного тока обозначается как «A~».

Вообще, мультиметр плохо подходит для измерения переменного тока. Лучше для этой цели использовать токоизмерительные клещи.

Что такое сектор hFE?

Некоторые владельцы мультиметров могут увидеть у себя на приборе сектор hFE, а в придачу к нему – два гнезда по четыре разъема в каждом. Этот сектор отвечает за проверку транзисторов (измерение значения коэффициента передачи тока). Гнезда подписаны “NPN” и “PNP”, а разъемы – буквами “E”, “B”, “C”.

Существует два типа транзисторов: транзистор типа “PNP-переход”, транзистор типа “NPN-переход”. Буквы “E”, “B”, “C” обозначают “эмиттер”, “база”, “коллектор” соответственно.

Чтобы проверить транзистор, выставьте регулятор на сектор hFE, посмотрите распиновку его ножек, тип транзистора, потом вставьте сам транзистор в нужный разъем. Если ваш транзистор неисправен, то прибор покажет значение “0”. Конечно, многих начинающих электриков пугает аббревиатура hFE, но для этого и нужна расшифровка обозначений на мультиметре, чтобы все непонятное стало понятным.

Тест диодов

Выше упоминалось, что практически в каждом мультиметре есть специальный светодиод и зуммер. Кроме этого, на шкале измерений должен быть сектор с нарисованным диодом. Это все необходимо для проверки диодов на работоспособность, а также проверки целостности цепей и всего прочего, сопротивлением не больше 50 Ом.

Чтобы проверить диод, нужно вспомнить о его свойствах. Диод пропускает ток только в одну сторону. Выставляем регулятор на значок диода и начинаем проверять, меняя полюса. Исправный диод в одном положении на дисплее выдаст значение 1, при этом светодиод загорится, а зуммер запищит. При смене полюсов – мультиметр покажет значение диода, например, 436 милливольт. Неисправный диод – будет прозваниваться в обе стороны.

Это лишь поверхностные принципы работы диода, но для проверки исправности диода мультиметром этого достаточно.

Проверка емкости конденсаторов

Чтобы измерить емкость конденсатора необходимо установить переключатель в диапазон F (Фарад). Для проверки ёмкости конденсатора мультиметр должен иметь эту функцию. Чтобы произвести измерение, используют гнёзда -CX+. «-» и «+» означают полярность подключения.

Диапазон измерения емкости в данном мультиметре варьируется от 200 микрофарад до 20 наноФарад.

Что означает kHz?

Этот параметр присутствует не на всех приборах. “Hz” – единица измерения частоты (Герц). С помощью данного сектора можно измерить частоту сигнала.

Для чего нужна кнопка hold

Такая кнопка тоже присутствует не на всех приборах, полное ее название – “Data hold”. Она служит для того, чтобы зафиксировать полученные данные на дисплее. Нужное значение будет отображаться ровно до повторного нажатия этой кнопки. Кто-то считает ее бесполезной, кто-то периодически ее использует.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

 

Как пользоваться мультиметром

Не знаете, что такое мультиметр и что с ним можно делать? Тогда вы попали в нужное место! Ниже представлен обзор того, что такое мультиметры и для чего они нужны.Чтобы узнать, как использовать мультиметр, найти идеи использования мультиметра или найти помеченные фотографии различных моделей мультиметра, щелкните другие вкладки (выше) в этом руководстве по мультиметру.

В этом разделе даны ответы на следующие вопросы:

Что такое мультиметр?

Мультиметр — это удобный инструмент, который вы используете для измерения электричества, точно так же, как вы использовали бы линейку для измерения расстояния, секундомер для измерения времени или весы для измерения веса. Плюс мультиметра в том, что он, в отличие от линейки, часов или весов, может измерять различных вещей, — что-то вроде мультитула.У большинства мультиметров есть ручка на передней панели, которая позволяет вам выбирать, что вы хотите измерить. Ниже представлен типичный мультиметр. Есть много разных моделей мультиметров; Посетите галерею мультиметра, чтобы увидеть фотографии дополнительных моделей с этикетками.


Рисунок 1. Типовой мультиметр.

Что могут измерять мультиметры?

Практически все мультиметры могут измерять напряжение , ток и сопротивление .См. Следующий раздел для объяснения того, что означают эти термины, и щелкните вкладку «Использование мультиметра» выше, чтобы получить инструкции по выполнению этих измерений.

У некоторых мультиметров есть проверка целостности , что приводит к громкому звуковому сигналу, если два устройства электрически соединены. Это полезно, если, например, вы собираете схему и соединяете провода или пайки; звуковой сигнал означает, что все подключено и ничего не отсоединилось. Вы также можете использовать его, чтобы убедиться, что две вещи , а не подключены, чтобы предотвратить короткое замыкание.

Некоторые мультиметры также имеют функцию проверки диодов . Диод похож на односторонний клапан, который пропускает электричество только в одном направлении. Точная функция проверки диодов может варьироваться от мультиметра к мультиметру. Если вы работаете с диодом и не можете сказать, в каком направлении он проходит в цепи, или если вы не уверены, что диод работает должным образом, функция проверки может оказаться весьма удобной. Если в вашем мультиметре есть функция проверки диодов, прочтите руководство, чтобы узнать, как именно она работает.

Усовершенствованные мультиметры

могут иметь другие функции, такие как возможность измерения и идентификации других электрических компонентов, таких как транзисторы или конденсаторы. Поскольку не все мультиметры имеют эти функции, мы не будем рассматривать их в этом руководстве. Вы можете прочитать руководство к мультиметру, если вам нужно использовать эти функции.

Что такое напряжение, сила тока и сопротивление?

Если вы раньше не слышали об этих терминах, мы дадим здесь очень простое вводное объяснение.Вы можете узнать больше о напряжении, токе и сопротивлении на вкладке «Ссылки» выше. Помните, что напряжение, ток и сопротивление являются измеряемыми величинами, каждая из которых измеряется в блоке , который имеет символ , точно так же, как расстояние — это величина, которую можно измерить в метрах, а символ для метров — м .

  • Напряжение — это то, насколько сильно электричество «проталкивается» через цепь. Более высокое напряжение означает, что электричество подается сильнее.Напряжение измеряется в вольт . Обозначение для вольт — В .
  • Ток — это количество электричества, протекающего по цепи. Более высокий ток означает, что протекает больше электричества. Сила тока измеряется в ампер . Обозначение для ампер — A .
  • Сопротивление — это то, насколько трудно электричеству проходить через что-то. Более высокое сопротивление означает, что электричеству труднее течь.Сопротивление измеряется в Ом . Символ омов — Ом (заглавная греческая буква омега).

Техническая нота

Символ, который используется для единицы , обычно отличается от символа переменной в уравнении. Например, напряжение, ток и сопротивление связаны законом Ома (см. Вкладку «Ссылки», чтобы узнать больше о законе Ома):

[Пожалуйста, включите JavaScript для просмотра уравнения]

, который обычно выражается как

[Пожалуйста, включите JavaScript, чтобы просмотреть уравнение]

В этом уравнении В, представляет напряжение, I представляет ток, а R представляет сопротивление.Обращаясь к единицам измерения вольт, ампер и ом, мы используем символы V , A и Ω , как объяснено выше. Таким образом, «V» используется как для напряжения, так и для вольт, но ток и сопротивление имеют разные символы для их переменных и единиц. Не волнуйтесь, если это сбивает с толку; эта таблица поможет вам отслеживать:

Переменная Символ Блок Символ
Напряжение В Вольт В
Текущий I Ампер A
Сопротивление R Ом Ом

Это очень распространено в физике.Например, во многих уравнениях «положение» и «расстояние» представлены переменными «x» или «d», но они измеряются в единицах измерения, а символ для метров — м .

Простая аналогия, чтобы лучше понять напряжение, ток и сопротивление: представьте, что вода течет по трубе. Количество воды, протекающей по трубе, похоже на ток. Чем больше поток воды, тем больше ток. Величина давления, заставляющая воду течь, подобна напряжению; более высокое давление «толкает» воду сильнее, увеличивая поток.Сопротивление похоже на препятствие в трубе. Например, труба, забитая мусором или предметами, будет труднее пропускать воду и будет иметь более высокое сопротивление, чем труба без препятствий.

Что такое постоянный ток (DC) и переменный ток (AC)?

Постоянный ток (сокращенно DC) — это ток, который всегда течет в одном направлении. Постоянный ток обеспечивается повседневными батареями, такими как батарейки типа AA и AAA, или батареей вашего мобильного телефона.Большинство ваших проектов Science Buddies, вероятно, связаны с измерением постоянного тока. Различные мультиметры имеют разные символы для измерения постоянного тока (и соответствующего напряжения), обычно «DCA» и «DCV» или «A» и «V» с прямой полосой над или рядом с ними. Видеть «Что означают все символы на передней панели мультиметра?» для получения дополнительной информации о сокращениях и символах на мультиметрах.

Переменный ток (сокращенно AC) — это ток, который меняет направление, обычно много раз за одну секунду.Настенные розетки в вашем доме обеспечивают переменный ток, который переключает направление 60 раз в секунду (в США, но 50 раз в секунду в других странах). (Предупреждение : Не используйте мультиметр для измерения розеток в вашем доме. Это очень опасно.) Если вам нужно измерить переменный ток в цепи, разные мультиметры имеют разные символы для его измерения (и соответствующего напряжения). , обычно «ACA» и «ACV» или «A» и «V» с волнистой линией (~) рядом или над ними.

Что такое последовательные и параллельные цепи?

Когда вы проводите измерения с помощью мультиметра, вам необходимо решить, подключать ли его к вашей цепи: серии или параллельно , в зависимости от того, что вы хотите измерить. В последовательной схеме каждый элемент схемы имеет одинаковый ток . Итак, чтобы измерить ток в цепи, вы должны подключить мультиметр последовательно. В параллельной цепи каждое измерение цепи имеет одинаковое напряжение .Итак, чтобы измерить напряжение в цепи, вы должны подключить мультиметр параллельно. Чтобы узнать, как проводить эти измерения, см. Вкладку «Использование мультиметра».

На рисунке 2 показаны основные последовательные и параллельные схемы без подключенного мультиметра. Чтобы узнать больше о напряжении, токе и сопротивлении в последовательных и параллельных цепях, перейдите на вкладку «Ссылки».


Рисунок 2. В базовой последовательной цепи (слева) каждый элемент имеет одинаковый ток (но не обязательно одинаковое напряжение; это произойдет только в том случае, если их сопротивления одинаковы).В базовой параллельной схеме (справа) каждый элемент имеет одинаковое напряжение (но не обязательно одинаковый ток; это произойдет только в том случае, если их сопротивления одинаковы).

Что означают все символы на передней панели мультиметра?

Вас могут смутить все символы на передней панели мультиметра, особенно если вы на самом деле нигде не видите таких слов, как «напряжение», «ток» и «сопротивление». Не волнуйтесь! Помните из «Что такое напряжение, ток и сопротивление?» В разделе, где напряжение, ток и сопротивление указаны в вольтах, амперах и омах, которые представлены соответственно V, A и Ω.Большинство мультиметров используют эти сокращения вместо написания слов. На вашем мультиметре могут быть и другие символы, о которых мы поговорим ниже.

Большинство мультиметров также используют метрический префикс . Метрические префиксы работают с единицами электричества так же, как и с другими единицами измерения, с которыми вы, возможно, более знакомы, такими как расстояние и масса. Например, вы, вероятно, знаете, что метр, — это единица расстояния, километр, — одна тысяча метров, а миллиметр, — одна тысячная метра.То же самое касается миллиграммов, граммов и килограммов массы. Вот общие метрические префиксы, которые вы найдете на большинстве мультиметров (полный список см. На вкладке «Ссылки»):

  • µ (микро): одна миллионная
  • м (милли): одна тысячная
  • k (килограммы): одна тысяча
  • M : (мега): один миллион

Эти метрические префиксы используются одинаково для вольт, ампер и ом.Например, 200 кОм произносится как «двести килоом» и означает двести тысяч (200 000) Ом.

Некоторые мультиметры имеют «автоматический выбор диапазона», тогда как другие требуют, чтобы вы вручную выбирали диапазон для измерения. Если вам нужно вручную выбрать диапазон, вы всегда должны выбирать значение, которое на немного выше , чем значение, которое вы ожидаете измерить. Подумайте об этом как о линейке и мериле. Если вам нужно измерить что-то длиной 18 дюймов, 12-дюймовая линейка будет слишком короткой; вам нужно использовать мерку.То же самое и с мультиметром. Предположим, вы собираетесь измерить напряжение батареи AA, которое должно быть 1,5 В. Мультиметр слева на рисунке 3 имеет варианты для 200 мВ, 2 В, 20 В, 200 В и 600 В (для постоянного тока). 200 мВ слишком мало, поэтому вы должны выбрать следующее наибольшее значение, которое работает: 2 В. Все остальные параметры излишне велики и могут привести к потере точности (это было бы похоже на использование 50-футовой рулетки, у которой есть только отметки на каждой ступне, а не дюймовые отметки; это не так точно, как использование мерка с разметкой в ​​1 дюйм).


Рис. 3. Мультиметр слева настраивается вручную, с множеством различных опций (обозначенных метрическими префиксами) для измерения различных величин напряжения, тока и сопротивления. Мультиметр справа имеет автоматический выбор диапазона (обратите внимание, что у него меньше вариантов для ручки выбора), что означает, что он автоматически выберет соответствующий диапазон.

Что означают другие символы на мультиметре?

Вы могли заметить некоторые другие символы, помимо V, A, Ω и метрических префиксов, на передней панели мультиметра.Мы объясним некоторые из этих символов здесь, но помните, что все мультиметры разные, поэтому мы не можем охватить все возможные варианты в этом руководстве. Обратитесь к руководству по мультиметру, если вы все еще не можете понять, что означает один из символов. Вы также можете просмотреть нашу галерею мультиметров, чтобы увидеть маркированные изображения различных мультиметров.

Символ мультиметра Образцы
~ (волнистая линия): вы можете увидеть волнистую линию рядом с буквами V или A или над ними на передней панели мультиметра, помимо метрических префиксов.Это означает переменного тока (AC). Обратите внимание, что напряжение в цепи переменного тока обычно называют «напряжением переменного тока» (хотя звучит странно называть «напряжение переменного тока»). Эти настройки используются при измерении цепи переменного тока (или напряжения).
, — — — (сплошная или пунктирная линия): как и волнистая линия, вы можете увидеть это рядом или над V или A. Прямые линии обозначают постоянный ток .Вы используете эти настройки, когда измеряете цепь с постоянным током (например, большинство цепей, которые питаются от батареи).
DCV , ACV , ACA , DCA , VAC или VDC : Иногда вместо волнистых или пунктирных линий (или в дополнение к ним) мультиметры используют сокращения AC и DC, которые обозначают переменный ток и постоянный ток соответственно. Обратите внимание, что некоторые мультиметры могут иметь значения AC и DC после V и A, а не раньше.
Проверка целостности (серия параллельных дуг): это настройка, используемая для проверки того, электрически ли соединены два объекта. Мультиметр издаст звуковой сигнал, если между двумя наконечниками щупов есть токопроводящий путь (то есть, если сопротивление очень близко к нулю), и не будет издавать никаких шумов, если токопроводящий путь отсутствует. Обратите внимание, что иногда проверка непрерывности может быть объединена с другими функциями в одной настройке.
Проверка диода (треугольник с пересеченными линиями): эта функция используется для проверки диода , который похож на односторонний клапан для подачи электричества; он позволяет току течь только в одном направлении.Точная функция проверки диодов может отличаться на разных мультиметрах. Изучите руководство к мультиметру, чтобы узнать, как работает функция проверки диодов в вашей модели.
Таблица 1. Некоторые примеры символов различных мультиметров. Посмотрите галерею, чтобы увидеть больше примеров.

Какие бывают красный и черный провода (щупы)? Куда их подключить?

Ваш мультиметр, вероятно, поставляется с красными и черными проводами, которые выглядят примерно так, как на рисунке 4.Эти провода называются зондами , или , проводами (произносится как «светодиоды»). Один конец провода называется банановым домкратом ; этот конец подключается к вашему мультиметру ( Примечание: некоторые мультиметры имеют -контактные разъемы , которые меньше, чем банановые разъемы; если вам нужно купить запасные щупы, обязательно проверьте руководство вашего мультиметра, чтобы узнать, какой тип вам нужен). Другой конец называется наконечником зонда ; это конец, который вы используете для проверки своей схемы.Следуя стандартным правилам электроники, красный датчик используется для положительного полюса, а черный — для отрицательного.


Рисунок 4. Типичная пара щупов мультиметра.

Хотя они поставляются с двумя датчиками, многие мультиметры имеют на больше, чем , чем два места для подключения датчиков, что может вызвать некоторую путаницу. То, где именно вы подключаете щупы, будет зависеть от того, что вы хотите измерить (напряжение, ток, сопротивление, проверка целостности или проверка диодов) и типа мультиметра, который у вас есть.Мы привели один пример на изображениях ниже — и вы можете проверить нашу галерею, чтобы найти мультиметр, похожий на ваш — но, поскольку все мультиметры немного отличаются, вам может потребоваться обратиться к руководству для вашего мультиметра.

Большинство мультиметров (кроме очень недорогих) имеют предохранители для защиты от слишком большого тока. Предохранители «перегорают», если через них протекает слишком большой ток; это останавливает электрический ток и предотвращает повреждение остальной части мультиметра. Некоторые мультиметры имеют различных предохранителей , в зависимости от того, будете ли вы измерять высокий или низкий ток, который определяет, куда вы подключаете щупы.Например, мультиметр, показанный на рисунке 5, имеет один предохранитель на 10 ампер (10 А) и один предохранитель на 200 миллиампер (200 мА).

На левом изображении показан мультиметр без датчиков. Центральное изображение представляет собой мультиметр, у которого черный датчик вставлен в центральный порт, а красный датчик вставлен в крайний правый порт. Эта установка рассчитана на измерение тока до 200 мА. На правом изображении показан мультиметр, в центральный порт которого вставлен черный датчик, а в крайний левый порт — красный датчик.Эта установка рассчитана на измерение тока до 10 ампер.


Рисунок 5. Этот мультиметр имеет три разных порта, обозначенных 10A, COM (что означает «общий») и mAVΩ. Предохранитель между mAVΩ и COM рассчитан на 200 мА, что является относительно «низким» током. Итак, чтобы измерить небольшие токи — или напряжение, или сопротивление (при измерении напряжения или сопротивления через мультиметр проходит очень небольшой ток) — вы подключаете черный щуп к COM, а красный щуп — к порту, обозначенному mAVΩ.Предохранитель между 10A и COM рассчитан на 10A, поэтому для измерения высоких значений тока вы подключаете черный щуп к COM, а красный щуп — к порту, обозначенному 10A.

У вас есть мультиметр, но вы не знаете, как им пользоваться, или получаете неожиданные показания? Если да, то приведенные ниже разделы помогут вам разобраться, что делать. Если есть слова или понятия, которые вы не понимаете, или символы на мультиметре, которые вас озадачивают, вернитесь на вкладку «Обзор мультиметра». Если вы ищете идеи использования мультиметра или фотографии с этикетками различных моделей мультиметра, посетите другие вкладки в этом руководстве по мультиметру.

В этом разделе даны ответы на следующие вопросы:

Как измерить напряжение?

Чтобы измерить напряжение, выполните следующие действия:

  1. Подключите черный и красный щупы к соответствующим гнездам (также называемым «портами») на мультиметре. Для большинства мультиметров черный щуп должен быть подключен к разъему, помеченному «COM», а красный щуп — к разъему, помеченному буквой «V» (на нем также могут быть другие символы).Не забудьте заглянуть в нашу галерею изображений, на вкладку «Обзор мультиметра» или в руководство к мультиметру, если у вас возникли проблемы с определением правильного гнезда.
  2. Выберите соответствующую настройку напряжения на шкале мультиметра. Помните, что в большинстве схем с батарейным питанием будет постоянный ток, но выбранная вами настройка будет зависеть от научного проекта, который вы выполняете. Если вы работаете с мультиметром с ручным выбором диапазона, вы можете оценить необходимый диапазон на основе батареи (или батареек), питающей вашу схему.Например, если ваша схема питается от одной батареи 9 В, вероятно, нет смысла выбирать настройку на 200 В, а 2 В будет слишком низким. Если доступно, вы можете выбрать 20 В.
  3. Прикоснитесь наконечниками пробников к вашей цепи в параллельно с элементом, на котором вы хотите измерить напряжение (см. Вкладку «Обзор мультиметра» для объяснения последовательной и параллельной цепей). Например, на рисунке 6 показано, как измерить падение напряжения на лампочке, питаемой от батареи.Обязательно используйте красный щуп на стороне, подключенной к положительной клемме аккумулятора, и черный щуп на стороне, подключенной к отрицательной клемме аккумулятора (ничто не пострадает, если вы перевернете его задом наперед, но ваше показание напряжения будет отрицательным).

Рисунок 6. Измерение напряжения на лампочке путем параллельного подключения щупов мультиметра. Текущий поток представлен желтыми стрелками. В режиме измерения напряжения сопротивление мультиметра высокое — , поэтому почти весь ток проходит через лампочку, и мультиметр не оказывает большого влияния на схему.Обратите внимание, как ручка была установлена ​​для измерения постоянного напряжения (DCV), а красный зонд вставлен в правильный порт для измерения напряжения (обозначенный «VΩ», потому что он также используется для измерения сопротивления).
  1. Если ваш мультиметр не поддерживает автоматический выбор диапазона, возможно, вам придется отрегулировать диапазон. Если на экране вашего мультиметра отображается просто «0», возможно, выбранный вами диапазон слишком велик. Если на экране отображается «OVER», «OL» или «1» (это разные способы выражения «перегрузка»), то выбранный вами диапазон слишком мал.В этом случае увеличьте или уменьшите диапазон, если необходимо. Помните, что вам может потребоваться обратиться к руководству по мультиметру для получения более подробной информации о вашей модели.

Как измерить ток?

Чтобы измерить ток, выполните следующие действия:

  1. Вставьте красный и черный щупы в соответствующие гнезда (также называемые «портами») на мультиметре. Для большинства мультиметров черный щуп следует подключать к разъему с надписью «COM». Для измерения тока может быть несколько розеток с такими метками, как «10A» и «mA». Примечание: Всегда безопаснее начинать с розетки, которая может измерять больший ток. Подключите красную розетку к сильноточному порту.
  2. Выберите соответствующую настройку тока на мультиметре. Не забудьте проверить, является ли ваша цепь постоянным или переменным током, и что почти все цепи с батарейным питанием будут постоянным током. Если ваш измеритель не имеет автоматического выбора диапазона, вам может потребоваться угадать масштаб, который нужно использовать (вы можете изменить это позже, если не получите точных показаний).
  3. Подключите щупы мультиметра серии к измеряемому току (см. Вкладку «Обзор мультиметра» для объяснения последовательной и параллельной цепей). Например, на рисунке 7 показано, как измерить ток через лампочку, которая питается от батареи. Обязательно поднесите красный щуп к положительной стороне батареи, иначе текущее показание будет отрицательным.

Для измерения тока через лампочку мультиметр становится частью цепи и передает электричество от батареи к лампочке.Положительный щуп мультиметра (красный) подключается к положительному полюсу батареи, а отрицательный щуп мультиметра (черный) подключается к одному проводу лампочки. Затем свободный провод лампочки подключается к отрицательной стороне батареи с помощью провода. Ток будет течь от батареи к мультиметру, а затем в лампочку.


Рисунок 7. Измерение тока через лампочку путем последовательного подключения мультиметра. Текущий поток представлен желтыми стрелками.В режиме измерения тока сопротивление мультиметра низкое — , поэтому ток может легко протекать через мультиметр, не влияя на остальную цепь. Обратите внимание, как ручка была установлена ​​для измерения постоянного тока (DCA), а красный зонд вставлен в порт для измерения тока, помеченный буквой «A».
  1. Если ваш мультиметр не поддерживает автоматический выбор диапазона, возможно, вам придется отрегулировать диапазон. Если на экране вашего мультиметра отображается просто «0», возможно, выбранный вами диапазон слишком велик.Если на экране отображается «OVER», «OL» или «1» (это разные способы выражения «перегрузка»), то выбранный вами диапазон слишком мал. В этом случае увеличьте или уменьшите диапазон, если необходимо. Помните, что вам может потребоваться обратиться к руководству по мультиметру для получения более подробной информации о вашей модели.

Как измерить сопротивление?

Чтобы измерить сопротивление, выполните следующие действия:

  1. Подключите красный и черный щупы к соответствующим гнездам на мультиметре.Для большинства мультиметров черный щуп следует подключать к разъему с надписью «COM», а красный щуп — к разъему, помеченному символом «Ω».
  2. Выберите соответствующую настройку измерения сопротивления на шкале мультиметра. Если у вас есть оценка сопротивления, которое вы будете измерять (например, если вы измеряете резистор с известным значением), это поможет вам выбрать диапазон.
  3. Важно : Перед измерением сопротивления отключите питание вашей цепи.Если в вашей схеме есть выключатель питания, вы можете сделать это, выключив его. Если переключателя нет, можно вынуть батарейки. Если вы этого не сделаете, ваше чтение может быть неверным. Если ваша схема состоит из нескольких компонентов, вам может потребоваться удалить компонент, который вы хотите измерить, чтобы точно определить его сопротивление. Например, если в вашей схеме два параллельно подключенных резистора, вам придется удалить один резистор, чтобы измерить их сопротивления по отдельности.

    Подключите один из щупов мультиметра к каждой стороне объекта, сопротивление которого вы хотите измерить.Сопротивление всегда положительное и одинаково в обоих направлениях, поэтому не имеет значения, поменяете ли вы черный и красный щупы в этом случае (если вы не имеете дело с диодом, который действует как односторонний клапан для электричества, поэтому он имеет высокое сопротивление в одном направлении и низкое сопротивление в другом направлении). На рисунке 8 показано, как измерить сопротивление лампочки.


Рисунок 8. Измерение сопротивления лампочки мультиметром.Обратите внимание, как лампочка отключила от цепи. Мультиметр выдает небольшой собственный ток, который позволяет измерять сопротивление. Обратите внимание, как ручка была установлена ​​в положение «Ω» для измерения сопротивления, а красный зонд вставлен в соответствующий порт для измерения сопротивления (обозначенный «VΩ», поскольку он также используется для измерения напряжения).
  1. Если ваш мультиметр не поддерживает автоматический выбор диапазона, возможно, вам придется отрегулировать диапазон. Если на экране вашего мультиметра отображается просто «0», возможно, выбранный вами диапазон слишком велик.Если на экране отображается «OVER», «OL» или «1» (это разные способы выражения «перегрузка»), то выбранный вами диапазон слишком мал. В этом случае увеличьте или уменьшите диапазон, если необходимо. Помните, что вам может потребоваться обратиться к руководству по мультиметру для получения более подробной информации о вашей модели.

Как проверить непрерывность?

Чтобы выполнить проверку непрерывности (которая гарантирует наличие токопроводящего пути между двумя точками в вашей цепи), выполните следующие действия:

  1. Установите мультиметр на символ проверки целостности.Помните, что этот символ может не выглядеть одинаково на всех мультиметрах (а на некоторых мультиметрах его вообще нет), поэтому посмотрите вкладку «Обзор мультиметра» или нашу галерею изображений мультиметра, чтобы увидеть примеры.
  2. Вставьте датчики в соответствующие розетки. На большинстве мультиметров черный щуп должен входить в гнездо с надписью «COM», а красный щуп должен входить в то же гнездо, которое вы использовали бы для измерения напряжения или сопротивления (, а не тока), помеченное V и / или Ω.
  3. Важно : Отключите питание вашей цепи перед выполнением проверки целостности. Если в вашей схеме есть выключатель питания, вы можете сделать это, выключив его. Если переключателя нет, можно вынуть батарейки.

    Коснитесь щупами двух частей вашей цепи. Если две части схемы электрически соединены с очень небольшим сопротивлением между ними, ваш мультиметр должен издать звуковой сигнал. Если они не подключены, он не будет издавать шума и может отображать что-то на экране, например «OL», «OVER» или «1», что означает «перегрузка».«Самый простой способ проверить эту функцию с помощью мультиметра — это проверить ее с помощью одного куска проводящего материала (большинство металлов) и куска непроводящего материала, такого как дерево или пластик. См. Пример на рисунке 9.


Рисунок 9. Использование мультиметра для проверки целостности цепи. Если между наконечниками щупов образуется токопроводящий путь, мультиметр подаст звуковой сигнал. Если токопроводящий путь нарушен (возможно, из-за ослабленного провода в цепи или плохого паяного соединения), мультиметр не подаст звуковой сигнал.Обратите внимание на то, как ручка была установлена ​​на символ непрерывности, а красный зонд вставлен в порт VΩ (этот порт не всегда помечен символом целостности).

Как проверить диод?

Функция проверки диодов полезна, чтобы определить, в каком направлении проходит электричество через диод. Точная работа функции «проверка диодов» будет отличаться для разных мультиметров, а некоторые мультиметры вообще не имеют функции проверки диодов. Из-за такого разнообразия и из-за того, что эта функция не требуется для большинства проектов Science Buddies, мы не включали сюда указания.Если вам нужно проверить диод, обратитесь к руководству по эксплуатации вашего мультиметра.

Как мне узнать, какую шкалу выбрать для напряжения, тока или сопротивления, и как мне прочитать числа в разных шкалах?

Если ваш мультиметр не поддерживает автоматический выбор диапазона, может быть сложно определить, какой масштаб выбрать, особенно если вы не очень хорошо знакомы с метрическими префиксами. Вот два практических правила, которым вы можете следовать при измерении напряжения, тока и сопротивления:

  • Напряжение : Многие мультиметры с ручным выбором диапазона имеют настройки 200 мВ, 2 В и 20 В.Очень маловероятно, что цепи с батарейным питанием превысят 20 В (например, две батареи 9 В, соединенные последовательно, обеспечат максимум 18 В). Одна батарея AA или AAA обеспечивает напряжение 1,5 В. Две батареи AA или AAA, объединенные в батарейный блок, обеспечат 3 В, четыре — 6 В, а восемь — 12 В. Итак, если вы знаете, какой тип батарей (и сколько) питает вашу схему, вы можете выбрать начальный диапазон для измерения напряжения. Помните, что вы хотите выбрать , следующее по величине значение напряжения (точно так же, как при измерении расстояния; вам понадобится мерка, а не 12-дюймовая линейка, чтобы измерить что-то, что имеет длину 18 дюймов).Итак, для схемы, питаемой от одной батареи AA (1,5 В), вы должны выбрать настройку 2 В. Для схемы, питающейся от батареи 9 В, вы должны выбрать 20 В.
  • Ток : при измерении тока всегда рекомендуется начинать с максимально возможной уставкой тока (и соответствующей сильноточной розеткой, если ваш мультиметр имеет несколько розеток для измерения тока), чтобы избежать перегорает предохранитель. Если ток, который вы измеряете, достаточно низкий, чтобы безопасно использовать ваши слаботочные настройки и розетку, вы можете снять новое показание, чтобы получить более точное измерение.Например, предположим, что у вашего мультиметра есть розетка с предохранителем на 10 А и розетка с предохранителем на 200 мА. Используя розетку на 10 А, вы измеряете ток 150 мА. Тогда было бы безопасно провести повторные измерения с розеткой 200 мА (и более низким значением на ручке).
  • Сопротивление : Если вы измеряете объект с известным сопротивлением, вы можете использовать это значение, чтобы выбрать соответствующую настройку сопротивления. Как и в случае с током и напряжением, вам нужно выбрать следующее по величине значение сопротивления на вашей шкале.Например, для измерения резистора 4,7 кОм вы должны выбрать 20 кОм. Если вы измеряете объект с неизвестным сопротивлением, вам просто нужно будет догадываться, но сложно повредить мультиметр или объект, который вы проверяете при измерении сопротивления, так что это не большая проблема.

Одно и то же значение может отображаться по-разному при измерении с другой шкалой, выбранной на шкале мультиметра. Например, давайте измеряем напряжение постоянного тока от батареи AA, которое, как мы ожидаем, будет равно 1.5 В — с помощью мультиметра с настройками на 200 мВ, 2 В, 20 В, 200 В и 600 В. При замере батареи с каждой настройкой получаем такие показания:

Настройка шкалы мультиметра Чтение экрана
200 мВ 1.
1,607
20 В 1,60
200 В 1.6
600 В 001
Таблица 2. Показания при измерении напряжения одной батареи AA с использованием различных настроек шкалы мультиметра с ручным регулированием дальности.

«1». Это способ мультиметра сказать, что он «перегружен» — значение 1,6 В выходит за пределы выбранного диапазона 200 мВ. В этом случае другие мультиметры могут отображать «OVER» или «OL». Обратите внимание, что по мере увеличения диапазона точность уменьшается на .При настройке 2 В показание отображается с 3 десятичными знаками. При настройке 200 В показание отображает только один десятичный разряд.

Вам также может потребоваться учитывать метрические префиксы при считывании числа с экрана мультиметра. Например, предположим, что ваш экран показывает «6.1», когда вы измеряете ток с настройкой «10A». Это означает, что ваше текущее измерение составляет 6,1 ампер. Однако, если на экране отображается «6,1», когда текущая шкала установлена ​​на 20 мА, это означает, что вы измеряете 6.1 милли ампер.

Мой мультиметр не работает! Что случилось?

Не паникуйте! Есть несколько распространенных ошибок, которые легко исправить.

  • Убедитесь, что в мультиметре свежие батарейки.
  • Некоторые мультиметры имеют функцию автоматического энергосбережения и отключаются после определенного периода бездействия. В этом случае поверните шкалу мультиметра в положение «выключено», а затем снова включите его.
  • Убедитесь, что ваши датчики подключены к правильным портам для того, что вы хотите измерить (см. «Как выполнить измерения… «разделы выше).
  • Убедитесь, что вы подключаете свои щупы к цепи правильным образом (последовательно или параллельно) в соответствии с тем, что вы хотите измерить (см. Разделы «Как измерить …» выше).
  • Убедитесь, что на шкале мультиметра выбрана правильная настройка того, что вы хотите измерить; например, если вам нужно измерить напряжение постоянного тока, убедитесь, что на шкале не выбран ток, сопротивление или напряжение переменного тока.
  • Если ваш мультиметр не поддерживает автоматический выбор диапазона, вам может потребоваться вручную настроить диапазон.Если на экране мультиметра всегда отображается «0», это может означать, что выбранный вами диапазон слишком велик. Если отображается «OL», «OVER» или «1», возможно, выбранный вами диапазон слишком мал. Каждый мультиметр отличается, поэтому вам может потребоваться прочитать руководство к мультиметру, чтобы узнать, что означает дисплей на экране. Затем вы можете соответствующим образом отрегулировать диапазон.
    • Например, если вы пытаетесь измерить напряжение батареи 9 В, но у вашего мультиметра установлено значение 2 постоянного тока, этот диапазон слишком мал, и вам придется увеличить его до более высокого значения, например 20 постоянного тока.

Все еще не работает? Возможно, в мультиметре перегорел предохранитель. См. Предложения в следующем разделе.

Как узнать, нужно ли заменить предохранитель?

Некоторые мультиметры имеют предохранитель (или несколько предохранителей), который «перегорает», когда через них протекает слишком большой ток, что затем предотвращает прохождение большего количества электричества и, надеюсь, спасает остальную часть мультиметра от повреждений. В некоторых мультиметрах эти предохранители можно заменить, если они перегорели, но инструкции по их замене (и выяснение, нужно ли их вообще заменять) будут отличаться для разных моделей мультиметра.

Вам, вероятно, потребуется открыть мультиметр, чтобы получить доступ к предохранителям ( Важно : всегда отключайте щупы перед тем, как сделать это). У некоторых мультиметров есть крышки, которые отрываются или соскальзывают, а у некоторых есть винты, которые необходимо сначала удалить. Предохранители обычно выглядят как маленькие стеклянные цилиндры с металлическими крышками на конце и тонкой проволокой, идущей посередине:


Рисунок 10. Типовой предохранитель.

Если предохранитель перегорел, он мог заметно почернеть или обгореть.Проволока внутри могла полностью сгореть и больше не видна.

Как заменить предохранитель?

Важно : Всегда отключайте провода от мультиметра, прежде чем открывать крышку для замены предохранителя.

Инструкции по замене предохранителя различаются в зависимости от модели мультиметра, поэтому вам необходимо ознакомиться с инструкциями в руководстве к мультиметру. В этом руководстве от SparkFun представлены инструкции по замене предохранителя на мультиметре их марки, но помните, что эти указания могут не относиться к вашей модели.Обратите внимание, что в некоторых мультиметрах, особенно в недорогих, вы не сможете заменить предохранитель.

Символы электрического тока

Обозначения электрических токов

Символ Описание Символ Описание
Положительная полярность
+ Информация
Отрицательная полярность
Постоянный ток, DC
+ Информация
Постоянный ток, DC
Постоянный ток, DC Переменный ток, переменный ток
Низкочастотный переменный ток
+ Информация
Смешанный ток
Выпрямленный ток
+ Информация
Смешанный ток
Выпрямленный ток
Универсальное оборудование
Различно работает как с постоянным, так и с переменным током
DC / AC
Средняя частота
Высокая частота
+ Информация
Преобразование постоянного тока в постоянный
Преобразователь постоянного / постоянного тока
+ информация
Преобразователь постоянного тока в переменный
Преобразователь постоянного тока в переменный ток
Преобразователь / ондулятор
+ Информация
Преобразователь переменного / переменного тока
AC / AC
+ информация
Преобразователь переменного / постоянного тока
Выпрямитель переменного / постоянного тока

+ информация
Переменный ток — AC
e.грамм. частота: 50 Гц
+ информация
нейтральный Трехфазный ток частотой 50 Гц
+ Информация
Фазы R / S / T или L1 / L2 / L3
+ информация
Условные обозначения преобразователей мощности
Загрузить символы

Символы мультиметра

Когда вы имеете дело с электрическими цепями и приборами, мультиметр просто необходим.Однако не многие люди легко знакомятся с мультиметром. Это потому, что слишком много символов и кнопок для работы. Иногда это может сбивать с толку, и это помешает вам правильно использовать устройство и получить точные результаты. В этой статье мы собираемся объяснить все символы мультиметра, чтобы вы могли правильно управлять устройством.

Что такое мультиметр?

Мультиметр — это электронное устройство для измерения всех различных параметров электричества.Электрик использует мультиметр для проверки различных аспектов электрических цепей и приборов. Различные аспекты включают измерение тока в амперах, напряжения в вольтах и ​​сопротивления в омах.

На рынке доступны мультиметры двух типов; аналоговый и цифровой мультиметр. Цифровые мультиметры более популярны, так как они более точны в показаниях. В основном мультиметр состоит из четырех компонентов.

  1. Экран дисплея , на котором вы видите результат измерения.
  2. Кнопки для управления устройством.
  3. Поворотный переключатель для выбора единицы измерения.
  4. Входные порты для подключения измерительных проводов, которые проводят тестирование.
  5. Какие единицы у мультиметра?

Если вы впервые пользуетесь мультиметром, вы обязательно испугаетесь. Несмотря на то, что он измеряет ток, напряжение и сопротивление, вы нигде не найдете ключевых слов. Эти ключевые слова представлены в единицах измерения: А (ампер), В (вольт), Ом (Ом) соответственно.В этих единицах также есть подблоки для более эффективного представления измерений. Подразделения следующие —

  • К на килограмм, что означает 1000 раз.
  • M для мега или миллиона, что означает 10 000 000 раз.
  • м за милли, что означает 1/1000.
  • (µ) для микро, что означает 1 / миллион.

Как читать символы на мультиметре?

Стандартный мультиметр имеет следующие символы.

1.Кнопка удержания

После того, как вы сняли показания, вы нажимаете кнопку удержания, когда вам нужно сохранить / заблокировать измерение на экране. Если вы не нажмете кнопку, результат измерения исчезнет с экрана, как только вы отсоедините измерительный провод от объекта, который вы проверяете. Это полезно, если вы хотите в течение некоторого времени видеть результат измерения на экране в соответствии с вашими требованиями.

2. Кнопка Мин / Макс

Эта кнопка сохраняет минимальное и максимальное значение измерения во время использования мультиметра.Стандартный мультиметр подаст звуковой сигнал, как только текущее измерение превысит сохраненное минимальное / максимальное значение. В некоторых цифровых мультиметрах на экране отображается минимальное / максимальное значение вместе с текущим измерением.

3. Кнопка диапазона

Мультиметр имеет разные диапазоны измерения. С помощью этой кнопки вы можете вносить изменения из текущего диапазона, чтобы предварительно установить другие в зависимости от доступности. От объектов, которые вы тестируете, зависит, нужен вам узкий или широкий круг.

4. Функциональная кнопка

Вы нажимаете эту кнопку там, где вам нужно активировать второстепенные функции символов набора. Вы увидите эти функции символов вокруг циферблата, выделенные желтым текстом. На самом деле желтая кнопка на мультиметре — это функциональная кнопка, и на ней не всегда может быть надпись «функция».

5. Напряжение переменного тока

Обозначается заглавной буквой V с волнистой линией вверху, символ обозначает напряжение.Вы должны переместить циферблат к этому символу, если хотите измерить напряжение объекта. Его следует использовать при измерении переменного напряжения.

СДВИГ: Герц

Рядом с символом V вы увидите символ Гц желтого цвета. Как было сказано ранее, это второстепенная функция, и вы можете использовать ее, нажав функциональную кнопку. Символ измеряет частоту объекта в герцах.

6. Напряжение постоянного тока

Обозначается заглавной буквой V с тремя дефисами и прямой линией сверху. Этот символ обозначает напряжение.Просто переместите циферблат к этому символу, если вы хотите измерить напряжение объекта. Его следует использовать при измерении постоянного напряжения.

7. Милливольты переменного тока

Обозначается милливольтом с тремя дефисами и прямой линией сверху, символ обозначает милливольт. Вы должны использовать его только при измерении очень небольшого переменного напряжения, желательно в цепи меньшего размера.

SHIFT: DC, милливольты

Удерживая точку набора на значке милливольт переменного тока и нажав функциональную кнопку, вы можете измерить милливольты постоянного тока для меньшей цепи.Его символ находится рядом с символом мВ желтого цвета.

8. Сопротивление

Обозначается Ω (омега), символ обозначает сопротивление. Вам нужно переместить циферблат к этому символу, если вы хотите измерить сопротивление объекта. Его вторичная функция также помогает узнать, исправен ли предохранитель.

9. Непрерывность

Обозначается символом звуковой волны, его функция состоит в том, чтобы определить, есть ли непрерывность между двумя точками или нет.Таким образом можно определить, есть ли обрыв или короткое замыкание. Это очень важная функция при поиске неисправностей в цепи и устранении неисправностей.

10. Тест диодов

Рядом с символом непрерывности вы найдете стрелку со знаком плюс. Чтобы использовать этот символ, вы должны навести шкалу на символ непрерывности и нажать функциональную кнопку. Этот символ помогает определить, хороший ли диод или плохой.

11. Переменный ток

Обозначается заглавной буквой V с волнистой линией вверху, символ обозначает ток.Его следует использовать при измерении переменного тока.

12. Постоянный ток

Обозначается заглавной буквой V с тремя дефисами и прямой линией сверху. Этот символ обозначает ток. Его следует использовать при измерении постоянного тока.

13. Выключатель

Это включение и выключение экрана.

14. Auto-V / LoZ

Эта функция доступна только в некоторых мультиметрах. Это предотвращает ложное измерение.

15. Домкрат обыкновенный

Используйте этот разъем для всех тестов, но только с черным измерительным проводом.

16. Текущий Джек

Используйте это гнездо для измерения тока с помощью клещей или красного щупа.

17. Кнопка яркости

Используйте эту кнопку для регулировки яркости экрана. Это становится очень полезным, когда вы берете мультиметр на улицу, и нормальный экран становится очень тусклым.

18.Красный Джек

Используйте это гнездо для всех типов испытаний, кроме токовых. Тесты включают сопротивление, напряжение, температуру, импеданс, емкость, повторяемость и другие.

Заключительные слова

Как только вы получите полное представление о различных символах, доступных на мультиметре, вы сможете использовать его наиболее точно. Кроме того, при регулярном использовании вы привыкнете ко всем символам и кнопкам, и сможете использовать инструмент как профессионал. Эти символы могут незначительно отличаться от одной модели к другой, но большинство из них имеют одни и те же стандартные символы.Вы также можете проверить руководство, чтобы понять функцию любой новой кнопки или символа.

14 Символы мультиметра и их значения (со схемой)

Примечание. Этот пост может содержать партнерские ссылки. Это означает, что мы можем бесплатно для вас заработать небольшую комиссию за соответствующие покупки.

Они не делают их так, как раньше. Вы все еще можете купить старый аналоговый мультиметр своего дедушки в любом хозяйственном магазине или в Интернете, и они все еще находят свое применение.

Лучшие современные мультиметры полностью цифровые, и они доминируют на рынке. Неудивительно, что благодаря числовому дисплею, отображающему ваши измеренные значения с максимальной точностью, старые аналоги отошли на второй план.

А что означают символы на мультиметре ? Не беспокойтесь об этом, мы вас поддержим.

Что такое мультиметр?

Давайте начнем с простого: мультиметр — это инструмент, который электрики или все, кому это необходимо, могут использовать для проверки силы тока (в амперах), напряжения (в вольтах) и сопротивления (в омах) устройства, которое выводит электричество.

Мультиметры бывают аналоговыми, как упоминалось выше, и используют иглу для получения показаний, но цифровые мультиметры гораздо более распространены.

Мультиметр состоит из четырех основных компонентов:

  1. Экран дисплея , на котором отображаются выполненные измерения
  2. Различные кнопки , управляющие инструментом.
  3. Поворотный переключатель , который позволяет вам выбрать, какую единицу измерения вы хотите использовать.
  4. Входные порты для подключения измерительных проводов.

Как читать символы на мультиметре?

К счастью, современные символы на мультиметрах были более или менее стандартизированы одной из самых популярных марок мультиметров, Fluke.

Единственное различие, которое вы, вероятно, увидите между мультиметрами, — это дополнительные символы вокруг поворотного переключателя, которые вы можете прочитать с помощью кнопки функции / переключения (№4 ниже).

1. Кнопка удержания

Когда вы сняли показания, вы можете нажать кнопку удержания, чтобы зафиксировать измерение.Это чрезвычайно полезно, если вам нужно иметь под рукой измерения, пока вы работаете над своим проектом.

2. Кнопка Min / Max

Сохранение введенных значений. Мультиметр издаст звуковой сигнал при превышении верхнего / нижнего значения, и новое значение будет сохранено.

3. Кнопка диапазона

Позволяет переключаться между диапазонами измерителя.

4. Функциональная кнопка

Позволяет активировать вторичные функции вокруг циферблата, обычно обозначаемые желтым текстом или значками. Сравнимо с клавишей Ctrl или Alt на клавиатуре.

5. Напряжение переменного тока

Обозначается заглавной буквой V с волнистой линией сверху. Однако на принципиальной схеме символы вольтметра обычно обозначаются заглавной буквой V внутри круга. Это параметр, который вы будете использовать чаще, чем что-либо другое, и он измеряет напряжение объекта, с которым вы работаете.

6. Напряжение постоянного тока

Обозначается заглавной буквой V с тремя дефисами над ней и одной линией над ней. Думайте об этом как о букве V с частью дороги над ней.Вы будете использовать кнопку напряжения постоянного тока при измерении цепей меньшего размера.

7. Милливольты переменного тока

Обозначается милливольтами и волнистой линией наверху для тестирования небольших цепей с использованием низкого напряжения переменного тока. Точно так же есть кнопка милливольт постоянного тока, три дефиса с прямой линией над ними, и обычно она находится рядом с кнопкой милливольт переменного тока. Вы можете использовать функциональную кнопку, чтобы переключиться на настройку постоянного тока.

8. Сопротивление

Выглядит как омега-буква и измеряет сопротивление, чтобы помочь вам получить точное значение сопротивления.Это также может помочь вам определить, перегорел ли предохранитель, по отображению букв OL.

9. Непрерывность

Обозначается символом, который вы обычно видите для обозначения звуковых волн. Это измеряет, есть ли две точки непрерывности, и поможет вам определить, есть ли у вас обрыв или короткое замыкание.

10. Тест диодов

Обозначается стрелкой, указывающей вправо, со знаком плюс рядом с ней. Определяет, исправен ли у вас диод или нет.

11.Переменный ток

Обозначается заглавной буквой A с волнистой линией наверху, которая может измерять нагрузку, которую использует объект.

12. Постоянный ток

Обозначается заглавной буквой A с тремя дефисами и линией над ней. Измеряет постоянный ток объекта, с которым вы работаете.

13. Переключатель включения / выключения

Не требует пояснений

14. Auto-V / LoZ

На некоторых моделях он предотвращает ложные измерения из-за паразитного напряжения.

Надеюсь, это руководство помогло полностью разобраться в сложных функциях мультиметра, чтобы вы могли максимально использовать его в своем следующем проекте.Хотя это устройство может показаться сложным, если вы будете придерживаться основ, вы быстро станете экспертом.

Что означают символы на мультиметре?

Мультиметр может пригодиться в сфере электротехники.

Но это в первую очередь точно может сбивать с толку, так как на нем слишком много символов, кнопок, переключателей.

Итак, что означают символы на мультиметре?

Если вы регулярно работаете с электричеством или просто хотите лучше разобраться в этом инструменте для будущей работы, то эта статья предназначена исключительно для вас.

После этой подробной инструкции вы получите четкое представление о том, как безопасно и технически правильно читать мультиметр и управлять им самостоятельно.

По теме:

Обзоры лучших мультиметров для электриков

Какие инструменты используют электрики?

Не ждите больше, давайте погрузимся в мир мультиметров.

Что такое мультиметр?

Мультиметр — это удобный инструмент, который используется для измерения различных аспектов электричества, таких как ток (в амперах), напряжение (в вольтах), сопротивление (в омах) устройства, которое вы хотите, и значение его электрического выхода.

На рынке часто используются мультиметры двух типов: аналоговые и цифровые.

Цифровые счетчики более популярны среди двух типов мультиметров благодаря удобству и точности измерений.

Несмотря на различие между любыми типами мультиметров, стандартный мультиметр должен иметь пять элементов, перечисленных ниже:

  • Экран, на котором вы можете читать измерения
  • Кнопки для настройки и управления системой
  • Поворотный диск для выбора электрическое значение
  • Входные порты для измерительных проводов.
  • Измерительные провода — это провода, соединяющие мультиметр с устройством, электрическое состояние которого вы хотите измерить.
  • И последнее, но не менее важное: число, указывающее значение желаемого электрического измерения.

связанных:

Как долго служат мультиметры?

Что означают символы на мультиметре?

Единицы

Глядя на мультиметр впервые, вы, возможно, не имеете ни малейшего представления о том, что это за прибор.

Вам известно, что это устройство используется для измерения напряжения, тока и сопротивления, но вы не можете найти эти ключевые слова нигде на мультиметре.

Что ж, не волнуйтесь, давайте начнем медленно.

Помните, что три электрических элемента могут быть представлены соответственно своими единицами измерения: В, А и Ом .

В большинстве мультиметров эти три символа используются для обозначения значения вместо полных слов.

Как только вы ознакомитесь с ними, просмотрите больше символов.

В большинстве мультиметров используются метрические префиксы, чтобы показывать наиболее точные измерения.

  • K для килограмма означает время 1000x.
  • M для мега означает умножить на миллион.
  • м для милли и означает 1/1000.
  • (µ) для микро означает одну миллионную.

Сложив это вместе с единицами измерения, получаем:

  • кВ означает киловольты или тысячные доли вольт
  • МОм означает мегаом или один миллион Ом
  • мА означает миллиампер или тысячу ампер

Вы должны понимать префиксы, чтобы правильно считать показания мультиметра.

Символы

Помимо трех единиц измерения, некоторые другие символы на мультиметре представляют различные аспекты измерения и расчета электроэнергии.

Кнопка удержания

После того, как вы закончите измерение, и вы хотите, чтобы результаты не удалялись, эта кнопка удержания сохранит результаты.

Это удобно, когда вы заняты процессом и недостаточно быстро, чтобы посмотреть на результаты.

Напряжение переменного тока

Напряжение переменного тока — это параметр, при котором вы можете измерять напряжения.

Типичное измерение варьируется от 100 до 240 вольт переменного тока.

Вы можете найти этот символ, ища заглавную букву «V» с волнистой линией на ней.

Напряжение постоянного тока

Кнопка представляет напряжение постоянного тока с заглавной буквы V с тремя дефисами.

Настройки постоянного напряжения позволяют тестировать небольшие электронные устройства, такие как батареи и фонари, чтобы убедиться, что они работают.

Сдвиг: Герц

Сдвиг: Герц можно найти поверх напряжения переменного тока с единицей «Гц», используемой для измерения частоты устройства или цепи.

Непрерывность

Если вы хотите найти короткие или разомкнутые цепи, кнопка «Непрерывность» может помочь вам в этом.

Вы можете найти эту настройку, ища символ, который объединяет символ звука.

Токовый разъем

Разъем с обозначенной выше буквой A, называемый токовым разъемом, следует использовать только для подключения либо с помощью зажима, либо с помощью красного провода для их измерения.

Общий разъем

Общий разъем черного цвета, он расположен между двумя другими разъемами с надписью «COM» над ним.

Этот домкрат совместим со всеми оценками и измерениями.

Однако его всегда следует тестировать с темными измерительными проводами из первых рук.

Емкость сдвига

Емкость сдвига — это настройка, позволяющая измерить емкость.

Это можно сделать, выполнив поиск символа двух T, обращенных друг к другу.

Кнопка диапазона

Кнопка диапазона обычно находится на верхней части любого мультиметра с символом «Lo / Hi».

Кнопка диапазона используется для переключения между различными областями вашего глюкометра.

Индикатор яркости

Использование мультиметра на улице потребует от вас использования индикатора яркости для увеличения уровня яркости, что сделает ваши измерения и исследования удобными.

Переменный ток (AC)

Символ с заглавной A¨ и волнистой линией над ним представляет ловушку переменного тока.

Милливольты переменного тока

Установку милливольт переменного тока можно найти по символу ¨mV¨ с волнистой линией над ним.

Используется для тестирования цепей с необычно низким значением напряжения переменного тока.

Shift DC, милливольты

Непосредственно рядом с кнопкой «Милливольты переменного тока» отображается символ «Shift DC Millivolts» с тремя дефисами и прямой линией над ними.

Несмотря на то, что он работает сравнительно с милливольтами переменного тока, он использует напряжение постоянного тока.

Ом

Ом в некоторой степени похожи на букву Омега.

По сути, это дает вам возможность правильно считывать измерения сопротивления.

Кроме того, эту кнопку также можно умело использовать для проверки состояния цепей, помогая вам распознать перегоревший провод.

По этой причине вы можете использовать настройку сопротивления для проверки проводов, когда они находятся вне цепи.

Проверка диодов

Настройка проверки диодов позволяет вам проверить и определить состояние диодов.

Ищите символ, который выглядит как знак плюса, указывающий в правильном направлении.

Red Track

Используется для всех тестов, кроме измерения тока, включая напряжение, сопротивление, повторяемость, температуру, импеданс, емкость и т. Д.

Что могут измерять мультиметры?

Мультиметры могут использоваться для измерения:

Все мультиметры могут гарантировать измерение тока, напряжения и сопротивления.

Помимо этого, некоторые мультиметры также могут выполнять различные виды оценок.

Например, несколько метров могут измерить емкость конденсаторов, а несколько метров могут проверить диоды или полупроводники.

Эти особенности удобны.

Однако они не являются фундаментальными.

Заключение

И вот наш ответ на вопрос: «Что означают символы на мультиметре? Понимая каждую функцию мультиметра, вы сможете привыкнуть к правильному и грамотному использованию устройства.

По нашему мнению, каждый должен знать, как использовать мультиметр для решения будущих проблем с электричеством, и первым шагом в этой процедуре является знание того, что означают символы на нем.

Спасибо, что прочитали нашу статью, и мы еще увидимся с другими сериями, касающимися электричества!

Дополнительная литература:

Как проверить транзистор с помощью мультиметра (DMM + AVO)

ПЕРЕМЕННЫЙ ТОК — прикладное промышленное электричество

Переменный ток

Большинство студентов, изучающих электричество, начинают свое изучение с так называемого постоянного тока (DC), то есть электричества, протекающего в постоянном направлении и / или обладающего напряжением с постоянной полярностью.Постоянный ток — это вид электричества, производимого батареей (с определенными положительными и отрицательными клеммами), или вид заряда, генерируемый при трении определенных типов материалов друг о друга.

Переменный ток против постоянного

Такой же полезный и простой для понимания, как постоянный ток, это не единственный используемый «вид» электричества. Определенные источники электричества (в первую очередь роторные электромеханические генераторы) естественным образом вырабатывают напряжения, меняющие полярность, меняя положительную и отрицательную на противоположные с течением времени.Либо как полярность переключения напряжения, либо как направление переключения тока вперед и назад, этот «вид» электричества известен как переменный ток (AC):

Рисунок 4.1 Постоянный и переменный ток

В то время как знакомый символ батареи используется как общий символ для любого источника постоянного напряжения, круг с волнистой линией внутри является общим символом для любого источника переменного напряжения.

Кто-то может задаться вопросом, зачем вообще возиться с такой вещью, как кондиционер. Верно, что в некоторых случаях переменный ток не имеет практического преимущества перед постоянным током.В приложениях, где электричество используется для рассеивания энергии в виде тепла, полярность или направление тока не имеют значения, пока на нагрузку подается достаточное напряжение и ток для получения желаемого тепла (рассеивание мощности). Однако с помощью переменного тока можно создавать электрические генераторы, двигатели и системы распределения энергии, которые намного более эффективны, чем постоянный ток, и поэтому мы обнаруживаем, что переменный ток используется преимущественно во всем мире в приложениях с большой мощностью. Чтобы объяснить подробности того, почему это так, необходимы некоторые базовые знания о AC.

Генераторы переменного тока

Если машина сконструирована так, чтобы вращать магнитное поле вокруг набора неподвижных проволочных катушек с вращением вала, переменное напряжение будет создаваться на проволочных катушках, когда этот вал вращается, в соответствии с законом электромагнитной индукции Фарадея. Это основной принцип работы генератора переменного тока, также известного как генератор переменного тока :

Рисунок 4.2 Работа генератора переменного тока

Обратите внимание, как полярность напряжения на проволочных катушках меняется на противоположные по мере прохождения противоположных полюсов вращающегося магнита.При подключении к нагрузке эта реверсивная полярность напряжения создает реверсивное направление тока в цепи. Чем быстрее вращается вал генератора, тем быстрее будет вращаться магнит, что приведет к появлению переменного напряжения и тока, которые чаще меняют направление за заданный промежуток времени.

Хотя генераторы постоянного тока работают по тому же общему принципу электромагнитной индукции, их конструкция не так проста, как их аналоги переменного тока. В генераторе постоянного тока катушка с проволокой установлена ​​на валу, где магнит находится на генераторе переменного тока, и электрические соединения с этой вращающейся катушкой выполняются через неподвижные угольные «щетки», контактирующие с медными полосками на вращающемся валу.Все это необходимо для переключения изменяющейся выходной полярности катушки на внешнюю цепь, чтобы внешняя цепь видела постоянную полярность:

Рис. 4.3. Работа генератора постоянного тока

. Показанный выше генератор будет вырабатывать два импульса напряжения на один оборот вала, причем оба импульса имеют одинаковое направление (полярность). Чтобы генератор постоянного тока вырабатывал постоянное напряжение , а не короткие импульсы напряжения каждые 1/2 оборота, имеется несколько наборов катушек, периодически контактирующих с щетками.Схема, показанная выше, немного упрощена, чем то, что вы видите в реальной жизни.

Проблемы, связанные с замыканием и размыканием электрического контакта с движущейся катушкой, должны быть очевидны (искрение и нагрев), особенно если вал генератора вращается с высокой скоростью. Если атмосфера, окружающая машину, содержит легковоспламеняющиеся или взрывоопасные пары, практические проблемы искрообразования щеточных контактов еще больше. Генератор переменного тока (генератор переменного тока) не требует для работы щеток и коммутаторов, поэтому он невосприимчив к этим проблемам, с которыми сталкиваются генераторы постоянного тока.

Двигатели переменного тока

Преимущества переменного тока перед постоянным током с точки зрения конструкции генератора также отражены в электродвигателях. В то время как двигатели постоянного тока требуют использования щеток для электрического контакта с движущимися катушками проволоки, двигатели переменного тока этого не делают. Фактически, конструкции двигателей переменного и постоянного тока очень похожи на их аналоги-генераторы (идентичны для этого руководства), двигатель переменного тока зависит от реверсивного магнитного поля, создаваемого переменным током через его неподвижные катушки провода для вращения вращающегося магнита. вокруг его вала, а двигатель постоянного тока зависит от контактов щетки, замыкая и размыкая соединения, для обратного тока через вращающуюся катушку каждые 1/2 оборота (180 градусов).

Трансформаторы

Итак, мы знаем, что генераторы переменного тока и двигатели переменного тока имеют тенденцию быть проще, чем генераторы постоянного тока и двигатели постоянного тока. Эта относительная простота означает большую надежность и более низкую стоимость производства. Но для чего еще нужен AC? Конечно, это должно быть что-то большее, чем детали конструкции генераторов и двигателей! Действительно есть. Существует эффект электромагнетизма, известный как взаимная индукция , при котором две или более катушки провода размещены так, что изменяющееся магнитное поле, создаваемое одной, индуцирует напряжение в другой.Если у нас есть две взаимно индуктивные катушки, и мы запитываем одну катушку переменным током, мы создадим переменное напряжение в другой катушке. При использовании в таком виде это устройство известно как трансформатор :

Рисунок 4.4 Трансформатор «преобразует» переменное напряжение и ток.

Основное значение трансформатора — его способность повышать или понижать напряжение с катушки с питанием на катушку без питания. Напряжение переменного тока, индуцированное в обесточенной («вторичной») катушке, равно напряжению переменного тока на питаемой («первичной») катушке, умноженному на отношение витков вторичной катушки к виткам первичной катушки.Если вторичная обмотка питает нагрузку, ток через вторичную обмотку прямо противоположен: ток первичной обмотки умножается на соотношение первичных и вторичных витков. Эта взаимосвязь имеет очень близкую механическую аналогию, в которой крутящий момент и скорость используются для представления напряжения и тока соответственно:

Рисунок 4.5 Зубчатая передача умножения скорости снижает крутящий момент и увеличивает скорость. Понижающий трансформатор понижает напряжение и увеличивает ток.

Если передаточное отношение обмотки изменено так, что первичная обмотка имеет меньше витков, чем вторичная обмотка, трансформатор «увеличивает» напряжение от уровня источника до более высокого уровня на нагрузке:

Рисунок 4.6 Редукторная передача увеличивает крутящий момент и снижает скорость. Повышающий трансформатор увеличивает напряжение и уменьшает ток.

Способность трансформатора с легкостью повышать или понижать переменное напряжение дает переменному току преимущество, не имеющее себе равных с постоянным током, в области распределения мощности на рисунке ниже. При передаче электроэнергии на большие расстояния гораздо эффективнее делать это с помощью повышенных напряжений и пониженных токов (провод меньшего диаметра с меньшими резистивными потерями мощности), затем понижать напряжение и повышать ток для промышленность, бизнес или потребительское использование.

Рисунок 4.7 Трансформаторы обеспечивают эффективную передачу электроэнергии высокого напряжения на большие расстояния.

Трансформаторная технология сделала возможным распределение электроэнергии на большие расстояния. Без возможности эффективно повышать и понижать напряжение было бы непомерно дорого строить энергосистемы для чего угодно, кроме использования на близком расстоянии (не более нескольких миль).

Какими бы полезными ни были трансформаторы, они работают только с переменным током, а не с постоянным током. Поскольку явление взаимной индуктивности зависит от изменения магнитных полей , а постоянный ток (DC) может создавать только постоянные магнитные поля, трансформаторы просто не будут работать с постоянным током.Конечно, постоянный ток может прерываться (пульсировать) через первичную обмотку трансформатора для создания изменяющегося магнитного поля (как это делается в автомобильных системах зажигания для выработки питания высоковольтной свечи зажигания от низковольтной батареи постоянного тока), но Импульсный постоянный ток не так уж отличается от переменного тока. Возможно, именно поэтому переменный ток в большей степени, чем какая-либо другая причина, находит такое широкое применение в энергосистемах.

  • DC означает «постоянный ток», что означает напряжение или ток, который сохраняет постоянную полярность или направление, соответственно, с течением времени.
  • AC означает «переменный ток», что означает напряжение или ток, который со временем меняет полярность или направление, соответственно.
  • Электромеханические генераторы переменного тока
  • , известные как генераторы переменного тока , имеют более простую конструкцию, чем электромеханические генераторы постоянного тока.
  • Конструкция двигателей переменного и постоянного тока
  • очень точно соответствует принципам конструкции генератора.
  • Трансформатор — это пара взаимно индуктивных катушек, используемых для передачи мощности переменного тока от одной катушки к другой.Часто количество витков в каждой катушке устанавливается так, чтобы создать увеличение или уменьшение напряжения от активной (первичной) катушки к обмотке без питания (вторичной).
  • Вторичное напряжение = Первичное напряжение (вторичные витки / первичные витки)
  • Вторичный ток = первичный ток (первичные витки / вторичные витки)

Измерения величины переменного тока

На данный момент мы знаем, что переменное напряжение меняется по полярности, а переменный ток — по направлению.Мы также знаем, что переменный ток может изменяться множеством различных способов, и, отслеживая изменение во времени, мы можем построить его в виде «формы волны». Мы можем измерить скорость чередования, измерив время, необходимое для развития волны, прежде чем она повторится («период»), и выразить это как количество циклов в единицу времени или «частоту». В музыке частота такая же, как и высота звука , что является важным свойством, отличающим одну ноту от другой.

Однако мы сталкиваемся с проблемой измерения, если пытаемся выразить, насколько велика или мала величина переменного тока.С постоянным током, где величины напряжения и тока обычно стабильны, у нас нет проблем с выражением того, сколько напряжения или тока у нас есть в любой части цепи. Но как дать единичное измерение величины чему-то, что постоянно меняется?

Способы выражения величины формы волны переменного тока

Один из способов выразить интенсивность или величину (также называемую амплитудой ) величины переменного тока — это измерить высоту его пика на графике формы сигнала.Это известно как пиковое значение или пиковое значение сигнала переменного тока:

Рисунок 4.8 Пиковое напряжение формы сигнала.

Другой способ — измерить общую высоту между противоположными вершинами. Это известно как размах сигнала (размах) (P-P) для сигнала переменного тока:

Рис. 4.9. Размах напряжения сигнала.

К сожалению, любое из этих выражений амплитуды сигнала может вводить в заблуждение при сравнении двух разных типов волн. Например, прямоугольная волна с пиком 10 вольт, очевидно, представляет собой большее количество напряжения в течение большего времени, чем треугольная волна с пиком 10 вольт.Воздействие этих двух напряжений переменного тока, питающих нагрузку, будет совершенно различным:

Рисунок 4.10 Прямоугольная волна дает больший эффект нагрева, чем такая же треугольная волна пикового напряжения.

Один из способов выразить амплитуду различных форм волны более эквивалентным способом — это математически усреднить значения всех точек на графике формы волны до единого совокупного числа. Это измерение амплитуды известно просто как среднее значение сигнала .Если мы усредним все точки на осциллограмме алгебраически (то есть с учетом их знака , положительного или отрицательного), среднее значение для большинства сигналов технически равно нулю, потому что все положительные точки нейтрализуют все отрицательные точки на протяжении полный цикл:

Рисунок 4.11 Среднее значение синусоиды равно нулю.

Это, конечно, будет верно для любой формы волны, имеющей участки равной площади выше и ниже «нулевой» линии графика. Однако, как практическая мера совокупного значения формы волны, «среднее» обычно определяется как математическое среднее абсолютных значений всех точек за цикл.Другими словами, мы вычисляем практическое среднее значение сигнала, рассматривая все точки на волне как положительные величины, как если бы форма сигнала выглядела так:

Рис. 4.12 Форма волны, измеренная измерителем «среднего отклика» переменного тока.

Нечувствительные к полярности движения механических счетчиков (счетчики, рассчитанные на одинаковую реакцию на положительные и отрицательные полупериоды переменного напряжения или тока) регистрируются пропорционально (практическому) среднему значению формы волны, потому что инерция стрелки по отношению к напряжению пружина естественным образом усредняет силу, создаваемую изменяющимися значениями напряжения / тока с течением времени.И наоборот, чувствительные к полярности движения измерителя бесполезно вибрируют при воздействии переменного напряжения или тока, их стрелки быстро колеблются около нулевой отметки, указывая истинное (алгебраическое) среднее значение нуля для симметричной формы волны. Когда в этом тексте упоминается «среднее» значение формы сигнала, предполагается, что подразумевается «практическое» определение среднего значения, если не указано иное.

Другой метод получения совокупного значения амплитуды сигнала основан на способности сигнала выполнять полезную работу при приложении к сопротивлению нагрузки.К сожалению, измерение переменного тока, основанное на работе, выполняемой сигналом, не совпадает со «средним» значением этого сигнала, потому что мощность , рассеиваемая данной нагрузкой (работа, выполняемая в единицу времени), не прямо пропорциональна величине того и другого. приложенное к нему напряжение или ток. Напротив, мощность пропорциональна квадрату напряжения или тока, приложенного к сопротивлению (P = E 2 / R и P = I 2 R). Хотя математика такого измерения амплитуды может быть непростой, польза от этого есть.

Рассмотрим ленточную пилу и лобзик, две части современного деревообрабатывающего оборудования. Пилы обоих типов режут дерево с помощью тонкого зубчатого металлического полотна с приводом от двигателя. Но в то время как ленточная пила использует непрерывное движение полотна для резки, лобзик использует возвратно-поступательное движение. Сравнение переменного тока (AC) с постоянным током (DC) можно сравнить со сравнением этих двух типов пил:

Рисунок 4.13. Аналогия постоянного и переменного тока ленточной пилой.

Проблема попытки описать изменяющиеся величины переменного напряжения или тока в одном совокупном измерении также присутствует в этой аналогии с пилой: как бы мы могли выразить скорость полотна лобзика? Полотно ленточной пилы движется с постоянной скоростью, подобно тому, как проталкивает постоянное напряжение или постоянный ток движется с постоянной величиной.С другой стороны, полотно лобзика движется вперед и назад, скорость его вращения постоянно меняется. Более того, возвратно-поступательное движение любых двух лобзиков может быть неодинаковым, в зависимости от механической конструкции пил. Один лобзик может двигать лезвие синусоидальным движением, а другой — треугольником. Оценка лобзика на основе его максимальной скорости вращения полотна () может ввести в заблуждение при сравнении одного лобзика с другим (или лобзика с ленточной пилой!). Несмотря на то, что эти разные пилы перемещают свои полотна по-разному, они одинаковы в одном отношении: все они режут древесину, и количественное сравнение этой общей функции может служить общей основой для оценки скорости полотна.

Представьте себе лобзик и ленточную пилу бок о бок, оснащенные одинаковыми лезвиями (одинаковым шагом зубьев, углом и т. Д.), Одинаково способными резать одинаковую толщину одного и того же вида древесины с одинаковой скоростью. Можно сказать, что эти две пилы были эквивалентны или равны по своей режущей способности. Можно ли использовать это сравнение, чтобы приписать «эквивалентную» скорость полотна ленточной пилы возвратно-поступательному движению полотна лобзика; связать эффективность лесозаготовки одного с другим? Это общая идея, используемая для присвоения измерения «эквивалента постоянного тока» любому переменному напряжению или току: независимо от величины постоянного напряжения или тока, будет происходить такое же количество рассеивания тепловой энергии через равное сопротивление:

Рисунок 4.14 Среднеквадратичное напряжение вызывает тот же эффект нагрева, что и такое же напряжение постоянного тока.

Каким образом среднеквадратичное значение (СКЗ) связано с переменным током?

В двух приведенных выше схемах у нас одинаковое сопротивление нагрузки (2 Ом), рассеивающее одинаковую мощность в виде тепла (50 Вт), одна питается от переменного тока, а другая от постоянного тока. Поскольку изображенный выше источник переменного напряжения эквивалентен (с точки зрения мощности, подаваемой на нагрузку) 10-вольтовой батарее постоянного тока, мы бы назвали это «10-вольтовым» источником переменного тока. Более конкретно, мы бы обозначили его значение напряжения как 10 вольт RMS .Квалификатор «RMS» означает Среднеквадратичное значение , алгоритм, используемый для получения значения эквивалента постоянного тока из точек на графике (по сути, процедура состоит из возведения в квадрат всех положительных и отрицательных точек на графике формы сигнала, усреднения этих квадратов значений. , а затем извлечение квадратного корня из этого среднего, чтобы получить окончательный ответ). Иногда вместо «среднеквадратичного значения» используются альтернативные термины , эквивалент или , эквивалент постоянного тока, но количество и принцип одинаковы.

Измерение амплитуды

RMS — лучший способ связать величины переменного тока с величинами постоянного тока или другими величинами переменного тока с различной формой волны при измерении электрической мощности. По другим соображениям лучше всего использовать измерения от пика до пика. Например, при определении правильного размера провода (допустимой нагрузки) для передачи электроэнергии от источника к нагрузке лучше всего использовать измерение среднеквадратичного тока, поскольку основная проблема с током — это перегрев провода, который является функцией рассеивание мощности, вызванное током через сопротивление провода.Однако при оценке изоляторов для работы в высоковольтных системах переменного тока измерения пикового напряжения являются наиболее подходящими, поскольку здесь основной проблемой является «пробой» изолятора, вызванный кратковременными скачками напряжения независимо от времени.

Инструменты, используемые для измерения амплитуды сигнала

Измерения размаха и пика лучше всего выполнять с помощью осциллографа, который может захватывать пики формы сигнала с высокой степенью точности благодаря быстрому срабатыванию электронно-лучевой трубки в ответ на изменения напряжения.Для измерений RMS будут работать аналоговые измерительные приборы (D’Arsonval, Weston, железная лопасть, электродинамометр), если они были откалиброваны в значениях RMS. Поскольку механическая инерция и демпфирующие эффекты движения электромеханического измерителя делают отклонение стрелки естественным образом пропорциональным среднему значению переменного тока, а не истинному среднеквадратичному значению, аналоговые измерители должны быть специально откалиброваны (или откалиброваны неправильно, в зависимости от как вы на это смотрите), чтобы указать напряжение или ток в единицах RMS.Точность этой калибровки зависит от предполагаемой формы волны, обычно синусоидальной.

Электронные счетчики, специально разработанные для измерения среднеквадратичных значений, лучше всего подходят для этой задачи. Некоторые производители инструментов разработали хитроумные методы определения среднеквадратичного значения любой формы волны. Один из таких производителей производит измерители True-RMS с крошечным резистивным нагревательным элементом, питаемым напряжением, пропорциональным измеряемому. Эффект нагрева этого элемента сопротивления измеряется термически, чтобы получить истинное среднеквадратичное значение без каких-либо математических расчетов, только законы физики в действии в соответствии с определением среднеквадратичного значения.Точность этого типа измерения RMS не зависит от формы волны.

Взаимосвязь пика, размаха, среднего и среднеквадратичного значения

Для «чистых» сигналов существуют простые коэффициенты преобразования для приравнивания значений пикового, разностного, среднего (практического, а не алгебраического) и среднеквадратичного значений друг к другу:

Рисунок 4.15 Коэффициенты преобразования для распространенных сигналов.

В дополнение к измерениям RMS, среднего, пика (пика) и размаха сигнала переменного тока существуют соотношения, выражающие пропорциональность между некоторыми из этих фундаментальных измерений.Пик-фактор , например, сигнала переменного тока представляет собой отношение его пикового (пикового) значения, деленного на его среднеквадратичное значение. Форм-фактор сигнала переменного тока — это отношение его среднеквадратичного значения к его среднему значению. Сигналы прямоугольной формы всегда имеют пик и коэффициент формы, равные 1, поскольку пик такой же, как среднеквадратичное и среднее значения. Синусоидальные сигналы имеют среднеквадратичное значение 0,707 (величина, обратная квадратному корню из 2) и форм-фактор 1,11 (0,707 / 0,636). Сигналы треугольной и пилообразной формы имеют среднеквадратичное значение 0.577 (величина, обратная квадратному корню из 3) и форм-фактор 1,15 (0,577 / 0,5).

Имейте в виду, что показанные здесь константы преобразования для пиковых, среднеквадратичных и средних амплитуд синусоидальных, прямоугольных и треугольных волн верны только для чистых форм этих волн. Среднеквадратичные и средние значения искаженных форм волн не связаны одним и тем же соотношением:

Рис. 4.16. Сигналы произвольной формы не имеют простого преобразования.

Это очень важная концепция, которую необходимо понимать при использовании аналогового движения измерителя Д’Арсонваля для измерения переменного напряжения или тока.Аналоговый механизм Д’Арсонваля, откалиброванный для индикации среднеквадратичной амплитуды синусоидальной волны, будет точным только при измерении чистых синусоидальных волн. Если форма волны измеряемого напряжения или тока не является чистой синусоидальной волной, показание измерителя не будет истинным среднеквадратичным значением формы волны, потому что степень отклонения стрелки в аналоговом движении измерителя Д’Арсонваля равна пропорционально среднему значению сигнала, а не среднеквадратичному значению. Калибровка измерителя RMS получается путем «перекоса» диапазона измерителя так, чтобы он отображал небольшое кратное среднему значению, которое будет равно среднеквадратичному значению для определенной формы волны, а — только для конкретной формы волны.

Поскольку форма синусоидальной волны является наиболее распространенной в электрических измерениях, она является формой волны, принятой для калибровки аналогового измерителя, а небольшое кратное, используемое при калибровке измерителя, составляет 1,1107 (форм-фактор: 0,707 / 0,636: отношение среднеквадратичных значений деленное на среднее значение для синусоидального сигнала). Любая форма волны, кроме чистой синусоидальной волны, будет иметь другое соотношение среднеквадратичных и средних значений, и, таким образом, измеритель, откалиброванный для синусоидального напряжения или тока, не будет показывать истинное среднеквадратичное значение при считывании несинусоидальной волны.Имейте в виду, что это ограничение применяется только к простым аналоговым измерителям переменного тока, не использующим технологию True-RMS.

  • Амплитуда сигнала переменного тока — это его высота, изображенная на графике во времени. Измерение амплитуды может принимать форму пика, размаха, среднего или среднеквадратичного значения.
  • Пиковая амплитуда — это высота сигнала переменного тока, измеренная от нулевой отметки до самой высокой положительной или самой низкой отрицательной точки на графике.Также известен как гребень амплитуда волны .
  • Полная амплитуда — это общая высота сигнала переменного тока, измеренная от максимальных положительных до максимальных отрицательных пиков на графике. Часто обозначается как «П-П».
  • Средняя амплитуда — это математическое «среднее» всех точек сигнала за период одного цикла. Технически, средняя амплитуда любого сигнала с участками равной площади выше и ниже «нулевой» линии на графике равна нулю.Однако в качестве практической меры амплитуды среднее значение сигнала часто рассчитывается как математическое среднее абсолютных значений всех точек (принимая все отрицательные значения и считая их положительными). Для синусоиды среднее значение, вычисленное таким образом, составляет примерно 0,637 от его пикового значения.
  • «RMS» означает среднеквадратическое значение и является способом выражения величины переменного напряжения или тока в терминах, функционально эквивалентных постоянному току. Например, среднеквадратичное значение 10 вольт переменного тока — это величина напряжения, при которой через резистор заданного значения рассеивается такое же количество тепла, как и у источника питания постоянного тока на 10 вольт.Также известен как «эквивалент» или «эквивалент постоянного тока» для переменного напряжения или тока. Для синусоидальной волны среднеквадратичное значение составляет примерно 0,707 от его пикового значения.
  • Пик-фактор сигнала переменного тока — это отношение его пика (пик) к его среднеквадратичному значению.
  • Форм-фактор сигнала переменного тока — это отношение его среднеквадратичного значения к его среднему значению.
  • Аналоговые, электромеханические движения счетчика реагируют пропорционально среднему значению переменного напряжения или тока.Когда требуется индикация среднеквадратичного значения, калибровка измерителя должна быть соответственно «искажена». Это означает, что точность показаний RMS электромеханического измерителя зависит от чистоты формы волны: от того, точно ли она совпадает с формой волны, используемой при калибровке.

Рисунок 4.17. Принципиальная схема однофазной энергосистемы мало что говорит о проводке практической силовой цепи.

Изображенная выше очень простая цепь переменного тока. Если бы рассеиваемая мощность нагрузочного резистора была значительной, мы могли бы назвать это «цепью питания» или «системой питания», а не рассматривать ее как обычную цепь.Различие между «силовой цепью» и «обычной цепью» может показаться произвольным, но с практической точки зрения это определенно не так.

Практический анализ цепей

Одной из таких проблем является размер и стоимость проводки, необходимой для подачи питания от источника переменного тока на нагрузку. Обычно мы не особо задумываемся об этом, если мы просто анализируем цепь ради изучения законов электричества. Однако в реальном мире это может стать серьезной проблемой.Если мы дадим источнику в приведенной выше схеме значение напряжения, а также дадим значения рассеиваемой мощности для двух нагрузочных резисторов, мы сможем определить потребности в проводке для этой конкретной схемы:

С практической точки зрения, проводка для нагрузок 20 кВт при 120 В перем. Тока довольно значительна (167 А).

[латекс] I = \ frac {P} {E} [/ латекс]

[латекс] I = \ frac {10 кВт} {120 В} [/ латекс]

[латекс] I = 83,33A \ text {(для каждого нагрузочного резистора)} [/ латекс]

[латекс] I_ {total} = I_ \ text {load # 1} + I_ \ text {load # 2} [/ latex]

[латекс] P_ {total} = (10 кВт) + (10 кВт) [/ латекс]

[латекс] I_ {total} = (83.33 A) + (83,33 A) [/ латекс]

[латекс] P_ {total} = (20кВт) [/ латекс]

[латекс] \ pmb {I_ {total} = 166,67 A} [/ латекс]

В приведенном выше примере 83,33 ампера для каждого нагрузочного резистора на рисунке выше в сумме дают 166,66 ампера полного тока цепи. Это немалое количество тока, и для него потребуются медные проводники сечением не менее 1/0 калибра. Такая проволока имеет диаметр более 1/4 дюйма (6 мм) и весит более 300 фунтов на тысячу футов.Учтите, что медь тоже не дешевая! В наших интересах найти способы минимизировать такие затраты, если мы проектируем энергосистему с проводами большой длины.

Один из способов сделать это — увеличить напряжение источника питания и использовать нагрузки, рассчитанные на рассеивание 10 кВт каждая при этом более высоком напряжении. Нагрузки, конечно, должны иметь более высокие значения сопротивления, чтобы рассеивать ту же мощность, что и раньше (по 10 кВт каждая) при более высоком напряжении, чем раньше. Преимущество будет заключаться в меньшем потреблении тока, что позволяет использовать меньший, более легкий и дешевый провод:

[латекс] I = \ frac {P} {E} [/ латекс]

[латекс] I = \ frac {10кВт} {240V} [/ латекс]

[латекс] I = 41.67 A \ text {(для каждого нагрузочного резистора)} [/ latex]

[латекс] I_ {total} = I_ \ text {load # 1} + I_ \ text {load # 2} [/ latex]

[латекс] P_ {total} = (10 кВт) + (10 кВт) [/ латекс]

[латекс] I_ {total} = (41,67 A) + (41,67 A) [/ латекс]

[латекс] P_ {total} = (20кВт) [/ латекс]

[латекс] \ pmb {I_ {total} = 83,33 A} [/ латекс]

Теперь у наших общий ток цепи равен 83.33 ампера, вдвое меньше, чем было раньше. Теперь мы можем использовать проволоку калибра 4, которая весит меньше половины того, что весит проволока калибра 1/0 на единицу длины. Это значительное снижение стоимости системы без снижения производительности. Вот почему разработчики систем распределения электроэнергии предпочитают передавать электроэнергию с использованием очень высоких напряжений (многие тысячи вольт): чтобы извлечь выгоду из экономии, получаемой за счет использования меньшего, более легкого и более дешевого провода.

Опасности повышения напряжения источника

Однако это решение не лишено недостатков.Еще одна практическая проблема с силовыми цепями — опасность поражения электрическим током от высокого напряжения. Опять же, обычно это не то, на чем мы концентрируемся при изучении законов электричества, но это очень серьезная проблема в реальном мире, особенно когда имеют дело с большими объемами энергии. Повышение эффективности, достигаемое за счет увеличения напряжения в цепи, представляет повышенную опасность поражения электрическим током. Энергораспределительные компании решают эту проблему, протягивая свои линии электропередач вдоль высоких опор или башен и изолируя линии от несущих конструкций с помощью больших фарфоровых изоляторов.

В точке использования (потребителя электроэнергии) все еще остается вопрос, какое напряжение использовать для питания нагрузок. Высокое напряжение обеспечивает большую эффективность системы за счет уменьшения тока в проводнике, но не всегда целесообразно держать силовую проводку вне досягаемости в точке использования, как это можно сделать в распределительных системах. Этим компромиссом между эффективностью и опасностью европейские проектировщики энергосистем решили рискнуть, поскольку все их домашние хозяйства и бытовая техника работают при номинальном напряжении 240 вольт вместо 120 вольт, как в Северной Америке.Вот почему туристы из Америки, посещающие Европу, должны иметь небольшие понижающие трансформаторы для своих портативных приборов, чтобы понижать мощность 240 В переменного тока (вольт переменного тока) до более подходящих 120 В переменного тока.

Решения для подачи напряжения потребителям

Понижающие трансформаторы в конечной точке энергопотребления

Есть ли способ одновременно реализовать преимущества повышения эффективности и снижения угрозы безопасности? Одним из решений может быть установка понижающих трансформаторов в конечной точке энергопотребления, как это должен делать американский турист, находясь в Европе.Однако это было бы дорого и неудобно для чего угодно, кроме очень малых нагрузок (где трансформаторы можно построить дешево) или очень больших нагрузок (где стоимость толстых медных проводов превысила бы стоимость трансформатора).

Две серии низковольтных нагрузок

Альтернативным решением может быть использование источника более высокого напряжения для подачи питания на две последовательно соединенные нагрузки с более низким напряжением. Этот подход сочетает в себе эффективность высоковольтной системы с безопасностью низковольтной системы:

Рисунок 4.18 Последовательно подключенные нагрузки 120 В перем. Тока, управляемые источником 240 В перем. Тока при общем токе 83,3 А.

Обратите внимание на маркировку полярности (+ и -) для каждого показанного напряжения, а также на однонаправленные стрелки для тока. По большей части я избегал обозначать «полярности» в цепях переменного тока, которые мы анализировали, даже несмотря на то, что обозначения действительны для обеспечения системы отсчета для фазы. В следующих разделах этой главы фазовые отношения станут очень важными, поэтому я введу эти обозначения в начале главы для вашего ознакомления.

Ток через каждую нагрузку такой же, как и в простой 120-вольтовой цепи, но токи не складываются, потому что нагрузки включены последовательно, а не параллельно. Напряжение на каждой нагрузке составляет всего 120 вольт, а не 240, поэтому запас прочности выше. Имейте в виду, что у нас все еще есть полные 240 вольт на проводах системы питания, но каждая нагрузка работает при пониженном напряжении. Если кто-то и будет шокирован, скорее всего, это произойдет из-за контакта с проводниками конкретной нагрузки, а не из-за контакта с основными проводами энергосистемы.

Модификации конструкции с двумя сериями нагрузок

У этой конструкции есть только один недостаток: последствия отказа одной нагрузки разомкнутой или выключенной (при условии, что каждая нагрузка имеет последовательный переключатель включения / выключения для прерывания тока) не благоприятны. В случае последовательной цепи, если бы одна из нагрузок разомкнулась, ток остановился бы и в другой нагрузке. По этой причине нам необходимо немного изменить дизайн:

Рисунок 4.19 Добавление нейтрального проводника позволяет управлять нагрузками индивидуально.\ circ [/ латекс] [латекс] I_1 = \ frac {P_1} {E_1} [/ латекс] [latex] = \ frac {10kW} {120V} [/ latex] [латекс] I_1 = 83,33 А [/ латекс] [латекс] I_2 = \ frac {P_2} {E_2} [/ латекс] [latex] = \ frac {10kW} {120V} [/ latex] [латекс] I_2 = 83,33 А [/ латекс] [латекс] P_ {всего} = (10кВт) + (10кВт) [/ латекс] [латекс] = (20кВт) [/ латекс]

Двухфазная система питания

Вместо одного источника питания на 240 В мы используем два источника питания на 120 В (в фазе друг с другом!), Последовательно для получения 240 В, затем подводим третий провод к точке соединения между нагрузками, чтобы справиться с возможностью одного загрузочное отверстие.Это называется энергосистемой с расщепленной фазой . Три провода меньшего размера по-прежнему дешевле, чем два провода, необходимые для простой параллельной конструкции, поэтому мы все еще впереди по эффективности. Проницательный наблюдатель заметит, что нейтральный провод должен передавать только разницы тока между двумя нагрузками обратно к источнику. В приведенном выше случае при идеально «сбалансированных» нагрузках, потребляющих одинаковое количество энергии, нейтральный провод пропускает нулевой ток.

Обратите внимание на то, как нейтральный провод подключен к заземлению со стороны источника питания.Это обычная особенность в энергосистемах, содержащих «нейтральные» провода, поскольку заземление нейтрального провода обеспечивает минимально возможное напряжение в любой момент времени между любым «горячим» проводом и заземлением.

Важным компонентом системы с разделенной фазой является двойной источник переменного напряжения. К счастью, спроектировать и построить его нетрудно. Поскольку большинство систем переменного тока в любом случае получают питание от понижающего трансформатора (понижая напряжение с высоких уровней распределения до напряжения пользовательского уровня, например 120 или 240), этот трансформатор может быть построен с вторичной обмоткой с центральным отводом:

Рисунок 4.20 Американское питание 120/240 В переменного тока поступает от сетевого трансформатора с центральным ответвлением.

Если переменный ток поступает непосредственно от генератора (генератора переменного тока), катушки могут быть аналогичным образом с центральным отводом для того же эффекта. Дополнительные расходы на включение центрального отвода в обмотку трансформатора или генератора минимальны.

Здесь действительно важны обозначения полярности (+) и (-). Это обозначение часто используется для обозначения фазировки нескольких источников напряжения переменного тока , поэтому ясно, помогают ли они («повышают») друг друга или противостоят («компенсируют») друг друга.Если бы не эта маркировка полярности, фазовые отношения между несколькими источниками переменного тока могли бы быть очень запутанными. Обратите внимание, что на схеме источники с расщепленной фазой (каждый 120 вольт 0 °) с отметками полярности (+) — (-), как и батареи с последовательным подключением, альтернативно могут быть представлены как таковые:

Рисунок 4.21. Источник 120/240 В переменного тока с разделенной фазой эквивалентен двум последовательным источникам переменного тока 120 В переменного тока.

Чтобы математически рассчитать напряжение между «горячими» проводами, мы должны из вычесть напряжений, потому что их отметки полярности показывают, что они противоположны друг другу:

Полярный

[латекс] \ begin {align} & 120 \ angle 0 \ text {°} \\ — & 120 \ angle 180 \ text {°} \\ = & \ pmb {120 \ angle 0 \ text {°}} \ конец {align} [/ latex]

прямоугольный

[латекс] \ begin {align} & 120 + \ text {j} 0 \ text {V} \\ — & (- {120} + \ text {j} 0) \ text {V} \\ = & \ pmb {240 + \ text {j} 0 \ text {V}} \ end {align} [/ latex]

Если мы отметим общую точку подключения двух источников (нейтральный провод) одинаковым знаком полярности (-), мы должны выразить их относительные фазовые сдвиги как разнесенные на 180 °.В противном случае мы бы обозначили два источника напряжения, прямо противоположных друг другу, что дало бы 0 вольт между двумя «горячими» проводниками. Почему я трачу время на уточнение отметок полярности и фазовых углов? В следующем разделе будет больше смысла!

Системы электропитания в американских домах и легкой промышленности чаще всего бывают двухфазными, обеспечивая так называемое питание 120/240 В переменного тока. Термин «разделенная фаза» просто относится к источнику питания с разделением напряжения в такой системе. В более общем смысле этот тип источника питания переменного тока называется однофазным , , потому что оба сигнала напряжения синфазны или синхронизированы друг с другом.

Термин «однофазный» противопоставляется другому типу энергосистемы, называемому «многофазный», который мы собираемся изучить подробно. Приносим извинения за длинное введение, приведшее к заглавной теме этой главы. Преимущества многофазных систем питания становятся более очевидными, если сначала хорошо разбираться в однофазных системах.

  • Однофазные системы питания определяются наличием источника переменного тока только с одной формой волны напряжения.
  • A , двухфазная система питания — это система с несколькими (синфазными) источниками переменного напряжения, подключенными последовательно, обеспечивающими питание нагрузки более чем одним напряжением и более чем двумя проводами. Они используются в первую очередь для достижения баланса между эффективностью системы (низкие токи в проводниках) и безопасностью (низкие напряжения нагрузки).
  • Источники переменного тока с разделенной фазой могут быть легко созданы путем отвода обмоток катушек трансформаторов или генераторов переменного тока по центру.

Фаза переменного тока

Все начинает усложняться, когда нам нужно связать два или более переменного напряжения или тока, которые не совпадают друг с другом.Под «несоответствием» я подразумеваю, что две формы сигнала не синхронизированы: их пики и нулевые точки не совпадают в одни и те же моменты времени. График на рисунке ниже иллюстрирует это.

Рис. 4.22. Формы волн вне фазы

Две волны, показанные выше (A и B), имеют одинаковую амплитуду и частоту, но они не совпадают друг с другом. Технически это называется фазовым сдвигом . Ранее мы видели, как можно построить «синусоидальную волну», вычислив тригонометрическую синусоидальную функцию для углов от 0 до 360 градусов, то есть полного круга.Начальной точкой синусоидальной волны была нулевая амплитуда при нулевом градусе, прогрессирующая до полной положительной амплитуды при 90 градусах, нуля при 180 градусах, полной отрицательной при 270 градусах и возврата к начальной точке нуля при 360 градусах. Мы можем использовать эту угловую шкалу вдоль горизонтальной оси нашего графика формы волны, чтобы выразить, насколько далеко одна волна отличается от другой:

Рис. 4.23. Волна A опережает волну B на 45 °.

Сдвиг между этими двумя формами волны составляет около 45 градусов, причем волна «A» опережает волну «B».Выборка различных фазовых сдвигов представлена ​​на следующих графиках, чтобы лучше проиллюстрировать эту концепцию:

Рисунок 4.24 Примеры фазовых сдвигов.

Поскольку формы сигналов в приведенных выше примерах имеют одинаковую частоту, они будут отклоняться от шага на одинаковую угловую величину в каждый момент времени. По этой причине мы можем выразить фазовый сдвиг для двух или более сигналов одной и той же частоты как постоянную величину для всей волны, а не просто выражение сдвига между любыми двумя конкретными точками вдоль волн.То есть можно с уверенностью сказать что-то вроде: «Напряжение« A »сдвинуто по фазе на 45 градусов с напряжением« B »». Какая бы форма волны ни была впереди в своем развитии, считается, что она будет впереди , а вторая — , отстающей от . Фазовый сдвиг, как и напряжение, всегда является измерением относительно двух вещей. На самом деле не существует такой вещи, как форма волны с абсолютным измерением фазы , потому что не существует известного универсального эталона для фазы. Обычно при анализе цепей переменного тока форма волны напряжения источника питания используется в качестве эталона для фазы, это напряжение указано как «xxx вольт при 0 градусах».”Любое другое переменное напряжение или ток в этой цепи будет иметь фазовый сдвиг, выраженный в терминах относительно этого напряжения источника. Это то, что делает расчеты цепей переменного тока более сложными, чем вычисления постоянного тока. При применении закона Ома и закона Кирхгофа величины переменного напряжения и тока должны отражать фазовый сдвиг, а также амплитуду. Математические операции сложения, вычитания, умножения и деления должны оперировать этими величинами фазового сдвига, а также амплитуды. К счастью, существует математическая система величин, называемая комплексных чисел , идеально подходящая для этой задачи представления амплитуды и фазы.Поскольку комплексные числа так важны для понимания цепей переменного тока, следующая глава будет посвящена только этому предмету.

  • Фазовый сдвиг — это когда две или более формы сигналов не совпадают друг с другом.
  • Величина фазового сдвига между двумя волнами может быть выражена в градусах, как определено в градусах на горизонтальной оси графика формы волны, используемой при построении тригонометрической синусоидальной функции.
  • Сигнал с опережением определяется как один сигнал, который опережает другие в своем развитии.Сигнал с запаздыванием — это сигнал, который отстает от другого. Пример:
  • Расчеты для анализа цепей переменного тока должны учитывать как амплитуду, так и фазовый сдвиг формы волны напряжения и тока, чтобы быть полностью точными. Это требует использования математической системы под названием комплексных чисел .

Что такое двухфазные системы питания?

Двухфазные энергосистемы достигают высокого КПД проводников. и — низкий риск для безопасности за счет разделения общего напряжения на меньшие части и питания нескольких нагрузок с этими меньшими напряжениями при одновременном потреблении токов на уровнях, типичных для системы полного напряжения.Между прочим, этот метод работает так же хорошо для систем питания постоянного тока, как и для однофазных систем переменного тока. Такие системы обычно упоминаются как трехпроводные системы , , а не с расщепленной фазой , потому что понятие «фаза» ограничивается переменным током.

Но из нашего опыта работы с векторами и комплексными числами мы знаем, что напряжения переменного тока не всегда складываются, как мы думаем, если они не совпадают по фазе друг с другом. Этот принцип, применяемый к энергосистемам, может быть использован для создания энергосистем с еще более высоким КПД проводников и меньшей опасностью поражения электрическим током, чем с расщепленными фазами.

Два источника напряжения вне фазы 120 °

Предположим, что у нас есть два источника переменного напряжения, подключенных последовательно, как в системе с расщепленными фазами, которую мы видели раньше, за исключением того, что каждый источник напряжения сдвинул по фазе на 120 ° по фазе с другим: (рисунок ниже)

Пара источников 120 В перем. Тока, фазированных под углом 120 °, аналогично расщепленной фазе.

Поскольку каждый источник напряжения составляет 120 вольт, и каждый нагрузочный резистор подключен непосредственно параллельно своему соответствующему источнику, напряжение на каждой нагрузке также должно составлять 120 вольт.Учитывая ток нагрузки 83,33 А, каждая нагрузка все равно должна рассеивать 10 киловатт мощности. Однако напряжение между двумя «горячими» проводами не составляет 240 вольт (120 ∠ 0 ° — 120 ∠ 180 °), потому что разность фаз между двумя источниками не равна 180 °. Вместо этого напряжение:

[латекс] E_ {total} = (120 \ text {V} \ angle \ text {0 °}) — (120 \ text {V} \ angle \ text {120 °}) [/ latex]

[латекс] \ pmb {E_ {total} = 207,85 \ text {V} \ angle \ text {-30 °}} [/ латекс]

Условно мы говорим, что напряжение между «горячими» проводниками составляет 208 вольт (округляя в большую сторону), и, таким образом, напряжение системы питания обозначено как 120/208 В.

Если мы посчитаем ток через «нейтральный» провод, то обнаружим, что он не равен нулю, даже при сбалансированном сопротивлении нагрузки. Закон Кирхгофа говорит нам, что токи, входящие и выходящие из узла между двумя нагрузками, должны быть равны нулю:

[латекс] I _ {\ text {load # 1}} + I _ {\ text {load # 2}} + I _ {\ text {нейтральный}} = 0A [/ latex]

[латекс] \ begin {align} I _ {\ text {нейтральный}} = & -I _ {\ text {load # 1}} — I _ {\ text {load # 2}} \\ = & — (83.33 A \ angle \ text {0 °}) — (83,33 A \ angle \ text {120 °}) \\ = & \ pmb {83,33 A \ angle \ text {240 °}} \ text {или} \ pmb { 83,33 A \ angle \ text {-120 °}} \ end {align} [/ latex]

Итак, мы обнаруживаем, что «нейтральный» провод имеет полный ток 83,33 А, как и каждый «горячий» провод.

Обратите внимание, что мы все еще передаем 20 кВт общей мощности двум нагрузкам, при этом «горячий» провод каждой нагрузки, как и раньше, выдерживает 83,33 А. При одинаковом количестве тока через каждый «горячий» провод, мы должны использовать медные проводники одинакового сечения, поэтому мы не снизили стоимость системы по сравнению с системой с разделением фаз 120/240.Тем не менее, мы добились повышения безопасности, поскольку общее напряжение между двумя «горячими» проводниками на 32 вольт ниже, чем было в системе с расщепленной фазой (208 вольт вместо 240 вольт).

Три источника напряжения, не совпадающих по фазе на 120 °

Тот факт, что нейтральный провод пропускает ток 83,33 А, открывает интересную возможность: поскольку он в любом случае несет ток, почему бы не использовать этот третий провод в качестве еще одного «горячего» проводника, запитав другой нагрузочный резистор третьим источником 120 В, имеющим фазу. угол 240 °? Таким образом, мы могли бы передать на больше мощности (еще 10 кВт) без необходимости добавления дополнительных проводников.Посмотрим, как это может выглядеть:

Рис. 4.25. Если третья нагрузка смещена под углом 120 ° к двум другим, токи такие же, как и для двух нагрузок.

Многофазная цепь

Схема, которую мы анализировали с тремя источниками напряжения, называется многофазной цепью . Префикс «поли» просто означает «более одного», как в « поли теизм» (вера в более чем одно божество), « поли гон» (геометрическая форма, состоящая из нескольких отрезков линии: например, пятиугольник и шестиугольник ) и « поли атомный» (вещество, состоящее из нескольких типов атомов).Поскольку все источники напряжения находятся под разными фазовыми углами (в данном случае три разных фазовых угла), это схема « поли фаз». В частности, это трехфазная цепь , которая используется преимущественно в крупных системах распределения электроэнергии.

Однофазная система

Давайте рассмотрим преимущества трехфазной системы питания по сравнению с однофазной системой с эквивалентным напряжением нагрузки и мощностью. Однофазная система с тремя нагрузками, подключенными напрямую параллельно, будет иметь очень высокий общий ток (83.33 раза по 3, или 250 ампер.

Рисунок 4.26 Для сравнения, три нагрузки по 10 кВт в системе 120 В переменного тока потребляют 250 А.

Для этого потребуется медный провод сечением 3/0 ( — очень большой, !), По цене около 510 фунтов на тысячу футов и со значительным ценником. Если бы расстояние от источника до нагрузки составляло 1000 футов, нам потребовалось бы более полутонны медного провода для выполнения этой работы.

Двухфазная система

С другой стороны, мы могли бы построить двухфазную систему с двумя нагрузками по 15 кВт, 120 вольт.

Рисунок 4.27. Система с разделенной фазой потребляет половину тока 125 А при 240 В переменного тока по сравнению с системой на 120 В переменного тока.

Наш ток вдвое меньше того, что было при простой параллельной схеме, что является большим улучшением. Мы могли бы обойтись без использования медного провода калибра 2 с общей массой около 600 фунтов, из расчета около 200 фунтов на тысячу футов с тремя участками по 1000 футов каждый между источником и нагрузками. Тем не менее, мы также должны учитывать повышенную угрозу безопасности, связанную с наличием в системе 240 вольт, даже если каждая нагрузка получает только 120 вольт.В целом существует большая вероятность поражения электрическим током.

Трехфазная система

Если сравнить эти два примера с нашей трехфазной системой (рис. Выше), преимущества очевидны. Во-первых, токи в проводниках немного меньше (83,33 ампер против 125 или 250 ампер), что позволяет использовать гораздо более тонкий и легкий провод. Мы можем использовать провод калибра 4 с плотностью около 125 фунтов на тысячу футов, что составит 500 фунтов (четыре участка по 1000 футов каждый) для нашей примерной схемы.Это обеспечивает значительную экономию затрат по сравнению с системой с разделением фаз, с дополнительным преимуществом, заключающимся в том, что максимальное напряжение в системе ниже (208 против 240).

Остается ответить на один вопрос: как вообще можно получить три источника переменного напряжения, фазовые углы которых разнесены точно на 120 °? Очевидно, что мы не можем отводить по центру обмотку трансформатора или генератора переменного тока, как мы это делали в системе с расщепленной фазой, поскольку это может дать нам только формы волны напряжения, которые либо совпадают по фазе, либо не совпадают по фазе на 180 °.Возможно, мы могли бы придумать способ использования конденсаторов и катушек индуктивности для создания фазовых сдвигов на 120 °, но тогда эти фазовые сдвиги также будут зависеть от фазовых углов наших импедансов нагрузки (замена резистивной нагрузки емкостной или индуктивной нагрузкой изменится. все!).

Лучший способ получить нужный сдвиг фаз — это генерировать его в источнике: сконструировать генератор переменного тока (генератор переменного тока), обеспечивающий мощность таким образом, чтобы вращающееся магнитное поле проходило через три набора проволочных обмоток, каждая из которых установите на расстоянии 120o по окружности машины, как показано на рисунке ниже.

Рисунок 4.28 (a) Однофазный генератор переменного тока, (b) Трехфазный генератор переменного тока.

Вместе шесть «полюсных» обмоток трехфазного генератора переменного тока соединены, чтобы образовать три пары обмоток, каждая пара вырабатывает переменное напряжение с фазовым углом 120 °, смещенным от любой из двух других пар обмоток. Межсоединения между парами обмоток (как показано для однофазного генератора переменного тока: перемычка между обмотками 1a и 1b) для простоты не показаны на чертеже трехфазного генератора.

В нашем примере схемы мы показали три источника напряжения, соединенные вместе в конфигурации «Y» (иногда называемой конфигурацией «звезда»), с одним выводом каждого источника, привязанным к общей точке (узлу, к которому мы подключили «нейтраль»). Дирижер). Обычный способ изобразить эту схему подключения — нарисовать обмотки в форме буквы «Y», как показано на рисунке ниже.

Рисунок 4.29. Y-образная конфигурация генератора.

Конфигурация «Y» — не единственный доступный нам вариант, но, вероятно, поначалу ее легче всего понять.Подробнее об этом мы поговорим позже в этой главе.

  • Однофазная система питания — это система, в которой имеется только один источник переменного напряжения (одна форма волны напряжения источника).
  • Система питания с расщепленной фазой — это система, в которой есть два источника напряжения, сдвинутых по фазе на 180 ° друг от друга, которые питают две последовательно соединенные нагрузки. Преимуществом этого является возможность иметь более низкие токи в проводниках при сохранении низкого напряжения нагрузки по соображениям безопасности.
  • A многофазная система питания использует несколько источников напряжения, находящихся под разными углами фаз друг от друга (много «фаз» формы волны напряжения в работе). Многофазная система питания может обеспечивать большую мощность при меньшем напряжении с проводниками меньшего сечения, чем однофазные или двухфазные системы.
  • Источники сдвинутого по фазе напряжения, необходимые для многофазной энергосистемы, создаются в генераторах переменного тока с несколькими наборами обмоток проводов. Эти комплекты обмоток расположены по окружности вращения ротора под желаемым углом (-ами).

Трехфазный генератор

Давайте возьмем схему трехфазного генератора переменного тока, представленную ранее, и посмотрим, что происходит при вращении магнита.

Рисунок 4.30 Трехфазный генератор переменного тока

Фазовый сдвиг на 120 ° является функцией фактического углового сдвига трех пар обмоток. Если магнит вращается по часовой стрелке, обмотка 3 будет генерировать свое пиковое мгновенное напряжение ровно 120 ° (вращения вала генератора) после обмотки 2, которое достигнет своего пика 120 ° после обмотки 1.Магнит проходит через каждую пару полюсов в разных положениях во вращательном движении вала. То, где мы решим разместить обмотки, будет определять величину фазового сдвига между формами сигналов переменного напряжения обмоток. Если мы сделаем обмотку 1 нашим «эталонным» источником напряжения для фазового угла (0 °), то обмотка 2 будет иметь фазовый угол -120 ° (120 ° с запаздыванием или 240 ° вперед), а обмотка 3 — угол -240 °. (или 120 ° вперед).

Чередование фаз

Эта последовательность фазовых сдвигов имеет определенный порядок.Для вращения вала по часовой стрелке порядок 1-2-3 (сначала обмотка 1 пика, затем обмотка 2, затем обмотка 3). Этот порядок повторяется, пока мы продолжаем вращать вал генератора.

Рисунок 4.31 Чередование фаз по часовой стрелке: 1-2-3.

Однако, если мы обратим вращение вала генератора переменного тока (повернем его против часовой стрелки), магнит пройдет мимо пар полюсов в противоположной последовательности. Вместо 1-2-3 у нас будет 3-2-1.Теперь форма волны обмотки 2 будет опережением 120 ° впереди 1 вместо запаздывания, а 3 будет еще на 120 ° впереди 2.

Рисунок 4.32 Последовательность фаз при вращении против часовой стрелки: 3-2-1.

Порядок последовательностей сигналов напряжения в многофазной системе называется чередованием фаз или чередованием фаз . Если мы используем многофазный источник напряжения для питания резистивных нагрузок, чередование фаз не будет иметь никакого значения. Независимо от того, 1-2-3 или 3-2-1, значения напряжения и тока будут одинаковыми.Как мы вскоре увидим, есть некоторые применения трехфазного питания, которые зависят от того, имеет ли чередование фаз ту или иную сторону.

Детекторы чередования фаз

Поскольку вольтметры и амперметры были бы бесполезны для определения чередования фаз в действующей системе питания, нам нужен какой-то другой прибор, способный выполнять эту работу.

В одной оригинальной схеме используется конденсатор для введения сдвига фаз между напряжением и током, который затем используется для определения последовательности путем сравнения яркости двух индикаторных ламп на рисунке ниже.

Рисунок 4.33 Детектор последовательности фаз сравнивает яркость двух ламп.

Две лампы имеют одинаковое сопротивление нити накала и одинаковую мощность. Конденсатор рассчитан на то, чтобы иметь примерно такое же реактивное сопротивление на системной частоте, что и сопротивление каждой лампы. Если бы конденсатор был заменен резистором, равным сопротивлению ламп, две лампы светились бы с одинаковой яркостью, схема сбалансирована. Однако конденсатор вносит фазовый сдвиг между напряжением и током в третьем плече цепи, равный 90 °.Этот фазовый сдвиг больше 0 °, но меньше 120 ° приводит к смещению значений напряжения и тока на двух лампах в соответствии с их фазовым сдвигом относительно фазы 3.

Обмен горячими проводами

Существует намного более простой способ изменить чередование фаз, чем реверсировать чередование генератора: просто поменяйте местами любые два из трех «горячих» проводов, идущих к трехфазной нагрузке.

Этот трюк станет более понятным, если мы еще раз посмотрим на последовательность фаз трехфазного источника напряжения:

1-2-3 вращение: 1-2-3-1-2-3-1-2-3-1-2-3-1-2-3.. .

3-2-1 вращение: 3-2-1-3-2-1-3-2-1-3-2-1-3-2-1. . .

То, что обычно обозначается как чередование фаз «1-2-3», можно также назвать «2-3-1» или «3-1-2», идя слева направо в числовой строке выше? Точно так же противоположное вращение (3-2-1) можно так же легко назвать «2-1-3» или «1-3-2».

Начиная с чередования фаз 3-2-1, мы можем попробовать все возможности для замены любых двух проводов за раз и посмотреть, что произойдет с результирующей последовательностью на рисунке ниже.

Рисунок 4.34. Все возможности перестановки любых двух проводов.

Независимо от того, какую пару «горячих» проводов из трех мы выберем для замены, чередование фаз в конечном итоге меняется на противоположное (1-2-3 меняются на 2-1-3, 1-3-2 или 3-2. -1, все равнозначно).

  • Чередование фаз или последовательность фаз — это порядок, в котором формы волны напряжения многофазного источника переменного тока достигают своих соответствующих пиков. Для трехфазной системы есть только две возможные последовательности фаз: 1-2-3 и 3-2-1, соответствующие двум возможным направлениям вращения генератора.
  • Чередование фаз не влияет на резистивные нагрузки, но влияет на несбалансированные реактивные нагрузки, как показано в работе схемы детектора поворота фаз.
  • Чередование фаз можно изменить, поменяв местами любые два из трех «горячих» выводов, подающих трехфазное питание на трехфазную нагрузку.

Трехфазное соединение звездой (Y)

Первоначально мы исследовали идею трехфазных систем питания, соединив три источника напряжения вместе в так называемой конфигурации «Y» (или «звезда»).Эта конфигурация источников напряжения характеризуется общей точкой подключения, соединяющей одну сторону каждого источника.

Рисунок 4.35 Трехфазное соединение «Y» имеет три источника напряжения, подключенных к общей точке.

Если мы нарисуем схему, показывающую, что каждый источник напряжения представляет собой катушку с проводом (генератор переменного тока или обмотку трансформатора), и произведем небольшую перестановку, конфигурация «Y» станет более очевидной на рисунке ниже.

Рисунок 4.36. Трехфазное четырехпроводное соединение «Y» использует «общий» четвертый провод.

Три проводника, идущие от источников напряжения (обмоток) к нагрузке, обычно называются линиями , , а сами обмотки обычно называются фазами , . В системе с Y-соединением может или не может быть (рисунок ниже) нейтральный провод, присоединенный к точке соединения посередине, хотя это, безусловно, помогает облегчить потенциальные проблемы, если один из элементов трехфазной нагрузки выйдет из строя, как обсуждалось. ранее.

Рисунок 4.37 Трехфазное трехпроводное соединение «Y» не использует нейтральный провод.

Значения напряжения и тока в трехфазных системах

Когда мы измеряем напряжение и ток в трехфазных системах, нам нужно указать , где мы измеряем . Напряжение сети означает величину напряжения, измеренного между любыми двумя проводниками линии в сбалансированной трехфазной системе. В приведенной выше схеме линейное напряжение составляет примерно 208 вольт. Фазное напряжение относится к напряжению, измеренному на любом одном компоненте (обмотка источника или сопротивление нагрузки) в сбалансированном трехфазном источнике или нагрузке.Для схемы, показанной выше, фазное напряжение составляет 120 вольт. Термины линейный ток и фазный ток следуют той же логике: первый относится к току через любой один линейный проводник, а второй — к току через любой один компонент.

Источники и нагрузки, подключенные по схеме Y, всегда имеют линейные напряжения выше фазных, а линейные токи равны фазным токам. Если источник или нагрузка, подключенные по схеме Y, сбалансированы, линейное напряжение будет равно фазному напряжению, умноженному на квадратный корень из 3:

.

Для цепей «Y»:

[латекс] \ begin {align} \ tag {4.1} \ text {E} _ {\ text {line}} & = \ sqrt {3} \ text {E} _ {\ text {phase}} \\ \ text {I} _ {\ text {line}} & = \ text {I} _ {\ text {phase}} \ end {align} [/ latex]

Однако конфигурация «Y» не единственная допустимая для соединения трехфазного источника напряжения или элементов нагрузки.

Трехфазная конфигурация треугольником (Δ)

Другая конфигурация известна как «Дельта» из-за ее геометрического сходства с одноименной греческой буквой (Δ). Обратите внимание на полярность каждой обмотки на рисунке ниже.

Рисунок 4.38 Трехфазное, трехпроводное соединение Δ не имеет общего.

На первый взгляд кажется, что три таких источника напряжения создают короткое замыкание, электроны текут по треугольнику, и ничто иное, как внутренний импеданс обмоток, сдерживает их. Однако из-за фазовых углов этих трех источников напряжения это не так.

Закон Кирхгофа о напряжении при соединении треугольником

Одной из быстрых проверок этого является использование закона Кирхгофа по напряжению, чтобы увидеть, равны ли три напряжения вокруг контура нулю.Если они это сделают, тогда не будет доступного напряжения для проталкивания тока вокруг этого контура и, следовательно, не будет циркулирующего тока. Начиная с верхнего витка и двигаясь против часовой стрелки, наше выражение KVL выглядит примерно так:

[латекс] (120 \ text {V} \ angle \ text {0 °}) + (120 \ text {V} \ angle \ text {240 °}) + (120 \ text {V} \ angle \ text { 120 °}) [/ латекс]

Все равно нулю?

Да!

Действительно, если мы сложим эти три векторные величины вместе, они в сумме дадут ноль.Другой способ проверить тот факт, что эти три источника напряжения могут быть соединены вместе в петлю без возникновения циркулирующих токов, — это разомкнуть петлю в одной точке соединения и рассчитать напряжение на разрыве:

Рисунок 4.39 Напряжение в открытом состоянии Δ должно быть нулевым.

Начиная с правой обмотки (120 В 120 °) и продвигаясь против часовой стрелки, наше уравнение KVL выглядит следующим образом:

[латекс] (120 \ text {V} \ angle \ text {120 °}) + (120 \ text {V} \ angle \ text {0 °}) + (120 \ text {V} \ angle \ text { 240 °}) + \ text {E} _ {\ text {break}} = 0 [/ латекс]

[латекс] 0 + \ text {E} _ {\ text {break}} = 0 [/ латекс]

[латекс] \ text {E} _ {\ text {break}} = 0 [/ латекс]

Конечно, на разрыве будет нулевое напряжение, что говорит нам о том, что ток не будет циркулировать в треугольной петле обмоток, когда это соединение будет выполнено.

Установив, что трехфазный источник напряжения, подключенный по схеме Δ, не сгорит до резкости из-за циркулирующих токов, перейдем к его практическому использованию в качестве источника питания в трехфазных цепях. Поскольку каждая пара линейных проводов подключается непосредственно к одной обмотке в цепи Δ, линейное напряжение будет равно фазному напряжению. И наоборот, поскольку каждый линейный проводник присоединяется к узлу между двумя обмотками, линейный ток будет векторной суммой двух соединяющихся фазных токов.Неудивительно, что результирующие уравнения для Δ-конфигурации выглядят следующим образом:

Для цепей Δ («треугольник»):

[латекс] \ begin {align} \ tag {4.2} \ text {E} _ {\ text {line}} & = \ text {E} _ {\ text {phase}} \\ \ text {I} _ {\ text {line}} & = \ sqrt {3} \ text {I} _ {\ text {phase}} \ end {align} [/ latex]

Анализ схемы примера соединения треугольником

Давайте посмотрим, как это работает на примере схемы: (Рисунок ниже)

Когда каждое сопротивление нагрузки получает 120 В от соответствующей фазной обмотки источника, ток в каждой фазе этой цепи будет 83.33 ампера:

[латекс] I \: = \ frac {P} {E} [/ латекс]

[латекс] I \: = \ frac {10 кВт} {120 В} [/ латекс]

[латекс] \ pmb {I = 83.33A} \ text {(для каждого нагрузочного резистора и обмотки источника)} [/ латекс]

[латекс] \ text {I} _ {\ text {line}} = √3 \ text {I} _ {\ text {phase}} [/ latex]

[латекс] \ text {I} _ {\ text {line}} = √3 (83,33 A) [/ латекс]

[латекс] \ pmb {\ text {I} _ {\ text {line}} = 144,34 A} [/ latex]

Преимущества трехфазной системы Delta

Таким образом, ток каждой линии в этой трехфазной энергосистеме равен 144.34 ампера, что значительно больше, чем линейные токи в системе с Y-соединением, которую мы рассматривали ранее. Можно задаться вопросом, не потеряли ли мы здесь все преимущества трехфазного питания, учитывая тот факт, что у нас такие большие токи в проводниках, что требует более толстого и более дорогостоящего провода. Ответ — нет. Хотя для этой схемы потребуются три медных проводника калибра 1 (на расстоянии 1000 футов между источником и нагрузкой это составляет чуть более 750 фунтов меди для всей системы), это все же меньше, чем 1000+ фунтов меди, необходимых для Однофазная система, обеспечивающая одинаковую мощность (30 кВт) при одинаковом напряжении (120 В между проводниками).

Одним из явных преимуществ системы с Δ-соединением является отсутствие нейтрального провода. В системе с Y-соединением нейтральный провод был необходим на случай, если одна из фазных нагрузок выйдет из строя (или отключится), чтобы не допустить изменения фазных напряжений на нагрузке. Это не обязательно (или даже возможно!) В схеме с Δ-соединением. Когда каждый элемент фазы нагрузки напрямую подключен к соответствующей обмотке фазы источника, фазное напряжение будет постоянным независимо от обрывов в элементах нагрузки.

Пожалуй, самым большим преимуществом источника с подключением по схеме Δ является его отказоустойчивость. Одна из обмоток трехфазного источника, подключенного по схеме Δ, может открыться при отказе (рисунок ниже) без влияния на напряжение или ток нагрузки!

Рис. 4.40. Даже при выходе из строя обмотки источника линейное напряжение по-прежнему составляет 120 В, а напряжение фазы нагрузки по-прежнему составляет 120 В. Единственная разница заключается в дополнительном токе в оставшихся функциональных обмотках источника.

Единственным последствием разрыва обмотки источника для источника, подключенного по схеме Δ, является увеличение фазного тока в остальных обмотках.Сравните эту отказоустойчивость с системой с Y-соединением, имеющей обмотку с открытым источником, на рисунке ниже.

Рисунок 4.41. Разомкнутая обмотка источника «Y» уменьшает вдвое напряжение на двух нагрузках подключенной нагрузки Δ.

При Δ-подключенной нагрузке два сопротивления испытывают пониженное напряжение, в то время как одно остается на исходном линейном напряжении, 208. Нагрузка, подключенная по схеме Y, постигает еще худшую судьбу (рисунок ниже) с таким же отказом обмотки в схеме с Y-подключением. источник.

Рисунок 4.42 Обмотка с открытым истоком системы «Y-Y» снижает вдвое напряжение на двух нагрузках и полностью теряет одну нагрузку.

В этом случае два сопротивления нагрузки испытывают пониженное напряжение, а третье полностью теряет напряжение питания! По этой причине источники с Δ-соединением предпочтительнее для надежности. Однако, если требуются двойные напряжения (например, 120/208) или предпочтительны для более низких линейных токов, предпочтительной конфигурацией являются системы с Y-соединением.

  • Проводники, подключенные к трем точкам трехфазного источника или нагрузки, называются линиями .
  • Три компонента, составляющие трехфазный источник или нагрузку, называются фазами .
  • Напряжение линии — это напряжение, измеренное между любыми двумя линиями в трехфазной цепи.
  • Фазное напряжение — это напряжение, измеренное на отдельном компоненте трехфазного источника или нагрузки.
  • Линейный ток — это ток через любую линию между трехфазным источником и нагрузкой.
  • Фазный ток — это ток через любой компонент, содержащий трехфазный источник или нагрузку.
  • В симметричных Y-цепях линейное напряжение равно фазному напряжению, умноженному на квадратный корень из 3, а линейный ток равен фазному току.
  • Для цепей «Y»:

[латекс] \ text {E} _ {\ text {line}} = \ sqrt {3} \ text {E} _ {\ text {phase}} [/ latex]

[латекс] \ text {I} _ {\ text {line}} = \ text {I} _ {\ text {phase}} [/ latex]

  • В симметричных Δ-цепях линейное напряжение равно фазному напряжению, а линейный ток равен фазному току, умноженному на квадратный корень из 3.
  • Для цепей Δ («треугольник»):

[латекс] \ text {E} _ {\ text {line}} = \ text {E} _ {\ text {phase}} [/ latex]

[латекс] \ text {I} _ {\ text {line}} = \ sqrt {3} \ text {I} _ {\ text {phase}} [/ latex]

  • Трехфазные источники напряжения, подключенные по схеме Δ, обеспечивают большую надежность в случае отказа обмотки, чем источники, подключенные по схеме Y. Однако источники, подключенные по схеме Y, могут выдавать такое же количество энергии при меньшем линейном токе, чем источники, подключенные по схеме Δ.

Высеченный символ переменного тока переменного тока — @ StickerApp Shop

Политика в отношении файлов cookie

StickerApp использует файлы cookie на веб-сайте stickerapp.com

Что такое cookie?

Файл cookie — это небольшой текстовый файл с информацией, которая сохраняется на вашем компьютере, смартфоне или планшете при посещении веб-сайта. Файлы cookie позволяют идентифицировать вас как посетителя веб-сайта и используются для более эффективной работы веб-сайта. Файлы cookie могут использоваться для сбора статистики, исследования рынка или для персонализации рекламы и предложений.

Есть два типа файлов cookie.Один тип будет оставаться на вашем компьютере в течение определенного времени. Другой тип является временным и будет использоваться только до тех пор, пока вы находитесь на веб-сайте, после чего он исчезнет.

Файлы cookie могут иметь разных владельцев. Многие веб-сайты используют сторонние файлы cookie. Эти файлы cookie обычно используются для сбора статистики и улучшения контента и рекламы, они поступают от разных деловых партнеров.

Почему StickerApp использует файлы cookie?


StickerApp использует на веб-сайте как постоянные, так и временные файлы cookie.Мы также используем сторонние файлы cookie. Мы используем файлы cookie, чтобы улучшить наш веб-сайт, сделать его более удобным для пользователей и в целом улучшить взаимодействие с пользователем.


Некоторые файлы cookie необходимы для того, чтобы вы могли использовать наш веб-сайт и совершать покупки. С помощью наших файлов cookie мы также можем анализировать поток клиентов на веб-сайте и, таким образом, улучшать веб-сайт и нашу службу поддержки. С помощью файлов cookie мы сохраняем информацию о том, какие страницы посещают пользователи, что позволяет нам корректировать предложения и маркетинг.

Какие файлы cookie используются на веб-сайте StickerApp?

StickerApp использует инструмент Google Analytics для сбора анонимной информации об использовании вашего веб-сайта. Эта информация не содержит никакой личной информации и не позволяет нам идентифицировать каких-либо конкретных пользователей. Google Analytics — это сторонний файл cookie. Эти файлы cookie используются, чтобы предоставить нам более четкое представление о том, что работает, а что нет на веб-сайте.Это позволяет нам получать статистику, например, об общих привычках пользователей, последовательности посещенных страниц, тем, какие страницы наиболее популярны и какие пути ведут к продажам.

Adyen — это поставщик услуг по карточным платежам, который мы используем. Adyen использует файлы cookie, чтобы сделать платежи возможными и предотвратить мошенничество. При обнаружении мошенничества Adyen может использовать свои файлы cookie для остановки транзакций на других веб-сайтах, которые также используют платежные решения Adyens.

Google Ads, Bing Pixel и Facebook Pixel также являются сторонними файлами cookie.Они собирают анонимную информацию, чтобы мы могли изучить покупательское поведение и эффективность нашей рекламы. Это позволяет нам создавать целевые группы с определенным поведением и более эффективно таргетировать рекламу.

Ниже приведен список файлов cookie, которые мы используем.

Необходимые файлы cookie

Эти файлы cookie необходимы для работы нашего веб-сайта, а также для того, чтобы вы могли использовать корзину и оформлять заказ на нашем веб-сайте.

Тип файла cookie

Назначение

Срок службы

Третья часть cookie

Сессионные файлы cookie

Чтобы сохранить личные настройки, войдите в свою учетную запись, обработайте корзину / оформление заказа и т. Д.

Максимум, 30 дней

Нет, это собственные файлы cookie StickerApps.

Адиен

Чтобы разрешить карточные платежи через Adyen, а также предотвращать и отслеживать мошенничество.

2 года

Адиен

Файлы cookie для статистики и маркетинга
Все эти файлы cookie являются сторонними файлами cookie. Эти файлы cookie дают нам общее представление об использовании веб-сайта пользователем.Если вы не хотите принимать сторонние файлы cookie, есть возможность заблокировать эти типы файлов cookie в нашем браузере, изменив настройки.

Анализ и целевой маркетинг. Отслеживает использование веб-сайта и взаимодействия.

1 год

Facebook

Тип файла cookie

Назначение

Срок службы

Третья часть cookie

Google Analytics


Статистика.Анализировать поведение пользователей на нашем веб-сайте и измерять маркетинговые результаты.

2 года

Google

Google Реклама

Анализ и целевой маркетинг. Отслеживает использование веб-сайта и взаимодействия.

Подробнее о том, как Google работает с рекламой и файлами cookie, можно узнать здесь:
https://policies.google.com/technologies/partner-sites

30 дней

Google

Пиксель Bing

Анализ и целевой маркетинг.Отслеживает использование веб-сайта и взаимодействия.

1 год

Microsoft

Пиксель Facebook

Анализ и целевой маркетинг. Отслеживает использование веб-сайта и взаимодействия.

1 год

Facebook

Пиксель Snapchat

Анализ и целевой маркетинг.Отслеживает использование веб-сайта и взаимодействия.

1 год

Snapchat


Файлы cookie на вашем устройстве

Большинство браузеров имеют стандартные настройки, разрешающие использование и хранение файлов cookie. Вы можете изменить свои настройки таким образом, чтобы хранение файлов cookie было заблокировано или ограничено. Браузер можно настроить таким образом, чтобы вы получали предупреждение каждый раз, когда веб-сайт пытается сохранить файл cookie на вашем устройстве.Вы также можете удалить все сохраненные файлы cookie. Как удалить файлы cookie или изменить свои настройки для них, обычно указывается в разделе справки браузеров.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *