Как посчитать Вт·ч (Wh) для перевозки литий-ионного
Для отправлений посылок или путешествий самолётом с литиевыми батареями, аккумуляторами, блоками зарядки нужно перевести ёмкость аккумулятора в ватт-часы (мера Вт·ч или Wh).
Метод, как посчитать ватт-часы аккумулятора, который мы приводим ниже, относится к любым перезаряжаемым литий-ионным элементам.
Производитель элемента питания иногда указывает характеристику ватт-часов (Wh) непосредственно на корпусе аккумулятора или повербанка.
«Прежде чем вскрывать сейф — проверь, не заперт ли он» © Мартин Лоуренс в к/ф «Бриллиантовый полицейский».
Как перевести ёмкость аккумулятора в Ватт-часы (Wh)
Чаще всего характеристика Вт·ч (Wh) на аккумуляторе не указана. Либо узнать это невозможно из-за конструктивной особенности (батарея находится внутри устройства, например).
В таком случае просто умножьте значение напряжения («Вольт») на ток («Ампер-часы»). Они могут быть известны из документации (либо с сайта производителя устройства/аккумулятора).
Вт·ч (Wh) = В (V) * А·ч (Ah)
Рассмотрим пример №1
Есть аккумулятор ёмкостью 4400 мАч с напряжением 11,1 Вольт (мы узнали это с сайта производителя устройства, из которого извлекли «банку»).
- 1. Разделим номинальное значение м·Ач на 1000, чтобы получить значение в А·ч.
- 2. 4400 / 1000 = 4,4 А·ч
- 3. Теперь мы умножим по формуле напряжение на значение в А·ч.
- 4. 4,4 А·ч * 11,1 В = 48,8 Вт·ч
Согласно правилам перевозки авиацией, мы можем взять 2 таких аккумулятора, чтобы уместиться в лимит 100 Вт·ч (ICAO). На практике, конечно, придётся побороться за это право (убедить сотрудников, что Ваши расчёты верны и требования организации IATA соблюдены).
Рассмотрим пример №2
Нужно перевезти батарею 12 Вольт ёмкостью 50 А·ч (например, для лодки или яхты). Возьмут ли её на борт самолёта?
- 1. Всё также умножаем по формуле напряжение на значение ёмкости.
- 2. 12 В * 50 А = 600 Вт·ч
Не возьмут. Это больше, чем даже по самому лояльному правилу IATA (их порог требований упрощён до 160 Вт·ч). При вылете из России батарею поместят в специальное помещение с сохранением на месяц, после чего отправят в утилизацию.
Проверьте и другие правила
Напишите в комментарии, сталкивались ли вы с ситуацией в аэропорту, когда кого-то не пропускали с повербанком или запасным аккумулятором на борт самолёта? Или отправьте сообщение нам ВКонтакте @NeovoltRu.
Подпишитесь в группе на новости из мира гаджетов, узнайте об улучшении их автономности и прогрессе в научных исследованиях аккумуляторов. Подключайтесь к нам в Facebook и Twitter. Мы также ведём насыщенный блог в «Дзене» и на Medium — заходите посмотреть.
Как узнать сколько ампер потребляет устройство, как перевести миллиамперы в ватты?
Наверное, каждый кто делал или делает ремонт электрики сталкивался с проблемой определения той или иной электрической величины. Для кого-то это становится настоящим камнем преткновения, а для кого-то все предельно ясно и каких-либо сложностей при определении той или иной величины нет. Данная статья посвящена именно первой категории – то есть для тех, кто не очень силен в теории электрических цепей и тех показателей, которые для них характерны.
Итак, для начала вернемся немного в прошлое и постараемся вспомнить школьный курс физики, касательно электрики. Как мы помним, основные электрические величины определяются на основании всего одного закона – закона Ома. Именно этот закон является базой проведения абсолютно для любых расчетов и имеет вид:
Отметим, что в данном случае речь идет о расчете самой простейшей электрической цепи, которая выглядит следующим образом:
Подчеркнем, что абсолютно любой расчет ведется именно посредством этой формулы.
Формула расчета сечения провода и как определяется сечение провода
Довольно много вопросов связано с определением сечения провода при построении электропроводки. Если углубиться в электротехническую теорию, то формула расчета сечения имеет такой вид:
Конечно же, на практике, такой формулой пользуются довольно редко, прибегая к более простой схеме вычислений. Эта схема довольно проста: определяют силу тока, которая будет действовать в цепи, после чего согласно специальной таблице определяют сечение. Более детально по этому поводу можно почитать в материале – «Сечение провода для электропроводки «
Приведем пример. Есть бойлер мощностью 2000 Вт, какое сечение провода должно быть, чтобы подключить его к бытовой электропрводке? Для начала определим силу тока, которая будет действовать в цепи:
Как видим, сила тока получается довольно приличной. Округляем значение до 10 А и обращаемся к таблице:
Таким образом, для нашего бойлера потребуется провод сечением 1,7 мм. Для большей надежности используем провод сечением 2 или 2,5 мм.
Автор — Антон Писарев
Шаги Править
Метод 1 из 3:
Перевод ватт в амперы при фиксированном напряжении Править
Составьте таблицу перевода ватт в амперы. Во многих цепях, например в домашней сети или автомобиле, используется фиксированное напряжение. В этом случае между мощностью и силой тока существует однозначная связь. Таким образом, можно составить таблицу, пользуясь соотношениями, связывающими мощность (ватты), силу тока (амперы) и напряжение (вольты) в любой электрической цепи. Подобную таблицу можно найти в Интернете.
- К примеру, в домашней сети обычно используется переменное напряжение величиной 220 вольт, а в автомобилях − постоянное напряжение 12 вольт.
- Вы можете еще более упростить себе задачу, используя для пересчета ватт в амперы онлайн-калькулятор.
Найдите величину мощности (в ваттах), которую требуется перевести в силу тока. Составив таблицу или отыскав ее в интернете, найдите в ней интересующую вас мощность. Как правило, подобные таблицы состоят из нескольких строк и столбцов. В вашей таблице должен быть столбец, озаглавленный “Мощность” или “Ватты”. Найдите этот столбец и просмотрите его, найдя величину мощности, соответствующую вашей электрической цепи.
Найдите соответствующий ток (в амперах). После того как вы найдете интересующую вас мощность (в ваттах), перейдите вдоль этой же строки к столбцу “Ток” или “Амперы”. В таблице может быть более двух столбцов, поэтому обращайте внимание на их заголовки, чтобы не ошибиться. Найдя столбец со значениями тока в амперах, еще раз проверьте, чтобы соответствующее значение тока находилось в той же строке, что и интересующая вас мощность в ваттах.
Определите мощность цепи. Ознакомьтесь с характеристиками интересующей вас цепи. Мощность измеряется в ваттах. Величина мощности характеризует количество энергии, потребляемой или вырабатываемой в цепи за единицу времени. Таким образом, 1 ватт = 1 джоуль/ 1 секунду. Величину мощности необходимо знать для того, чтобы найти ток, измеряемый в амперах (сокращенно “А”).
Определите напряжение. Напряжение представляет собой разность электрических потенциалов в цепи, и, наряду с мощностью, его также указывают в характеристиках цепи. Напряжение возникает благодаря тому, что на одном конце цепи создается избыток, а на другом − нехватка электронов. В результате между концами цепи возникает электрическое поле (разность потенциалов). Эта разность потенциалов, то есть напряжение приводит к тому, что по цепи течет электрический ток, стремящийся снять напряжение (выравнять заряды на разных концах цепи).
Запишите уравнение. Для постоянного тока уравнение выглядит очень просто. Ватты равны амперам, поделенным на вольты. Таким образом, поделив ватты на вольты, вы узнаете силу тока (количество ампер) в сети.
- Амперы = ватты/вольты
Найдите силу тока. Записав уравнение, вы сможете найти количество ампер. Для этого выполните деление. Проверьте единицы измерения: в результате у вас должны получиться кулоны, поделенные на секунду. 1 ампер = 1 кулон / секунду.
- В международной системе единиц (СИ) кулоны служат единицей измерения электрического заряда. При этом один ампер соответствует заряду величиной один кулон, протекшему через сечение проводника за одну секунду.
Определите коэффициент мощности. Коэффициент мощности цепи равен отношению активной мощности к полной мощности, подаваемой на цепь. Полная мощность всегда больше или равна активной мощности, поэтому коэффициент мощности принимает значения в интервале от 0 до 1.
Воспользуйтесь уравнением для однофазных цепей. Уравнение для однофазных цепей переменного тока аналогично уравнению, использованному выше для постоянного тока, и связывает вольты, амперы и ватты. Разница состоит в том, что для переменного тока в уравнение входит коэффициент мощности.
- Амперы = ватты / (КМ X вольты), где коэффициент мощности (КМ) является безразмерной величиной.
Найдите ток. Подставив в уравнение значения ватт, вольт и коэффициент мощности, вы сможете найти количество ампер. В результате у вас получится количество кулонов за секунду. Если у вас получатся другие единицы измерения, проверьте уравнение еще раз − возможно, вы неправильно записали его.
- В уравнение для трехфазных цепей входит больше величин, чем для однофазных. Для вычисления количества ампер в трехфазной цепи следует определить, подключаетесь ли вы к двум фазам или фазе и нулю.
Как прочитать маркировку конденсатора
Как вычислить расстояние до молнии
Как понять формулу E=mc2
Как рассчитать напряжение на сопротивлении
Как вычислить общее сопротивление цепи
Как найти полное сопротивление
Как рассчитать длину волны
Как рассчитать силу натяжения в физике
Как вычислить напряжение, силу тока и сопротивление в параллельной цепи
Как найти ускорение
Перевести амперы в киловатты? Легко!

Для того, чтобы безошибочно выполнить такой расчет, многие опытные электрики используют формулу I=P/U, где I – это амперы, P – это ватты, а U – это вольты. Получается, что амперы вычисляются путем деления ватт на вольты. Для примера, обычный электрический чайник потребляет 2 кВт и питается от сети в 220 В. Чтобы в этом случае вычислить ампераж тока в сети, применяем вышеуказанную формулу и получаем: 2000 Вт/220 В = 9,09 А. То есть, когда чайник включен он потребляет ток больше 9 Ампер.
Онлайн калькулятор
На многочисленных сайтах в сети, чтобы узнать сколько ампер в 1 кВт таблица и многие другие данный приведены со всеми подробными пояснениями. Также в этих таблицах указано как рассчитать количество киловатт в самых распространенных случаях, когда речь идет о напряжении в 12, 220 и 380 вольт. Это наиболее распространенные сети, поэтому потребность в расчетах возникает именно в отношении данных сетей.
Для того, чтобы рассчитать и перевести амперы в киловатты не нужно заканчивать специальных учебных заведений.
Мощность Вт, при напряжении в В | |||
А | 12 | 220 | 380 |
1 | 12 | 220 | 380 |
2 | 24 | 440 | 760 |
3 | 36 | 660 | 1140 |
4 | 48 | 880 | 1520 |
5 | 60 | 1100 | 1900 |
б | 72 | 1320 | 2280 |
7 | 84 | 1540 | 2660 |
8 | 96 | 1760 | 3040 |
9 | 108 | 1980 | 3420 |
10 | 120 | 2200 | 3800 |
11 | 132 | 2420 | 4180 |
12 | 144 | 2640 | 4560 |
13 | 156 | 2860 | 4940 |
14 | 168 | 3080 | 5320 |
15 | 180 | 3300 | 5700 |
16 | 192 | 3520 | 6080 |
17 | 204 | 3740 | 6460 |
18 | 216 | 3960 | 6840 |
19 | 228 | 4180 | 7220 |
20 | 240 | 4400 | 7600 |
21 | 252 | 4620 | 7980 |
22 | 264 | 4840 | 8360 |
23 | 276 | 5060 | 8740 |
24 | 288 | 5280 | 9120 |
25 | ЗСО | 5500 | 9500 |
26 | 312 | 5720 | 9880 |
27 | 324 | 5940 | 10260 |
28 | 336 | 6160 | 10640 |
29 | 348 | 6380 | 11020 |
30 | 360 | 6600 | 11400 |
Как перевозить литиевые батареи в самолете? – Блог Купибилет
С 1 января 2013 года ужесточились правила перевозки литиевых батарей. Связано это с риском короткого замыкания батареи и последующего воспламенения.
Короткое замыкание возможно, когда незащищенная клемма батареи вступает в контакт с другими батареями, металлическими предметами или токопроводящими поверхностями. При перевозке в самолете, батареи должны быть разделены так, чтобы предотвратить короткое замыкание и их повреждение.
Что такое литиевые батареи и в каких устройствах они содержатся?
Существует два основных типа литиевых батарей:
- Ионно-литиевые батареи. Они используются в мобильных телефонах, ноутбуках, фотоаппаратах и т.п., их можно перезаряжать.
- Металло-литиевые батареи, не перезаряжаются и используются в часах, калькуляторах, некоторых фотоаппаратах.
Какие батареи можно перевозить в ручной клади и багаже?
Правила перевозки зависят исключительно от мощности батареи:
Мощность в ватт-часах (Втч) | Конфигурация | В ручной клади | В багаже | Требуется разрешение авиакомпании |
≤ 100 Втч | в устройствах | да | да | нет |
отдельно | да | нет | ||
> 100 до ≤ 160 Втч | в устройствах | да | да | да |
отдельно | да (макс.![]() | нет | ||
> 160 Втч | Декларируется и перевозится как груз в соответствии с Правилами перевозки опасных грузов IATA. |
В таблице мощность батареи указана в ватт-часах, а на наших устройствах, чаще всего, в амперах. Как же определить мощность в ватт-часах?
Все довольно просто, для перевода следует воспользоваться формулой:
Ah (ампер-часы) x V (вольт) = Wh (ватт-часы)
Если мощность на батарее указана в миллиамперах, например, 15000 мАч, то миллиамперы следует разделить на 1000.
15000 мАч / 1000 = 15 Ah
Например, мы везем портативное зарядное устройство. Емкость его батареи 15000 мАч, напряжение 5 вольт. Выше мы уже нашли, что 15000 mAh это 15Ah, тогда согласно формуле выше
15*5 = 75 Вт. ч.
Так как 75 < 100, то данное устройство мы можем провозить в ручной клади без согласования с перевозчиком.
Обратите внимание, перевозка запасных батарей (т.
е. отдельно от устройства) в сдаваемом багаже запрещена вне зависимости от мощности батареи. К запасным батареям относятся и портативные зарядные устройства.
Как предотвратить короткое замыкание батареи?
Самый надежный способ – это упаковать батарею или устройство ее содержащие в токонепроводящий материал, например, в обычный полиэтиленовый пакет. Причем в каждом пакете должна быть только одна батарея, без каких-либо посторонних предметов, особенно металлических
Сколько литиевых батарей можно перевозить?
Каждый пассажир может перевезти до 10 литиевых батарей или устройств их содержащих.
При этом в одном чемодане или сумке должно быть также не более 10 батарей. Это важно учитывать, если вы едете вдвоем с одним чемоданом.
Хотите подобрать билеты в путешествие?
Подобрать билеты
08 Sep 2014 Анна Комок Метки: багаж, Правила авиаперевозок, ручная кладь Поделитесь записьюПонимание объёма (мА*ч) и эффективности зарядки портативного аккумулятора Power Bank
Распространённое заблуждение
Единица измерения миллиампер-час (мА*ч) обычно используется для обозначения объёма аккумулятора. Одно из распространённых заблуждений заключается в том, что мы можем измерять объём аккумулятора power bank с помощью объёма аккумулятора смартфона/планшета, чтобы выяснить, сколько раз мы можем использовать этот power bank для их зарядки. Но такой алгоритм не является правильным.
Объём и энергия – это разные понятия
Проще говоря, Ампер-час (мА*ч) – это единица измерения электрического заряда, которая представляет объём аккумулятора, а Ватт-час (Вт*ч) – это единица измерения электрической энергии.
Ватт-час = Ампер-час х Напряжение
Объём в 10400 мАч означает, что этот аккумулятор способен обеспечить суммарный заряд в 10400 мАч при определенном показателе напряжения. Что касается литий-ионного аккумулятора, то большая часть его заряда передаётся с напряжением около 3,7В, поэтому общая мощность аккумулятора на 10400 мАч теоретически составляет 10400 мАч х 3,7 В = 38480 мВт*ч, что равно примерно 38 Вт*ч.
Определение количества циклов зарядки Power Bank
В качестве примера возьмём аккумулятор TL-PB10400_V1.
TL-PB10400_V1 – литий-ионный аккумулятор объёмом в 10400 мАч. Когда мы используем TL-PB10400_V1 для зарядки других устройств, его выходное напряжение равно 5В, как и в случае многих других зарядных устройств.
Таким образом, общий доступный выходной электрический заряд в теории составляет 38480 мВт*ч / 5В = 7696 мАч. Внутренняя схема устройства должна потреблять некоторое количество энергии, поэтому КПД не может быть 100%. Учитывая, что фактический КПД разряда устройства TL-PB10400 составляет около 90% при 1А тока, TL-PB10400 в действительности выдаёт электрический заряд, который равен 7696 мАч * 0.9 = 6926 мАч.
Примечание: эффективность разряда менее 90% при 2А тока.
Теперь вы можете разделить 6926 мАч на объём аккумулятора вашего смартфона, чтобы определить количество возможных циклов зарядки. Например, 6926 мАч может полностью зарядить устройство с аккумулятором в 2600 мАч около 2,5 раз (6926 мАч / 2600 мАч = 2,66 раза). Но это все равно предполагает идеальные условия.
На самом деле, внутренние схемы смартфона/планшета тоже потребляют некоторое количество энергии. В результате только часть заряда Power Bank в конечном итоге попадёт в батарею смартфона/планшета. Таким образом, вы можете получить менее 2,4 циклов из вышеприведённого примера. Помимо этого различные устройства могут иметь разную эффективность зарядки в зависимости от их различной внутренней конструкции, поэтому цикл заряда может отличаться даже у двух устройств имеющих одинаковую емкость батареи.
Кроме того, если смартфон работает или во время заряда включён экран, Wi-Fi модуль, центральный процессор или работают другие компоненты, он потребляет больше энергии, что делает эффективность зарядки еще ниже.
Окончательная эффективность заряда других аккумуляторных устройств (смартфонов/ планшетов) также определяется их собственной конструкцией по тем же принципам, что описаны выше.
Пластик пластику рознь
Электрические системы часто требуют сложного анализа при проектировании, ведь нужно оперировать множеством различных величин, ватты, вольты, амперы и т. д. При этом точно необходимо высчитать их соотношение при определенной нагрузке на механизм. В некоторых системах напряжение фиксированное, например, в домашней сети, а вот мощность и сила тока обозначают разные понятия, хоть и являются взаимозаменяемыми величинами.
Онлайн калькулятор по расчету ватт в амперы
Для получения результата обязательно указывать напряжение и потребляемую мощность.
В таких случая очень важно иметь помощника, дабы точно перевести ваты в амперы при постоянном значении напряжения.
Нам поможет перевести амперы в ватты калькулятор онлайн. Перед тем как воспользоваться интернет-программой по расчету величин, нужно иметь представление о значении необходимых данных.
- Мощность – это скорость потребления энергии. Например, лампочка в 100 Вт использует энергию – 100 джоулей за секунду.
- Ампер – величина измерения силы электрического тока, определяется в кулонах и показывает число электронов, которые прошли через определенное сечение проводника за указанное время.
- В вольтах измеряется напряжение протекания электрического тока.
Чтобы перевод ватт в амперы калькулятор используется очень просто, пользователь должен ввести в указанные графы показатель напряжения (В), далее потребляемую мощность агрегата (Вт) и нажать кнопку рассчитать. Через несколько секунд программа покажет точный результат силы тока в амперах. Формула сколько ватт в ампере
Внимание: если показатель величины имеет дробное число, значит его нужно вписывать в систему через точку, а не запятую. Таким образом, перевести ватты в амперы калькулятором мощности позволяет за считанное время, Вам не нужно расписывать сложные формулы и думать над их ре
шением. Все просто и доступно!
Таблица расчета Ампер и нагрузки в Ватт
Если взглянуть на число миллиампер, то нетрудно догадаться, сколько примерно будет работать тот или иной девайс на одном заряде. Впрочем, на автономность гаджета влияют несколько факторов, в том числе, конечно, и пресловутые мА·ч. В этой статье мы подробно расскажем, что это такое и как они связаны с работой устройства.
Что такое миллиампер-час (мА·ч)?
Если не вдаваться в подробности, то мА·ч — это стандартная единица электрического заряда, которая используется для измерения количества энергии, которой аккумулятор способен обеспечить устройство в течение часа. Понятное дело, чем батарея больше по емкости (способна хранить больше миллиамперов), тем дольше проработает гаджет с момента последней подзарядки.
Однако, как было сказано в самом начале, не только емкая батарея определяет автономную работу устройства. Существует также несколько других факторов, которые также нужно иметь в виду.
Во-первых, это тип батареи. Большинство электронных устройств сейчас использует литий-ионный аккумулятор, который не страдает так называемым эффектом памяти, поэтому гаджет можно заряжать не дожидаясь его полной разрядки. Как видите, по этому параметру аппараты не отличаются друг от друга.
Во-вторых, на автономность влияет железо. Здесь, разумеется, наблюдается прямая зависимость: чем мощнее девайс, тем больше миллиампер должна включать в себя батарея. Например, Nokia 3210 со своим аккумулятором емкостью 1250 мА·ч проработает аж неделю без подзарядки, в то время как Nexus 6 с 3220 мА·ч едва ли продержится сутки.
Экран — ещё один большой потребитель энергии. Тут стоит отметить, что технология изготовления дисплея играет ключевую роль. IPS-экраны требуют гораздо больше, чем Super AMOLED, которые очень энергоэффективны при преобладании черного цвета на экране, тогда как IPS распознает черный цвет как и любой другой. Разрешение и яркость также не стоит сбрасывать со счетов.
С другой стороны, программное обеспечение, вернее оптимизация, является не менее важным параметром, определяющим автономность того или иного девайса. Всевозможные оболочки, которые так любят Samsung и HTC, излишние фоновые процессы и службы негативным образом отражаются на количестве оставшихся часов. Однако справедливости ради стоит отметить, что Samsung и Sony включают в ПО специальные утилиты по оптимизации и экономии энергии, которые компенсирует потребление.
И, наконец, сердце любого электронного цифрового девайса, процессор, тоже требует достаточной подпитки.
Таким образом, мА·ч ничего не значат, если не взглянуть на остальные характеристики устройства. В общем, не забудьте при покупке также ознакомиться с экраном, ПО и железом, чтобы представить полную картинку автономной работы.
По материалам AndroidPIT
В электротехнике существует множество единиц измерения, используемых при выполнении расчетов. Большие значение делятся на более мелкие, а те в свою очередь — на еще более мелкие. Поэтому, в зависимости от обстоятельств, приходится переводить одни единицы в другие. В процессе перевода нередко возникают разные вопросы, например, сколько миллиампер в ампере или ватт в киловатте и мегаватте.
Опытные специалисты выполняют такие операции практически не задумываясь, однако начинающие электрики иногда могут и ошибиться, особенно если возникает вопрос, что больше ампер или миллиампер? Чтобы исключить подобные ошибки, нужно иметь наиболее полное представление о конкретной единице измерения и все проблемы разрешатся сами собой.
Ампер с точки зрения физики
В физике и электротехнике ампер является величиной, характеризующей силу тока в количественном отношении. Для ее определения используются различные способы. Среди них наибольшее распространение получил метод прямых измерений, когда используется , тестер или мультиметр. При выполнении замеров эти приборы последовательно включаются в электрическую цепь.
Другой способ считается косвенным, требующим проведения специальных расчетов. В этом случае необходимо знать напряжение, приложенное к данному участку цепи, и сопротивление этого участка. После чего, сила тока легко определяется по формуле I = U/R, а полученный результат отображается в амперах.
В практической деятельности амперы используются довольно редко, поскольку эта единица считается слишком большой для обычного пользования. Поэтому большинство специалистов пользуются кратными единицами — миллиамперами (10-3А) и микроамперами (10-6А), которые по-другому могут обозначаться в виде 0,001 А и 0,000001 А. Однако при выполнении расчетов необходимо вновь перевести миллиамперы в амперы и во всех формулах применять уже эти единицы. Именно на этой стадии у многих возникает вопрос, как переводить миллиамперы в амперы.
Как измерить
Для того чтобы определить силу тока на конкретном участке цепи, используются измерительные приборы, перечисленные выше. Среди них наиболее точным считается амперметр, производящий замеры только одной величины, с использованием одной шкалы. Однако более удобными считаются тестеры и , с помощью которых осуществляется измерение не только силы тока, но и других электротехнических величин в различных диапазонах. Данные приборы обладают возможностью переключаться с одних единиц измерения на другие и точно определять, сколько миллиампер в ампере.
В некоторых случаях измерительное устройство может показать превышение диапазона. Чтобы решить эту проблему достаточно сделать перевод миллиампер в амперы и получить требуемое значение. Несмотря на высокие погрешности измерений, мультиметры и тестеры на практике применяются намного чаще амперметров, поскольку с их помощью большинство неисправностей очень быстро обнаруживается и устраняется. Кроме того, эти приборы при выполнении измерений не требуют обязательного разрыва цепи, и сила тока может быть измерена бесконтактным способом.
Как перевести
Наиболее простым способом считается перевод единиц вручную, наглядно показывая ампер и миллиампер, разница между которыми составляет 10-3. В качестве примера можно рассмотреть участок электрической цепи с напряжением 5 вольт и сопротивлением 100 Ом. Для того чтобы определить силу тока, необходимо воспользоваться формулой и разделить значение напряжения на сопротивление I = U/R = 5/100 = 0,05 А. Полученный результат не совсем удобен использования, поэтому его рекомендуется пересчитать в кратных единицах измерения, то есть, в миллиамперах.
В этом случае 1 ампер равен 1000 миллиампер. Для пересчета 0,05 А нужно умножить на 1000 и получится 50 мА. Точно так же делается обратная процедура, когда 50 мА делится на 1000, и в итоге получаются первоначальные 0,05 А. Таким образом, решая задачу на 1 ампер сколько приходится миллиампер получается количество, равное 1000.
Для того чтобы ускорить процедуру перевода единиц, были разработаны специальные таблицы, отображающие различные типы величин. Например, если один миллиампер составляет 0,001 ампера, то в обратном порядке один ампер будет равен 1000 миллиампер. На корпусах аккумуляторов помимо силы тока, добавляется количество времени, в течение которого они смогут отдать или получить определенный заряд. На различных зарядных устройствах наносится количество ампер или миллиампер, которые дополнительно означают их мощность.
В таблице, приведенной на рисунке, исключается применение большого количества нулей. Вместо них используются специальные приставки, обозначающие какую-то часть от целых чисел. Все вместе они представляют собой единое слово, в котором присутствует не только приставка, но и сама основная единица.
Основные единицы измерения емкости аккумулятора – Вт.ч и мАч
Почему так важно при покупке пуско-зарядного устройства обращать внимание на его емкость? Именно от нее зависит продолжительность автономной работы питающихся от ПЗУ гаджетов. Емкость прибора имеет также решающее значение при запуске двигателя автомобиля – чем она выше, тем, соответственно, больше раз можно пытаться завести мотор.
В описаниях и паспортах ПЗУ емкость может быть указана в мАч и/или Вт.ч. О чем говорят эти характеристики?
Значение емкости в Втч и мАч – принципиальное различие
Максимально точно потенциал устройства описывает абсолютная постоянная емкость, измеренная в Вт.ч. К примеру, у Carku E-Power Elite она равна 44,4 Вт.ч. Это означает, что данный прибор может питать нагрузку 44,4 Вт в течение одного часа при любых токах и напряжениях.
Если емкость в Втч не указана в технических характеристиках ПЗУ, подсчитать ее очень просто – нужно перемножить ее значение в Ач на номинальное напряжение аккумулятора в вольтах.
Значение емкости в мАч – это относительная величина, описывающая емкость устройства для конкретного напряжения. То есть, к примеру, для 5 В у аккумуляторной батареи будет одна емкость, а для 19 В – другая.
Для определения абсолютной постоянной емкости в Втч необходимо знать ее значение в Ач (ампер-час). 1 Ач = 1000 мАч. Чтобы получить величину емкости в Ач, нужно показатель в мАч разделить на 1000.
Какое номинальное напряжение аккумуляторов Li-Po?
Номинальное напряжение одноэлементного литий-полимерного аккумулятора – 3,7 В. Именно такое исполнение имеют портативные пуско-зарядные устройства CARKU. У многих это вызывает вопросы, ведь у прибора есть несколько рабочих разъемов с разным значением выходного напряжения – 5 В, 12 В, 19 В? Их получают из номинального в результате преобразований, происходящих в электронной начинке устройства.
Подбираем технику CARKU по техническим характеристикам
Опираясь на приведенную информацию, вы можете выбирать технику CARKU, ориентируясь на мощность наиболее часто используемых гаджетов. К примеру, если вы планируете подключать к прибору ноутбук ASUS N73S, имеющий литий-полимерный аккумулятор с емкостью 4 400 мАч – определите его мощность и сравните ее с характеристиками CARKU. Для этого:
1)переведите значение ёмкости из миллиампер-часов в ампер-часы – 4 400 мАч / 1000 = 4,4 Ач;
2)умножьте полученные ампер-часы на номинальное напряжение литий-полимерной батареи – 4,4 Ач х 3,7 В = 16,28 Втч.
Если вы решите купить Carku E-Power Elite, емкость которого 44,4 Вт.ч, то подключенный к полностью заряженному устройству ноутбук проработает 44,4 Втч / 16,28 Вт.ч = 2,7 часа. Модель Carku E-Power-37 с емкостью 55,5 Вт.ч обеспечит 55,5 Вт.ч / 16,28 Вт.ч = 3,4 часа беспрерывной эксплуатации.
Технические характеристики батарей в часах Energizer — Наука
Наука 2021
Ватт-час представляет собой единицу энергии, равную одной ватт-мощности, потребляемой в течение одного часа. Поскольку батареи являются накопителями электрической энергии, технические характеристики в
Содержание:
Ватт-час представляет собой единицу энергии, равную одной ватт-мощности, потребляемой в течение одного часа. Поскольку батареи являются накопителями электрической энергии, технические характеристики ватт-часов равны емкости батареи. Для батарей Energizer производитель выбирает миллиамперные часы, а не ватт-часы. Чтобы преобразовать миллиамперы в ватты, необходимо преобразовать миллиамперы в амперы (1000 миллиампер в одном ампере), а затем использовать формулу ватт = ампер х вольт.
Батареи АА
Стандартная батарея Energizer AA, как и все батареи AA, имеет напряжение 1,5 В. С постоянным напряжением, определяющим ватт-часы, спецификация становится вопросом получения спецификаций Energizer в миллиампер-часах и выполнения преобразования. Таблицы технических данных Energizer можно найти на их веб-сайте. Для их батарейки типа АА он имеет емкость 2800 миллиампер-часов, или 4,2 ватт-часа.
9-вольтовые батареи
Напряжение на стандартной 9-вольтовой батарее, очевидно, составляет 9 вольт. Энергизаторы 9-вольтовой батареи в миллиамперах равны 610, или 5,49 ватт-часам. Таким образом, 9-вольтовая батарея имеет большую емкость, чем батарея АА, что означает, что вполне вероятно, что 9-вольтовая батарея Energizer выдержит батарею АА.
Батареи ААА
Все батареи типа ААА, меньшие по размеру, чем батареи типа АА, имеют напряжение 1,5 В. Емкость батареи AAA от Energizers составляет 1250 миллиампер-часов, или 1,87 Вт-часа, что дает батарею AAA значительно меньшую емкость, чем батарея AA.
Аккумуляторы C
При одинаковом напряжении батареи типа АА или ААА (1,5 В) батарея типа С отличается тем, что ее емкость составляет миллиампер в 8,200. При преобразовании в ватт-часы число становится 12,3 ватт-часов, демонстрируя разницу в емкости батареи между меньшими AA и AAA в отличие от большего C.
Аккумуляторы D
Батарея D должна иметь большую емкость, чем батарея C, но с тем же напряжением 1,5. Спецификация на 21 000 миллиампер-часов, или 31,5 ватт-часа, дает батарее D более чем в два с половиной раза больше емкости батареи C.
Как перевести миллиампер в ватт? — AnswersToAll
Как перевести миллиампер в ватт?
Введите миллиампер-час (мАч) и напряжение (В) и нажмите «Рассчитать», чтобы получить ватт-часы (Втч). Формула: (мАч) * (В) / 1000 = (Вт · ч). Например, если у вас аккумулятор емкостью 300 мАч с номиналом 5 В, мощность составит 300 мАч * 5 В / 1000 = 1,5 Втч.
Сколько ватт в 2,5 вольтах?
Измерения эквивалентных ватт и вольт
Мощность | Напряжение | Текущий |
---|---|---|
10 Вт | 5 Вольт | 2 А |
10 Вт | 3.333 Вольт | 3 А |
10 Вт | 2,5 Вольт | 4 А |
15 Вт | 15 Вольт | 1 ампер |
Фен на 2000 ватт — это хорошо?
Тогда решением может стать фен с большей мощностью. Такой фен более мощный и обладает функциями, которые не только быстрее сушат волосы, но и сводят к минимуму их повреждение… .9 Лучшие фены на 2000 Вт 2020 года.
ТОП 9 ТОВАРОВ | КОНТАКТНАЯ ЦЕНА |
---|---|
Conair Pro Blackbird 2000-Вт Фен | Проверить цену |
Сколько ватт потребляет фен на малой мощности?
Большинство фенов имеют этикетку с номинальной мощностью, указывающую максимальную мощность, обычно она составляет от 800 до 1800 Вт.Энергопотребление фена зависит от того, в каком режиме он используется, ненагретый воздух может потреблять всего 70 Вт мощности. Типичный фен для волос на сильном огне потребляет около 1500 Вт.
Сколько ватт потребляет пылесос?
1400 Вт
Сколько ватт потребляет пылесос в час?
В нашем примере почти все пылесосы потребляют около 1000 Вт, что при использовании в течение часа превращается в 1000 ватт-часов или один киловатт-час (кВтч). Вакуумирование с помощью вакуума -12 ампер преобразуется в 1440 Вт, или 1.44 кВтч.
Подходит ли 1200 Вт для вакуума?
Потребляемая мощность обычно находится в пределах 1500-3000 Вт, полезная — 250-480 Вт. Для стандартной уборки небольшой квартиры обычно достаточно пылесоса полезной мощностью 250-320 Вт. Аллергикам, для которых уборка особенно важна, рекомендуют пылесосы с максимальной полезной мощностью.
Имеет ли значение ватт для пылесосов?
Это, вероятно, наиболее распространенное значение, указанное производителем.Ватты относятся исключительно к потребляемой мощности двигателя, а не к его характеристикам. Как правило, устройства с более высокой мощностью имеют более мощные двигатели и, следовательно, лучше работают.
Чем выше воздушная мощность, тем лучше?
Воздушные ватты — это единица измерения, относящаяся к воздушному потоку и количеству мощности, производимой и потребляемой пылесосом. Чем выше мощность воздуха, тем лучше.
Какой беспроводной пылесос самый мощный?
Dyson V11 Абсолютный
Дайсон лучше акулы?
Основными различиями между двумя брендами являются цена, мощность всасывания и вес.Пылесосы Dyson, как правило, дороже, тяжелее и имеют большую мощность всасывания. Пылесосы Shark обычно более экономичны, но, как правило, не обладают такой высокой мощностью всасывания.
Как преобразовать мАч в Втч
Как преобразовать миллиампер-часы (мАч) в ватт-часы (Втч).
Энергия E (Вт · ч) в ватт-часах равна электрическому заряду Q (мА · ч) в миллиампер-часах, умноженному на напряжение В (В) в вольтах (В) деленное на 1000:
Найдите энергию в ватт-часах, когда электрический заряд составляет 300 миллиампер-часов, а напряжение равно 5 вольт.
В настоящее время у нас есть около 945 калькуляторов, таблиц преобразования и полезных онлайн-инструментов и программных функций для студентов, преподавателей и учителей, дизайнеров и просто для всех.
На этой странице вы можете найти финансовые калькуляторы, ипотечные калькуляторы, калькуляторы для кредитов, калькуляторы для автокредитования и лизинга, калькуляторы процентов, калькуляторы платежей, пенсионные калькуляторы, калькуляторы амортизации, инвестиционные калькуляторы, калькуляторы инфляции, финансовые калькуляторы, калькуляторы подоходного налога. , калькуляторы сложных процентов, калькулятор заработной платы, калькулятор процентной ставки, калькулятор налога с продаж, калькуляторы фитнеса и здоровья, калькулятор BMI, калькуляторы калорий, калькулятор телесного жира, калькулятор BMR, калькулятор идеального веса, калькулятор темпа, калькулятор беременности, калькулятор зачатия беременности, срок родов калькулятор, математические калькуляторы, научный калькулятор, калькулятор дробей, процентные калькуляторы, генератор случайных чисел, треугольный калькулятор, калькулятор стандартного отклонения, другие калькуляторы, калькулятор возраста, калькулятор даты, калькулятор времени, калькулятор часов, калькулятор GPA, калькулятор оценок, конкретный калькулятор, подсеть калькулятор, генерация паролей калькулятор преобразования и многие другие инструменты, а также для редактирования и форматирования текста, загрузки видео с Facebok (мы создали один из самых известных онлайн-инструментов для загрузки видео с Facebook).Мы также предоставляем вам онлайн-загрузчики для YouTube, Linkedin, Instagram, Twitter, Snapchat, TikTok и других социальных сетей (обратите внимание, что мы не размещаем видео на своих серверах. Все загружаемые вами видео загружаются с Facebook, YouTube, Linkedin, CDN в Instagram, Twitter, Snapchat, TikTok. Мы также специализируемся на сочетаниях клавиш, кодах ALT для Mac, Windows и Linux и других полезных советах и инструментах (как писать смайлы в Интернете и т. Д.)
В Интернете есть много очень полезных бесплатных инструментов, и мы будем рады, если вы поделитесь нашей страницей с другими или отправите нам какие-либо предложения по другим инструментам, которые придут вам в голову.Также, если вы обнаружите, что какой-либо из наших инструментов не работает должным образом или вам нужен лучший перевод — сообщите нам об этом. Наши инструменты сделают вашу жизнь проще или просто помогут вам выполнять свою работу или обязанности быстрее и эффективнее.
Это наиболее часто используемые пользователями по всему миру.
И мы все еще развиваемся. Наша цель — стать универсальным сайтом для людей, которым нужно быстро производить расчеты или которым нужно быстро найти ответ на базовые конверсии.
Кроме того, мы считаем, что Интернет должен быть источником бесплатной информации. Таким образом, все наши инструменты и услуги полностью бесплатны и не требуют регистрации. Мы кодировали и разрабатывали каждый калькулятор индивидуально и подвергали каждый строгому всестороннему тестированию. Однако, пожалуйста, сообщите нам, если вы заметите даже малейшую ошибку — ваш вклад очень важен для нас. Хотя большинство калькуляторов на Justfreetools.com предназначены для универсального использования во всем мире, некоторые из них предназначены только для определенных стран.
КалькулятормАч в Втч
Миллиампер-часы в Ватт-часы Калькулятор преобразования
Это калькулятор преобразования, который используется для преобразования миллиампер-часов (мАч) и напряжения в вольтах в ватт-часы (Втч). Он имеет два текстовых поля с кнопками «Рассчитать» и «Сброс».
Первым шагом использования конвертера является ввод заряда в миллиампер-часах в верхнем текстовом поле. Затем вы введете напряжение в вольтах, прежде чем нажимать кнопку «Рассчитать».Результаты измерения энергии в ватт-часах указаны под двумя кнопками. Например, если вы ввели заряд энергии в миллиампер-часах как (20 мАч), а напряжение в вольтах как 10 (В), то результат вашей мощности в ватт-часах будет 0,2 (Втч).
Преобразования упрощаются с помощью кнопки «Рассчитать». Он преобразует количество в миллиампер-часах и вольтах в ватт-часы за один клик. Калькулятор запрограммирован на работу в течение нескольких секунд, предоставляя точную информацию.
Важно знать, что калькулятор выдает результат только в соответствии с единицами измерения, введенными в текстовые поля.Текстовое поле «Напряжение в вольтах» нельзя оставлять пустым, так как калькулятору необходимы оба блока для выполнения расчета. Следовательно, это означает, что заряд в миллиампер-часах не может быть преобразован в ватт-часы без учета напряжения в вольтах.
Существуют формулы, по которым калькулятор выполняет вычисления;
Вычисление миллиампер-часов в ватт-часы
E (Вт · ч) = Q (мА · ч) x В (В) / 1000, что означает, что энергия в ватт-часах рассчитывается путем умножения электрического заряда в миллиампер-часах на напряжение в вольтах и деления результата на 1000. Эта формула показывает, что;
Ватт-часов = миллиампер-часы x Вольт / 1000, что означает, что ватт-часы рассчитываются путем умножения количества миллиампер-часов на вольты, а затем деления результата на 1000.
Также можно использовать;
(Вт · ч) = мАч x В / 1000, что сокращает формулу, используемую калькулятором при преобразовании миллиампер-часов в ватт-часы.
Например,
Если у вас есть 150 мАч и 45 В расчет будет;
(Вт · ч) = 150 x 45/1000 = 6.75 (Втч)
Онлайн-калькуляторы доказали свою эффективность при выполнении различных преобразований в короткие сроки. Это предпочтительнее ручного расчета, который требует времени и большого количества документов.
Кнопка сброса упрощает вычислительную платформу, поскольку вы можете стереть все предыдущие расчеты сразу. Всегда проверяйте, чтобы все текстовые поля были заполнены полностью и с соответствующими единицами измерения, чтобы обеспечить точные оценки.
Что означает МА во времени? — Цвета-Нью-Йорк.com
Что означает МА во времени?
мега год
Сколько ампер в мА?
Миллиампер в Ампер Таблица преобразования
Миллиампер [мА] | Ампер [A] |
---|---|
20 мА | 0,02 А |
50 мА | 0,05 А |
100 мА | 0,1 А |
1000 мА | 1 А |
Как перевести в мА?
Чтобы преобразовать миллиампер в ампер, разделите электрический ток на коэффициент преобразования.Электрический ток в амперах равен миллиамперам, разделенным на 1000.
Как преобразовать мА в ватты?
1 мА = 0,001 Вт / В. 1 x 0,001 Вт / В = 0,001 Вт на вольт…. Преобразование единиц ЭЛЕКТРИЧЕСКОГО ТОКА. миллиамперы в ватты на вольт.
Миллиампер | в Вт на вольт (преобразование таблицы) |
---|---|
50000 мА | = 50 Вт / В |
100000 мА | = 100 Вт / В |
1000000 мА | = 1000 Вт / В |
1000000000 мА | = 1000000 Вт / В |
Какая единица измерения — мА?
Один миллиампер равен 1/1000 ампера, то есть электрическому току, равному одному кулону в секунду.Миллиампер кратен амперу, который является основной единицей измерения электрического тока в системе СИ.
Как рассчитывается мощность Ма?
Формула: (А) * (1000) = (мА). Например, если у вас 2 А, то количество миллиампер будет (1000) * (2) = (2000) мА.
Что такое физика Ма?
Определение: Миллиампер (обозначение: мА) — это часть, кратная основной единице измерения электрического тока в системе СИ — ампера. Он определяется как одна тысячная ампера. Текущее использование: миллиампер используется во всем мире как часть единицы СИ, часто для небольших измерений электрического тока.
Как вы объясните F MA?
Второй закон Ньютона часто формулируется как F = ma, что означает, что сила (F), действующая на объект, равна массе (m) объекта, умноженной на его ускорение (a). Это означает, что чем больше масса у объекта, тем больше силы вам нужно для его ускорения. И чем больше сила, тем больше ускорение объекта.
Что такое степень магистра магистратуры?
Магистр гуманитарных наук и магистр естественных наук. Обе степени обычно занимают около двух лет на очной основе, но есть ряд различий между степенями, включая классы, которые вы посещаете, и то, что вы выбираете изучать.
Сколько мА в 3 Вт?
3000 Миллиампер
Сколько мА в 20 Вт?
20,000 Миллиампер
мА — это ватт?
Мы предполагаем, что вы конвертируете миллиампер в ватт / вольт. Вы можете просмотреть более подробную информацию о каждой единице измерения: мА или ватт / вольт. Базовой единицей измерения электрического тока в системе СИ является ампер. 1 ампер равен 1000 мА или 1 ватт / вольт. Обратите внимание, что могут возникать ошибки округления, поэтому всегда проверяйте результаты.
Сколько 9 вольт в ваттах?
Измерения эквивалентных вольт и ватт
Напряжение | Мощность | Текущий |
---|---|---|
9 Вольт | 9 Вт | 1 ампер |
9 Вольт | 18 Вт | 2 А |
9 Вольт | 27 Вт | 3 А |
9 Вольт | 36 Вт | 4 А |
Сколько ватт составляет 2500 мА?
преобразовать 2500 миллиампер в ватт / вольт
2500 Миллиампер (мА) | 2.500000 Вт / Вольт (Вт / В) |
---|---|
1 мА = 0,001000 Вт / В | 1 Вт / В = 1000 мА |
Сколько ватт в 400 мА?
0,400000 Вт
Сколько ватт составляет 700 мА?
преобразовать 700 миллиампер в ватт / вольт
700 Миллиампер (мА) | 0,700000 Ватт / Вольт (Вт / В) |
---|---|
1 мА = 0,001000 Вт / В | 1 Вт / В = 1000 мА |
Как перевести из вольт в ватты?
Формула для преобразования напряжения в ватты: ватт = ампер x вольт.
Ватты или вольт мощнее?
Измерение в вольтах проще, чем в ваттах, потому что ватты — это произведение двух величин, то есть напряжения и тока. Ватт представлен сравнительной таблицей W….
Основа для сравнения | Вольт | Вт |
---|---|---|
шт. Из | Электродвижущая сила и разность потенциалов | Мощность |
Символ | В | Вт |
Чтение | Легко | Сложная |
Перевести 100 Вт · ч в мА · ч | 22.2 ватт-часов в
мАчСамый эффективный метод преобразования ватт-часов (Втч) в миллиампер-часы (мАч)
Ватт-час
Ватт каждый час (Вт / час) — это единица измерения разницы в контроле за каждый час, например, увеличение скорости передачи жизненных сил. Он используется для измерения разнообразия повседневных интересов (например, наклона утиного изгиба) или повышения интенсивности растений. Например, электростанция, которая выдает выходную мощность 1 МВт из 0 МВт за короткое время, имеет увеличенный темп до 4 МВт / ч.гидроэлектростанции имеют исключительно высокие темпы роста, что делает их особенно полезными в условиях тяжелого бремени и кризисных ситуаций. Различные варианты использования терминов, например, ватт каждый час, вероятно, будут ошибкой. Сила и жизненная сила обычно сбиваются с толку: контроль — это скорость передачи жизненной силы; жизненная сила — это проделанная работа. Мощность измеряется в ваттах или джоулях каждую секунду. Жизнеспособность измеряется в джоулях или ватт-секундах.
Кроме того, узнайте о преобразовании mah в wh. У нас есть инструмент, аналогичный калькулятору для mah to wh
Батарея семейного блока сохраняет жизнеспособность.В тот момент, когда батарея передает свою жизнеспособность, она делает это на определенном уровне мощности, то есть скорости передачи жизненной силы. Чем выше уровень мощности, тем быстрее передается выносливость батареи. В случае, если мощность будет выше, запас жизнеспособности аккумулятора будет истощен в более короткие сроки.
В определенный период времени более высокий уровень интенсивности означает, что используется больше жизненной силы. Для данного уровня мощности более длительный период работы позволяет использовать больше жизнеспособности.Для данного показателя жизнеспособности более высокий уровень интенсивности означает, что эта жизнеспособность используется за меньшее время.
Ватт-час — это единица оценки для контроля в течение некоторого неопределенного периода времени (60 минут) или, в нашей ситуации, метод оценки лимита. Один ватт-час эквивалентен одному ватту обычного потока энергии за 60 минут. Один ватт более четырех часов будет равен четырем ватт-часам интенсивности. Например, 100-ваттная лампа от батареи на 400 ватт-часов (например, Yeti 400) будет работать, на бумаге, 4 часа.
Ватт, пропорция интенсивности, обычно определяется с использованием этого условия: Ватты = Вольт x Ампер. Для дальнейшего пояснения воспользуемся подобием труб. В том случае, если у нас есть водопровод; Вольт будет пропорцией давления (мощности) воды в канале, ампер будет пропорцией количества движения или движения через воронку. Ватт будет пропорцией того, что вы можете сделать с этой водой, например, повернуть водяное колесо. Ватт-часы определяются путем использования сравнительных условий при управлении батареями.
Вещи такие, какие они есть, как бы мы определяли ватт-часы?
Примером может быть то, что Yeti 400 содержит батарею емкостью 33 ампер-час, работающую от напряжения 12 вольт. 12 вольт x 33 ампер-часов = 396 ватт-часов или примерно 400 Втч. Не только ватт-часы являются достойной единицей оценки для ограничения, но также действительно все включено, когда вы обнаруживаете, как часто один из наших предметов GZ будет оживлять что-то с его собственной батареей в нем (например, телефон, планшет или ПК) .Уравнение для определения ватт-часов батареи дает нам исчерпывающую оценку, несмотря на то, что доступные батареи значительно меняются по рабочему напряжению и мАч.
Ампер-час
Ампер-час или ампер-час (изображение: A⋅h или Ah; время от времени также неофициально обозначается как Ah) — это единица электрического заряда, имеющая измерения электрического потока, дублированные по времени, что эквивалентно заряд перемещается длительным потоком в один ампер в течение 60 минут, или 3600 кулонов.[1] Обычно наблюдаемый миллиампер-час (изображение: мА⋅ч, мАч или неофициально мАч) составляет одну тысячную ампер-часа (3,6 кулонов).
Использование
Ампер-час обычно используется при оценке электрохимических структур, например гальваники, и для ограничения заряда батареи, когда обычно реализуемое кажущееся напряжение падает. Миллиампер-секунда (мА⋅с) — это единица измерения, используемая при рентгеновской визуализации, аналитической визуализации и лучевой терапии. Он идентичен милликулону.Это количество относительно абсолютной живучести рентгеновского луча, создаваемой данной рентгеновской трубкой, работающей при определенном напряжении. Подобная полная часть может быть передана в различные периоды времени в зависимости от тока трубки X-луча. Чтобы помочь выразить жизнеспособность, расчет оценок заряда в ампер-часах требует точной информации об электрическом напряжении: например, в структуре батареи для точной оценки передаваемой жизнеспособности требуется объединение передаваемой мощности (результат мгновенного напряжения и быстрого потока) через выпуск промежуточный.По большому счету напряжение аккумулятора при отпускании смещается; нормальная ценность или мнимая ценность может использоваться, чтобы предположить включение интенсивности.
Различные пропорции электрических зарядов
Согласованность Фарадея — это заряд одного моля электронов, примерно эквивалентный 26,8 ампер-часам. Он также используется в электрохимических вычислениях. Модели
• Сухой элемент размера AA имеет предел от 2 до 3 ампер-часов.
• Аккумуляторы для автомобилей колеблются в пределе, но огромный автомобиль, приводимый в движение двигателем внутреннего сгорания, будет иметь предел заряда батареи около 50 ампер-часов.
• Поскольку один ампер-час может создать 0,336 грамма алюминия из жидкого хлорида алюминия, доставка огромного количества алюминия требует перемещения в любом случае на 2,98 миллиона ампер-часов.
• Расчетное уравнение ватт-часов в миллиампер-часы
Электрический заряд Q (мАч) в миллиампер-часах (мАч) эквивалентен многократному значению жизнеспособности E (Втч) в ватт-часах (Втч), изолированному напряжением V ( В) в вольтах (В):
Q (мАч) = 1000 × E (Втч) / В (В)
Таким образом, миллиампер-часы эквивалентны многократным ватт-часам, изолированным по вольтам:
миллиампер-часов = 1000 × ватт-часы / вольты
или еще раз мАч = 1000 × Втч / В
Примеры:
- Найдите электрический заряд в миллиампер-часах, когда потребление энергии составляет 3 ватт-часа, а напряжение составляет 5 вольт.
Электрический заряд Q эквивалентен многократным 3 ватт-часам, изолированным 5 вольт:
Q = 1000 × 3 Втч / 5 В = 600 мАч - Мощность постоянного тока характеризуется как Вт = 1 В * 1 А, то есть, мощность, которая передается за счет поддержки потенциала 1 В с током 1 А. Таким образом, аккумуляторная батарея может передавать 5400 мАч, то есть 5,4 Ач, при постоянном напряжении 10,4 В (это работает на моем ПК в настоящее время), в принципе может передавать до 5,4 * 10,4 = 56,16 Вт · ч = 56160 мВт · ч.
- Какое количество Вт составляет 1000 мА?
Соответствующий ответ — 1000.переключение между миллиампер и ватт / вольт. Вы можете увидеть больше тонкостей в каждой единице оценки: мА или ватт / вольт. Базовая единица измерения электрического потока в системе СИ — это ампер. 1 ампер эквивалентен 1000 мА или 1 ватт / вольт. - Какое количество ватт-часов составляет 26800 мАч?
Таким образом, (26800) * (3.6) /1000=96.48. Эта батарея имеет предел 96,48 Вт / ч, и, следовательно, согласно закону FAA, максимальная дальность 100 ватт-часов, которую можно использовать на местном уровне для бизнес-авиалайнеров, составляет 100 Вт / ч. - Насколько хватит аккумулятора на 4000 мАч?
4000 часов
Полностью заряженный аккумулятор емкостью 4000 мАч проработает 4000 часов, когда цепь, которую он питает, потребляет ток 1 мА.Аналогичная батарея при полной зарядке проработает последние 4 часа, если потребляется 1000 мА (1 An). Он продлится всего 1 час, если вы получите от него ток 4000 мА.
Самый эффективный метод преобразования миллиампер-часов в ватт-часы
Миллиампер-часы, сокращенно мАч, представляют собой долю электрического заряда. Они часто используются для количественной оценки электрического заряда батареи. Ватт-часы, обозначаемые как Втч, являются долей электрической энергии. Wh обычно используются для количественной оценки использования жизнеспособности схемы или машины.Преобразование электрического заряда в жизнеспособность требует напряжения и должно быть возможно, используя рецепт ниже.
мАч в формула преобразования Втч
Втч = (мАч × В) ÷ 1000
Таким образом, жизнеспособность в ватт-часах эквивалентна заряду в миллиампер-часах, умноженному на напряжение, в этой точке деленному на 1000.
Примеры:
- Преобразуйте заряд, используемый обычной батареей C, который составляет 8000 мАч при 1,5 В, в Втч.
Вт · ч = (8000 мА · ч × 1.5 В) / 1000
Втч = 12000/1000
Втч = 12 Втч - Сколько мАч составляет 160 Втч?
Добавьте миллиампер-час (мАч) и напряжение (В) и нажмите кнопку «Расчет» для получения ватт-часов (Втч). Рецепт: (мАч) * (В) / 1000 = (Втч). Например, если у вас батарея емкостью 300 мАч, рассчитанная на 5 В, мощность составит 300 мАч * 5 В / 1000 = 1,5 Втч. - Какое количество мАч составляет 22,2 Втч?
Сама батарея показала 22,2 Вт · ч, а напряжение выхода 5 В постоянного тока. Переключение обратно на мАч было: (22.2/5) x 1000 = 4400 мАч. Около 75% из 6000 мАч отпечатано на ящике. - Достойным и надежным советом является разделение емкости аккумулятора 10000 мАч на емкость аккумулятора вашего гаджета. Таким образом, внешний аккумулятор емкостью 10000 мАч может «гипотетически» заряжать iPhone 4s или более за 1–100% 4,1 раз (10000/1810 = 5,5). — лимит батареи iphone6 / 6s составляет 1810 мАч.
- Ваш банк емкости составляет 20000 мАч, что эквивалентно 100 Втч при 5 В
- Насколько хватит 3000 мАч?
«мАч», что означает миллиампер каждый час, указывает предел жизнеспособности аккумулятора.Для вашей ситуации 3000 мАч в целом означает, что вы можете надеяться получить 100 мА в течение примерно 30 часов использования, или 10 мА в течение 300 часов, или 1 мА в течение 3000 часов.
ампер в ватт
Используйте этот калькулятор для преобразования ампер в ватт для потоков как переменного (AC), так и постоянного (DC) тока.
Рекламные объявления
Нравится? Пожалуйста, поделитесь
Пожалуйста, помогите мне распространить информацию, поделившись этим с друзьями или на своем веб-сайте / в блоге.Спасибо.
Ссылка на сайт
Заявление об ограничении ответственности: Несмотря на то, что для создания этого калькулятора были приложены все усилия, мы не можем несет ответственность за любой ущерб или денежные убытки, возникшие в результате или в связи с его использованием. Этот инструмент предназначен исключительно в качестве услуги для вас, пожалуйста, используйте его на свой страх и риск. Полный отказ от ответственности. Не используйте расчеты для всего, что может привести к гибели людей, деньгам, имуществу и т. Д. Из-за неточных расчетов.
Как перевести ампер в ватт
Формула для преобразования ампер в ватты (при фиксированном напряжении): ватт = ампер × вольт.Чтобы преобразовать усилители в ватты, вы умножьте полученное значение в амперах на напряжение.
ватты = амперы × вольт
Пример преобразования
- 15 ампер × 120 вольт = 1800 Вт
- 20 ампер × 120 вольт = 2400 ватт
График из ампер в ватт при 120 В (перем. Ток)
Амперы: | Вт (при 120 В): |
---|---|
1 ампер | 120 Вт |
2 ампера | 240 Вт |
3 ампера | 360 Вт |
4 ампера | 480 Вт |
5 ампер | 600 Вт |
6 ампер | 720 Вт |
7 ампер | 840 Вт |
8 ампер | 960 Вт |
9 ампер | 1080 Вт |
10 ампер | 1200 Вт |
11 ампер | 1320 Вт |
12 ампер | 1440 Вт |
13 ампер | 1560 Вт |
14 ампер | 1680 Вт |
15 ампер | 1800 Вт |
16 ампер | 1920 Вт |
17 ампер | 2040 Вт |
18 ампер | 2160 Вт |
19 ампер | 2280 Вт |
20 ампер | 2400 Вт |
30 ампер | 3600 Вт |
40 ампер | 4800 Вт |
50 ампер | 6000 Вт |
60 ампер | 7200 Вт |
70 ампер | 8400 Вт |
80 ампер | 9600 Вт |
90 ампер | 10800 Вт |
100 ампер | 12000 Вт |
Примечание: конверсии являются ориентировочными. |
График ампер в ватт при 12 В (постоянный ток)
9002 216 ВтАмперы: | Вт (при 12 В): |
---|---|
1 ампер | 12 Вт |
2 ампера | 24 Вт |
3 ампера | 36 Вт |
4 ампера | 48 Вт |
5 ампер | 60 Вт |
6 ампер | 72 Вт |
7 ампер | 84 Вт |
8 ампер | 96 Вт |
9 ампер | 108 Вт |
10 ампер | 120 Вт |
11 ампер | 132 Вт |
12 ампер | 144 Вт |
13 ампер | 156 Вт |
14 ампер | 168 Вт |
15 ампер | 180 Вт |
16 ампер | 192 Вт |
17 ампер | 204 Вт |
18 ампер | |
19 ампер | 228 Вт |
20 ампер | 240 Вт |
30 ампер | 360 Вт |
40 ампер | 480 Вт |
50 ампер | 600 Вт |
60 ампер | 720 Вт |
70 ампер | 840 Вт |
80 ампер | 960 Вт |
90 ампер | 1080 Вт |
100 ампер | 1200 Вт |
Примечание: конверсии являются ориентировочными. |
Как вручную перевести амперы в ватты
Формула закона Ватта — это все, что нужно для этих преобразований единиц. Мощность (произведенная мощность / P) рассчитывается путем умножения ампер (ток / I) на напряжение (В):
Мощность (P) = Ток (I) x Напряжение (В)
Так…
ватты = амперы × вольт
Пример: 5 ампер передаются при 120 вольт.Какая мощность?
Мощность = Ток x Напряжение
Мощность = 5A x 120 В
Мощность = 600 Вт
Материалы проверены Дереком Булледом, директором CDS Electrical и сертифицированным электриком с более чем 30-летним опытом.
Если у вас возникнут проблемы с использованием этого преобразователя ампер и ватт, свяжитесь со мной.
пожаловаться на это объявление
Преобразование ампер [А] в миллиампер [мА] • Конвертер электрического тока • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц
Конвертер длины и расстоянияМассовый преобразовательКонвертер сухого объема и общих измерений при приготовлении пищиПреобразователь площадиПреобразователь объема и общих измерений при приготовлении пищиПреобразователь температурыПреобразователь давления, напряжения, модуля ЮнгаЭнергия и конвертер работыПреобразователь мощностиПреобразователь силыКонвертер времениЛинейный конвертер скорости и скоростиКонвертер углового КПД, расхода топлива и экономии топливаКонвертер чиселПреобразователь единиц информации и хранения данныхКурсы обмена валютЖенская одежда и размеры обувиМужская одежда и размеры обувиКонвертер угловой скорости и частоты вращенияКонвертер удельного ускорения Инерционный преобразователь Конвертер момента силы Преобразователь крутящего момента Конвертер удельной энергии, теплоты сгорания (на массу) Конвертер удельной энергии, теплоты сгорания (на объем) Конвертер температурного интервалаКонвертер температурного расширенияКонвертер теплового сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиПлотность тепла, плотность пожарной нагрузкиКонвертер плотности потока теплаКонвертер коэффициентов теплопередачиКонвертер объёмного расходаПреобразователь массового расходаМолярный расход раствора Конвертер массового потока Конвертер массового потока ) Конвертер вязкостиПреобразователь кинематической вязкостиПреобразователь поверхностного натяженияПроницаемость, проницаемость, проницаемость водяного параКонвертер скорости передачи водяного параКонвертер уровня звукаКонвертер чувствительности микрофонаПреобразователь уровня звукового давления (SPL) Конвертер уровня звукового давления с выбираемым эталонным давлениемПреобразователь яркостиКонвертер световой интенсивности и световой потокПреобразователь разрешения цифрового изображения Конвертер фокусного расстояния Оптическая сила (диопт. Преобразователь r) в увеличение (X) Преобразователь электрического зарядаЛинейный преобразователь плотности зарядаПреобразователь плотности поверхностного зарядаПреобразователь объёмной плотности зарядаПреобразователь электрического токаЛинейный преобразователь плотности токаПреобразователь плотности поверхностного токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и напряженияПреобразователь электрического сопротивленияПреобразователь удельного электрического сопротивленияПреобразователь электрической проводимости уровней в дБмВт, дБВ, ваттах и других единицах измеренияПреобразователь магнитодвижущей силыПреобразователь напряженности магнитного поляПреобразователь магнитного потокаПреобразователь плотности магнитного потокаМощность поглощенной дозы излучения, Конвертер мощности суммарной дозы ионизирующего излученияРадиоактивность.Преобразователь радиоактивного распада Преобразователь радиационного воздействияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данныхПреобразователь единиц типографии и цифровых изображенийКонвертер единиц измерения объёма древесиныКалькулятор молярной массыПериодическая таблица
Обзор
Чесменское сражение Ивана Айвазовского
Мы обязаны комфортом нашей повседневной жизни электрическому току. Он генерирует излучение в видимом спектре и не только освещает наши дома, но также готовит и разогревает пищу в различных электроприборах, таких как электрические плиты, микроволновые печи и тостеры.Поскольку у нас есть электричество, нам не нужно добывать топливо, чтобы зажечь огонь. Благодаря электричеству мы также можем быстро перемещаться по горизонтальной плоскости внутри поездов, поездов метро и высокоскоростных поездов, а также по вертикальным плоскостям на эскалаторах и лифтах. Мы обязаны теплом и комфортом в наших домах электрическому току, потому что он питает наши электрические обогреватели, кондиционеры и вентиляторы. Различные машины с электрическим приводом значительно упрощают нашу работу как в повседневной жизни, так и в различных отраслях промышленности.Действительно, мы живем в эпоху электричества, потому что именно электричество позволяет нам использовать наши компьютеры, смартфоны, Интернет, телевидение и другие интеллектуальные электронные технологии. Учитывая, насколько удобно использовать электричество как форму энергии, неудивительно, что мы тратим столько усилий на ее выработку.
Может показаться необычным, но идея практического использования электричества впервые была воспринята некоторыми из наиболее консервативных членов общества — военно-морскими офицерами. В этом элитарном обществе было трудно продвигаться вверх, и столь же трудно было убедить адмиралов, которые начинали юнгой в эпоху парусного спорта, в необходимости перехода на бронированные боевые корабли с паровыми двигателями, но молодые офицеры предпочитали и поддерживали инновации.Благодаря успеху использования огневых кораблей во время русско-турецкой войны 1770 года, которая привела к победе в Чесменской битве, военно-морской флот начал рассматривать возможность модернизации систем защиты порта, используя старую береговую артиллерию в сочетании с военно-морскими минами. были новаторскими в то время.
Корабельная радиостанция, ок. 1910. Канадский музей науки и техники, Оттава
Разработка различных типов морских мин началась в начале XIX века, и наиболее успешные разработки включали автономные мины, активируемые электричеством.В 1870-х годах немецкий физик Генрих Герц разработал устройство для подрыва поставленных на якорь мин с помощью электричества. Одна из разновидностей этого устройства, морская рогатая мина, широко известна и часто появляется в исторических фильмах о войне. Его свинцовый «рог» имеет емкость с электролитом, который разрушается при контакте с корпусом корабля. Электролит питает простую батарею, которая, в свою очередь, подрывает мину.
Радиостанция Hudson’s Bay Company, ок. 1937. Канадский музей науки и техники, Оттава
Морские офицеры были одними из первых, кто оценил потенциал свечей Яблочкова, первых источников электрического света.Они были далеки от совершенства, но излучали свет от электрической дуги и раскаленного добела положительного электрода, сделанного из угля. Они использовались для сигнализации поля боя и для освещения поля боя. Использование мощных прожекторов давало преимущество стороне, использовавшей их, для освещения поля боя в ночных боях или для передачи информации и координации действий различных военно-морских частей во время морских сражений. Прожекторы, используемые в маяках, улучшили навигацию в опасных прибрежных водах.
Вакуумная лампа, ок. 1921. Канадский музей науки и технологий, Оттава
Неудивительно, что военно-морской флот также был взволнован адаптацией технологий, позволяющих беспроводную передачу информации. Большой размер первых передающих устройств не был проблемой для военно-морского флота, потому что на их кораблях было достаточно места для размещения этих удобных, но порой больших машин.
Электрическое оборудование использовалось для упрощения заряжания орудий на борту кораблей, в то время как силовые электрические механизмы использовались для поворота орудийных башен и повышения точности и эффективности орудий.Телеграф машинного приказа позволял экипажу общаться и повышал его эффективность, что давало значительное преимущество в бою.
Одним из самых ужасных способов использования электрического тока в военно-морском сражении было использование Третьим рейхом подводных лодок рейдеров. Подводные лодки Гитлера, которые действовали с использованием тактики «Волчьей стаи», потопили многие транспортные конвои союзников. Известная история Convoy PQ 17 — один из примеров.
Drummondville Радиопередатчик, ок. 1926. Канадский музей науки и техники, Оттава
Британский флот смог получить несколько машин Enigma, используемых немцами для кодирования сообщений, и им удалось взломать их код с помощью Алана Тьюринга, известного как отец современные вычисления.Союзники перехватили радиосвязь немецкого адмирала Карла Деница, и с этой информацией смогли использовать прибрежные военно-воздушные силы, чтобы загнать в угол Волчью стаю и отбросить ее к берегам Норвегии, Германии и Дании. Благодаря этому с 1943 года рейды ограничились короткими.
Беспроводной телеграфный ключ, ок. 1915. Канадский музей науки и техники, Оттава
Гитлер планировал добавить к своим подводным лодкам ракеты Фау-2, чтобы их можно было использовать для атаки на восточное побережье США.Однако быстрое продвижение союзников на Западном и Восточном фронтах помешало ему сделать это.
Современный флот сложно представить без авианосцев и атомных подводных лодок. Они питаются от ядерных реакторов, которые сочетают в себе технологии 19 века на основе пара, технологии 20 века на основе электричества и ядерные технологии 21 века. Энергетические системы атомных подводных лодок вырабатывают достаточно электроэнергии, чтобы удовлетворить потребности большого города в энергии.
В дополнение к использованию электричества, которое мы уже обсуждали, недавно военно-морской флот начал рассматривать другие применения электричества, такие как использование рельсотрона. Рельсотрон — это электрическая пушка, которая использует снаряды кинетической энергии, которые обладают огромным разрушительным потенциалом.
Джеймс Клерк Максвелл. Статуя Александра Стоддарта. Фото Ad Meskens / Wikimedia Commons
Немного истории
С развитием надежных источников энергии для постоянного тока (DC), таких как гальваническая батарея, созданная итальянским физиком Алессандро Вольта, многие выдающиеся ученые по всему миру начали изучать свойства электрический ток и вызываемые им физические явления, а также его практическое использование в науке и технике.«Звездный список» ученых включает Георга Ома, который вывел закон Ома для описания поведения электрического тока в основной электрической цепи; немецкий физик Густав Кирхгоф, разработавший расчеты для более сложных электрических цепей; и французский физик Андре Мари Ампер, открывший закон, описывающий свойства замкнутого контура, на который действует магнитное поле и через него проходит электрический ток. Этот закон известен теперь как круговой закон Ампера. Независимая работа английского физика Джеймса Прескотта Джоуля и русского ученого Генриха Ленца завершилась открытием закона джоулева нагрева, который количественно определяет тепловой эффект электрического тока.
Хендрик Антун Лоренц, картина Менсо Камерлинг-Оннеса (1860–1925) в 1916 году.
Работы Джеймса Клерка Максвелла были посвящены дальнейшему исследованию свойств электрического тока и заложили основу современной электродинамики. Теперь эти работы известны как уравнения Максвелла. Максвелл также разработал теорию электромагнитного излучения и предсказал многие явления, такие как электромагнитные волны, радиационное давление и другие. Позже существование электромагнитных волн было экспериментально доказано немецким физиком Генрихом Рудольфом Герцем.Его работы по отражению, интерференции, дифракции и поляризации электромагнитных волн были использованы при изобретении радио.
Жан-Батист Био (1774–1862)
Несколько экспериментальных работ французских физиков Жана-Батиста Био и Феликса Савара о проявлении магнетизма в присутствии электрического тока, обобщенных в законе Био – Савара, и исследованиях блестящего французского математика Пьера-Симона Лапласа, который обобщил приведенные выше экспериментальные результаты как математическую абстракцию, впервые установил связь между двумя сторонами одного явления и положил начало изучению электромагнетизма.Гениальный британский физик Майкл Фарадей продолжил их работу и открыл электромагнитную индукцию. Современная электротехника построена на работах Фарадея.
Физик из Нидерландов Хендрик Лоренц внес ценный вклад в объяснение природы электрического тока. Он разработал классическую теорию электронов и предположил, что атомы состоят из более мелких заряженных частиц и что свет является результатом колебаний этих частиц. Он также вывел уравнение для описания силы, действующей на движущийся заряд изнутри электромагнитного поля.Эта сила известна как сила Лоренца.
Определение электрического тока
Электрический ток можно определить как упорядоченное движение заряженных частиц. С учетом этого определения электрический ток измеряется количеством заряженных частиц, которые проходят через поперечное сечение проводника за заданную единицу времени.
I = q / t , где q — заряд в кулонах, t — время в секундах, а I — электрический ток в амперах.
Другое определение электрического тока зависит от свойств проводников и описывается законом Ома:
I = В / R , где В, — напряжение в вольтах, R — сопротивление в Ом. , I — ток в амперах.
Электрический ток измеряется в амперах (А) и единицах, производных от них, таких как наноампер (одна миллиардная часть ампера, нА), микроампер (одна миллионная часть ампера, мкА), миллиампер (тысячная часть ампера, мА). ), килоампер (тысяча ампер, кА) и мегаампер (миллион ампер, МА).
В СИ единицей измерения электрического тока является
[А] = [C] / [s]
Поведение электрического тока в различных средах
Алюминий является очень хорошим проводником и широко используется в электропроводке.
Электрический ток в твердых материалах, включая металлы, полупроводники и диэлектрики
При рассмотрении электрического тока мы должны учитывать среду, которая его переносит, в частности, заряженные частицы, присутствующие в материале или веществе в текущем состоянии.Этот материал или вещество может быть твердым, жидким или газообразным. Уникальным примером различных состояний вещества является монооксид дигидрогена или оксид водорода, известный нам просто как вода. Мы можем увидеть его твердым, если посмотрим на лед из морозильной камеры, который мы сделали для охлаждения напитков — большинство из них основаны на воде. С другой стороны, при приготовлении чая или растворимого кофе мы используем кипяток. Если бы мы подождали, пока вода закипит, прежде чем налить ее в чайник, мы бы увидели «туман», выходящий из носика чайника — этот туман состоит из капель воды, образовавшихся из газообразного состояния воды (пара), которое выходит из носика и контактирует с холодным воздухом.
Существует еще одно состояние вещества, известное как плазма. Низкотемпературная плазма составляет верхние слои звезд, ионосферу Земли, пламя, электрическую дугу и вещество внутри люминесцентных ламп — это лишь несколько примеров. Трудно воссоздать высокотемпературную плазму в лаборатории, потому что для этого требуются чрезвычайно высокие температуры, превышающие 1 000 000 К.
Эти высоковольтные выключатели содержат два основных компонента: размыкающие контакты и изолятор, соединяющий два провода вместе.
По своей структуре твердые материалы можно разделить на кристаллические и аморфные. Первые имеют структурированную кристаллическую решетку. Атомы и молекулы такого вещества образуют двух- или трехмерные кристаллические решетки. Кристаллические твердые тела включают металлы, их сплавы и полупроводники. Мы можем легко визуализировать кристаллические твердые тела, представляя снежинки, которые представляют собой кристаллы уникальной формы. Аморфные вещества не имеют кристаллической решетки. Диэлектрики обычно аморфны.
В нормальных условиях электрический ток течет через твердые тела благодаря движению свободных электронов, которые становятся несвязанными в результате отрыва валентных электронов от атома. Мы также можем разделить твердые тела в зависимости от характера потока электричества внутри них на проводники, полупроводники и изоляторы. Свойства различных материалов определяются на основе дискретной электронной зонной структуры. Это зависит от ширины запрещенной зоны, в которой нет электронов.Изоляторы имеют самую широкую запрещенную зону, которая иногда может достигать 15 эВ. Изоляторы и полупроводники не имеют электронов в проводящем промежутке при температуре абсолютного нуля, но при комнатной температуре некоторые электроны были бы удалены из валентных зон из-за тепловой энергии. В проводниках, таких как металлы, зона проводимости перекрывается с валентными зонами. Вот почему даже при абсолютном нуле существует большое количество электронов, и это все еще верно, когда температура повышается до точки плавления.Эти электроны позволяют электрическому току проходить через материал. Полупроводники имеют небольшую ширину запрещенной зоны, и их способность проводить электричество во многом зависит от температуры, излучения и других факторов, таких как присутствие примесей.
Трансформатор с ламинированным сердечником. По бокам хорошо видны двутавровые и Е-образные стальные листы.
Сверхпроводники создают особые условия для электрического тока. Это материалы с нулевым сопротивлением прохождению электрического тока.Электроны проводимости этих материалов образуют группы частиц, которые связаны друг с другом за счет квантовых эффектов.
Как следует из названия, изоляторы плохо проводят электрический ток. Это свойство изоляторов используется для ограничения протекания электрического тока между проводящими поверхностями из разных материалов.
В дополнение к электрическому току, протекающему по проводникам, когда магнитное поле постоянное, когда магнитное поле переменное, его изменения вызывают явление, известное как вихревые токи, которые также называются токами Фуко.Чем больше скорость изменения магнитного поля, тем сильнее вихревые токи. Они не текут по определенному маршруту, но вместо этого они текут в замкнутых контурах в проводнике.
Вихревые токи вызывают скин-эффект, который представляет собой тенденцию протекания переменного электрического тока (AC) и магнитного потока в основном вдоль поверхностного слоя проводника, что приводит к потере энергии. Чтобы уменьшить эти потери на вихревые токи в сердечниках трансформаторов, их магнитные цепи разделены. Это делается путем наложения слоев тонких стальных изолированных пластин, которые образуют сердечник трансформатора.
Хромированная пластиковая лейка для душа
Электрический ток в жидкостях (электролитах)
Все жидкости могут проводить электрический ток в определенной степени при приложении к ним электрического напряжения. Жидкости, проводящие электрический ток, называются электролитами. Электрический ток переносится положительно и отрицательно заряженными ионами, известными соответственно как катионы и анионы, которые присутствуют в жидкости из-за электролитической диссоциации. В электролитах ток течет из-за движения ионов по сравнению с током, возникающим из-за движения электронов в металлах.Этот ток в электролитах характеризуется перемещением вещества к электродам и образованием новых химических элементов вокруг электродов или отложением этих новых веществ на электроде.
Это явление легло в основу электрохимии и позволяет количественно определять эквивалентный вес различных химических веществ. Это позволило превратить неорганическую химию в точную науку. Дальнейшее развитие химии электролитов позволило создать химические источники энергии в виде первичных (или одноразовых) и аккумуляторных батарей и топливных элементов.Это, в свою очередь, позволило совершить скачок в развитии технологий. Просто заглянув под капот вашего автомобиля и изучив автомобильный аккумулятор, вы сможете увидеть результаты десятилетий работы исследователей и инженеров.
Автомобильный аккумулятор, установленный в 2012 году Honda Civic
Многие производственные процессы, зависящие от протекания электрического тока в электролитах, могут придать конечному продукту привлекательный вид (например, гальваническое покрытие хромом и никелем) и защитить объекты от коррозии.Электроосаждение и электротравление — фундаментальные процессы в современной электротехнике при создании различных электронных компонентов. Эти процессы очень часто используются, например, в микропроизводстве, и количество электронных компонентов, производимых с использованием этих технологий, достигает десятков миллиардов в год.
Электрический ток в газах
Электрический ток в газах зависит от количества в нем свободных электронов и ионов. Из-за большего расстояния между частицами газа по сравнению с жидкостями и твердыми телами молекулы и ионы в газах обычно проходят большие расстояния, прежде чем столкнуться.Из-за этого протекание электричества в газах в нормальных условиях затруднено. То же верно и для смесей газов. Примером смеси газов является воздух, который в электротехнике считается хорошим изолятором. В обычных условиях многие другие смеси газов также являются хорошими изоляторами.
Неоновая лампа для проверки отвертки показывает, что присутствует напряжение 220 В.
Поток электричества в газах зависит от различных физических факторов, таких как давление, температура и компоненты, составляющие эту смесь.Кроме того, ионизирующее излучение тоже играет роль. Например, газ может проводить электричество, если его облучают ультрафиолетовым или рентгеновским излучением, если на него воздействуют катодные или анодные частицы или частицы, испускаемые радиоактивным веществом, или даже если температура этого газа высока.
Когда энергия поглощается электрически нейтральными атомами или молекулами газа и когда образуются ионы, этот эндотермический процесс называется ионизацией. Когда энергия достигает определенного порога, электрон или группа электронов преодолевают потенциальный барьер и покидают атом или молекулу, становясь, таким образом, свободными электронами.Атом или молекула, которую оставили электроны, тоже больше не нейтральны, они заряжены положительно. Свободные электроны могут присоединяться к нейтрально заряженным атомам или молекулам и образовывать отрицательно заряженные ионы. Положительно заряженные ионы могут забирать обратно отрицательно заряженные электроны при столкновении с ними и, таким образом, снова становиться нейтральными. Этот процесс называется рекомбинацией.
Когда электрический ток проходит через газ, его состояние изменяется. Это приводит к сложной зависимости между электрическим током и напряжением, которая более или менее регулируется законом Ома, но только при малых электрических токах.
Электрические разряды в газах могут быть как несамостоятельными, так и самоподдерживающимися. Несамостоятельные разряды создают электрический ток, который возможен только при наличии внешних ионизирующих факторов. Когда они отсутствуют, электрический ток через газ не течет. С другой стороны, во время самоподдерживающихся разрядов электрический ток поддерживается за счет ионизации нейтральных атомов и молекул в газе, которые были ускорены электрическим полем при столкновении со свободными электронами и ионами.В этих условиях электрический ток возможен даже без внешних ионизирующих факторов.
Вольт-амперные характеристики бесшумного разряда
Когда разность потенциалов между анодом и катодом мала, несамостоятельный разряд называют тихим или таунсендовским. С увеличением напряжения увеличивается и сила тока. Сначала это увеличение пропорционально напряжению (участок OA на вольт-амперной характеристике бесшумного разряда), но постепенно скорость нарастания замедляется (участок AB на графике).Когда все оторвавшиеся частицы, которые высвободились в результате процесса ионизации, движутся к катоду и аноду одновременно, увеличения тока не происходит (участок BC на графике). Если напряжение снова увеличивается, ток также увеличивается, и бесшумный разряд становится несамостоятельным лавинным зарядом. Примером несамостоятельного разряда является тлеющий разряд в газоразрядных лампах высокого давления различного назначения.
Когда несамостоятельный разряд трансформируется в самостоятельный разряд, электрический ток увеличивается (точка E на кривой).Этот момент известен как электрический пробой.
Электронная фотовспышка с ксеноновой трубкой (красный прямоугольник)
Все различные типы зарядов, описанные выше, являются стационарными или установившимися разрядами. Их свойства не зависят от времени. Помимо этих разрядов, существуют также нестабильные разряды, которые обычно возникают в очень неравномерных электрических полях, например, на заостренных или искривленных поверхностях проводников или электродов. Существует два типа неравномерных разрядов: коронный разряд и искровой разряд.
Ионизация при коронном разряде не вызывает электрического пробоя. Этот разряд вызывает повторяющийся процесс запуска несамостоятельного разряда в небольшом ограниченном пространстве вокруг проводника. Хорошим примером коронного разряда является свечение в воздухе вокруг антенн, громоотводов или линий электропередач высоко над землей. Коронный разряд вокруг линий электропередач вызывает потерю энергии. Раньше это сияние было знакомо мореплавателям — свечение вокруг мачт кораблей было известно как св.Элмо огонь. Коронный разряд используется в лазерных принтерах и копировальных аппаратах. Он генерируется устройством, создающим коронный разряд, металлической струной, к которой приложено высокое напряжение. Коронный разряд ионизирует газ, который, в свою очередь, ионизирует светочувствительный барабан. В этом случае полезен коронный разряд.
По сравнению с коронным разрядом электростатический разряд вызывает электрический пробой. Это похоже на прерывистые светлые нити, которые разветвляются и заполнены ионизированным газом. Они появляются и исчезают, производя большое количество тепла и света.Типичным примером естественного электростатического разряда является молния. Электрический ток в нем может достигать десятков килоампер. Прежде чем может произойти молния, необходимо создать нисходящую группу лидеров, известную как лидер или искра. Вместе со ступенчатым лидером он создает выстроенный строй. Молния обычно состоит из множественных электростатических разрядов в нисходящей формации лидера для разряда отрицательной молнии «облако-земля». В электронных вспышках в фотографии используется мощный электростатический разряд.Разряд здесь образуется между электродами импульсной лампы из кварцевого стекла, заполненного смесью благородных ионизированных газов.
Когда электрический разряд сохраняется в течение длительного периода времени, он называется электрической дугой. Электрическая дуга используется в дуговой сварке, которая является незаменимой технологией в современном строительстве, используется для возведения стальных конструкций различного размера и назначения, от небоскребов до авианосцев и автомобилей. Электрическая дуга используется не только для соединения материалов, но и для их резки.Разница между этими двумя процессами заключается в силе используемого тока. Сварка происходит при относительно более низких токах, в то время как для резки требуются более высокие токи электрической дуги. Само порезание происходит при удалении расплавленного металла, и для его удаления используются разные методы.
Еще одно применение электрической дуги в газах — газоразрядные лампы, которые отгоняют тьму на наших улицах, площадях и стадионах (в этих условиях обычно используются натриевые лампы).Металлогалогенные лампы, которые заменили лампы накаливания в автомобильных фарах, также используют эту технологию.
Электрический ток в вакууме
Вакуумная трубка в передающей станции. Канадский музей науки и технологий, Оттава
Вакуум является идеальным диэлектриком, поэтому электрический ток в вакууме возможен только в том случае, если свободные носители тока, такие как электроны или ионы, генерируются посредством термоэлектронной эмиссии, фотоэлектрической эмиссии или других факторов. способами.
Подобные телекамеры использовались в 1980-х годах.Канадский музей науки и техники, Оттава
Основным методом получения электрического тока в вакууме с использованием электронов является термоэлектрическая эмиссия электронов металлами. Когда электрод нагревается (он называется горячим катодом), он испускает электроны в трубку. Эти электроны вызывают электрический ток, пока присутствует другой электрод (называемый анодом), и пока между ними существует определенное напряжение требуемой полярности. Такие вакуумные лампы называются диодами и проводят электрический ток только в одном направлении.Они блокируют ток, если есть попытка заставить ток течь в обратном направлении. Это свойство используется для преобразования переменного тока (AC) в постоянный (DC) посредством процесса выпрямления. Это делается системой диодов.
Если рядом с катодом добавить дополнительный электрод, известный как сетка, мы получим устройство, называемое триодом, которое значительно усиливает даже небольшие изменения напряжения в управляющей сетке относительно катода. В результате это изменяет ток и напряжение на нагрузке, которая последовательно подключена к вакуумной трубке, относительно источника питания.Эта система, называемая усилителем, используется для усиления различных сигналов.
Использование электронных ламп с большим количеством управляющих сеток, таких как тетроды, пентоды и даже пятиэлектродные преобразователи с семью электродами, было революционным в генерации и усилении радиосигналов и позволило создать современные системы радио- и телевещания.
Современный видеопроектор
Исторически радио было разработано первым, потому что было относительно легко разработать методы преобразования и передачи относительно низкочастотных сигналов, а также разработать схему для приемных устройств, которые могут усиливать и смешивать радиочастоты для их преобразования. в акустический сигнал посредством процесса демодуляции.
Когда было изобретено телевидение, электронные лампы, называемые иконоскопами, использовались для испускания электронов за счет фотоэлектрического эффекта падающего на них света. Дальнейшее усиление сигнала производилось ламповым усилителем. Для просмотра захваченного и переданного изображения использовались электронно-лучевые трубки (ЭЛТ), которые также были вакуумными трубками. В ЭЛТ изображение создавалось на экране путем обратного преобразования сигнала. Это было сделано путем ускорения электронов до высокой скорости с помощью одной (или трех для цветного телевидения) электронных пушек в сильном электрическом поле.Поле создавалось приложением большого напряжения между катодом электронной пушки и анодом ЭЛТ. Пучки высокоскоростных электронов направлялись на экран, покрытый флуоресцентным материалом, и с него излучался видимый свет. Изображение было создано двумя взаимно синхронизированными системами: одна считывала сигнал с иконоскопа, а другая выполняла растровое сканирование. Первые электронно-лучевые трубки были монохромными.
SU3500 Сканирующий электронный микроскоп. Департамент материаловедения и инженерии.Университет Торонто
Вскоре после этого было разработано цветное телевидение. Иконоскопы в цветном телевидении были гибридными системами, которые реагировали только на свет определенного цвета, будь то красный, синий или зеленый. Цветные люминофорные точки электронно-лучевых трубок телевизора излучали свет за счет электрического тока, создаваемого электронной пушкой. Они реагировали на ударяющие по ним ускоренные электроны и излучали свет определенного цвета и яркости. Были использованы специальные теневые маски, чтобы лучи каждой цветной электронной пушки попадали на точки люминофора правильного цвета.
В современных технологиях теле- и радиовещания используются более современные материалы на основе полупроводников, которые потребляют меньше энергии.
Одним из широко используемых методов получения изображения внутренних органов является рентгеноскопия. Катод испускает электроны, которые разгоняются до такой скорости, что при попадании на анод генерируют рентгеновское излучение, которое может проникать в мягкие ткани человеческого тела. Рентгенограммы дают врачам уникальную информацию о состоянии костей, зубов и некоторых внутренних органов и даже могут помочь определить такие заболевания, как рак легких.
Лампа бегущей волны С-диапазона. Канадский музей науки и техники, Оттава
В целом электрические токи, образованные движением электронов в вакууме, находят широкое применение. Вакуумные лампы, ускорители частиц, масс-спектрометры, электронные микроскопы, генераторы вакуума высокой частоты, такие как лампы бегущей волны, клистроны и резонаторные магнетроны, — это лишь некоторые из примеров того, как мы используем этот тип электрического тока. Следует отметить, что именно магнетроны нагревают и готовят пищу в микроволновых печах.
Недавней очень ценной технологией, использующей электрический ток в вакууме, является осаждение тонких пленок в вакууме. Эти пленки выполняют декоративную или защитную функцию. Материалы, используемые в этой технике, — это металлы, их сплавы и их соединения с кислородом, азотом и углеродом. Эти пленки либо изменяют, либо сочетают в себе электрические, оптические, механические, магнитные, каталитические и связанные с коррозией свойства поверхности, которую они покрывают.
Для получения комплексного соединения пленки используется технология ионно-лучевого осаждения.Некоторыми примерами этой технологии являются катодно-дуговое напыление и его коммерческий вариант мощного импульсного магнетронного распыления. В конце концов, именно электрический ток создает пленочное покрытие на поверхности благодаря ионам.
Ионно-лучевое распыление создает пленки из нитридов, карбидов и оксидов металлов, которые обладают исключительным набором механических, теплофизических и оптических свойств, включая твердость, долговечность, электро- и теплопроводность и оптическую плотность.Другим способом добиться этих результатов невозможно.
Электрический ток в биологии и медицине
Макет операционной в Институте знаний Ли Ка Шинг, Торонто, Канада. Пациенты-роботы-манекены, которые могут моргать, дышать, плакать, истекать кровью и моделировать болезни, используются для обучения
Понимание поведения электрического тока внутри биологических систем дает биологам и врачам мощный инструмент для исследований, диагностики и лечения.
С точки зрения электрохимии все биологические объекты содержат электролиты, независимо от их структуры.
При рассмотрении того, как электрический ток проходит через биологический объект, мы должны учитывать состояние клеток этого объекта. В этом отношении клеточная мембрана является важной структурой, которую необходимо учитывать. Это внешний слой каждой клетки, который защищает клетку от негативного воздействия окружающей среды за счет избирательной проницаемости для различных веществ. Другими словами, он пропускает одни вещества, а другие останавливает. С точки зрения физики, мы можем рассматривать эту мембрану как эквивалентную схему, которая состоит из параллельного соединения конденсатора с несколькими цепями, которые имеют последовательное соединение между источником электрического тока и резистором.Благодаря такой структуре электропроводность этого биологического объекта зависит от частоты приложенного напряжения и типов напряжения.
Трехмерное изображение волоконных путей, соединяющих различные области мозга. Это изображение было получено с использованием метода неинвазивной диффузионной тензорной визуализации (DTI)
Биологическая ткань состоит из клеток, внеклеточной жидкости, кровеносных сосудов и нервных клеток. При подаче электрического тока нервные клетки возбуждаются и посылают сигналы о сокращении или расслаблении мышц и кровеносных сосудов животного.Следует отметить, что течение электрического тока в биологических тканях нелинейно.
Классическим примером воздействия электрического тока на биологический объект является серия экспериментов итальянского врача, физика и биолога Луиджи Гальвани, который считается одним из отцов-основателей электрохимии. В этих экспериментах он пропустил электрический ток по нервам лягушачьей лапы, и это вызвало сокращение мышц и движение ноги. В 1791 году его открытия были описаны в отчете об электрических силах в движении мышц.Долгое время в учебниках явление, открытое Гальвани, именовалось гальванизмом. Даже сейчас этот термин иногда используется для обозначения определенных процессов и устройств.
Дальнейшее развитие электрофизиологии тесно связано с нейрофизиологией. В 1875 году британский хирург и врач Ричард Кейтон и русский врач Василий Данилевский независимо друг от друга показали, что мозг может генерировать электричество. Другими словами, они обнаружили ионный ток, протекающий в мозгу.
Биологические объекты могут генерировать не только микротоки, но также значительные напряжения и токи в рамках своего повседневного функционирования.Задолго до работ Гальвани британский биолог Джон Уолш доказал электрическую природу системы защиты от электрического луча. Шотландский хирург и физиолог Джон Хантер подробно описал механизм, с помощью которого электрические лучи генерируют электричество. Результаты их исследования были опубликованы в 1773 году.
Функциональная магнитно-резонансная томография (фМРТ) — это неинвазивный метод, который позволяет врачам измерять активность мозга, обнаруживая изменения в кровотоке.
Современная медицина и биология используют различные методы исследования. живые организмы, которые включают как инвазивные, так и неинвазивные методы.
Классическим примером инвазивного метода является исследование крыс, которые бегают по лабиринту или выполняют другие задания с имплантированными в их мозг электродами.
С другой стороны, неинвазивные методы — это такие широко известные методы диагностики, как электроэнцефалография и электрокардиография. В этих процедурах электроды, контролирующие электрические токи в головном мозге или сердце, используются для измерения на коже человека или животного под наблюдением. Чтобы улучшить контакт с электродами, на кожу наносят физиологический раствор, поскольку он является хорошим электролитом и может хорошо проводить электрический ток.
Помимо использования электрического тока для исследований и наблюдения за состоянием различных химических процессов и реакций, одним из наиболее эффективных способов использования электричества является дефибрилляция, которая в фильмах иногда изображается как «перезапуск» сердца, которое уже остановилось. работающий.
Тренировочный автоматический внешний дефибриллятор (AED)
Действительно, запуск кратковременного импульса значительной силы иногда (но очень редко) может перезапустить сердце. Однако чаще используются дефибрилляторы, чтобы скорректировать аритмическое биение сердца и вернуть его к норме.Хаотические аритмические сокращения известны как фибрилляция желудочков, и поэтому устройство, которое возвращает сердце в норму, называется дефибриллятором. Современные автоматизированные внешние дефибрилляторы могут регистрировать электрическую активность сердца, определять фибрилляцию желудочков сердца, а затем рассчитывать силу тока, необходимую пациенту, на основе этих факторов. Во многих общественных местах теперь есть дефибрилляторы, и медицинское сообщество надеется, что эта мера предотвратит множество смертей, вызванных дисфункцией сердца пациента.
Медработники обучены определять физиологическое состояние сердечной мышцы по электрокардиограмме и быстро принимать решения о лечении, намного быстрее, чем это могут сделать автоматические внешние дефибрилляторы, доступные для населения.
Отдельно стоит упомянуть об искусственных кардиостимуляторах, контролирующих сердечные сокращения. Эти устройства имплантируются под кожу или под грудную мышцу пациента и передают импульсы электрического тока напряжением около 3 В через электрод в сердечную мышцу.Это стимулирует нормальный сердечный ритм. Современные кардиостимуляторы могут проработать 6–14 лет, прежде чем потребуется их замена.
Характеристики электрического тока, его генерация и использование
Электрический ток характеризуется его величиной и видом. В зависимости от его поведения типы электрического тока делятся на постоянный ток или постоянный ток (он не меняется со временем), гармонический ток (он изменяется случайным образом со временем) и переменный ток или переменный ток (он изменяется со временем в соответствии с определенной схемой, обычно это регулируется периодическим законом).Для некоторых задач требуется как постоянный, так и переменный ток. В данном случае мы говорим об переменном токе с постоянной составляющей.
Термоядерный реактор Токамак де Варенн. Варенн, Квебек, 1981. Канадский музей науки и техники, Оттава
Исторически первый трибоэлектрический генератор электрического тока, машина Вимшерста, создавала его, натирая шерстью кусок янтаря. Более совершенные генераторы того же типа теперь называются генераторами Ван де Граафа — они названы в честь изобретателя самой ранней из этих машин.
Как мы уже говорили ранее, электрохимический генератор был изобретен итальянским физиком Алессандро Вольта. Этот генератор получил дальнейшее развитие в современных сухих аккумуляторных батареях, аккумуляторных батареях и топливных элементах. Мы до сих пор используем их, потому что это очень удобные источники энергии для всех видов устройств, от часов и смартфонов до автомобильных аккумуляторов и аккумуляторов электромобилей Tesla.
В дополнение к генераторам постоянного тока, описанным выше, существуют также генераторы, использующие ядерное деление изотопов, известные как атомные батареи, а также магнитогидродинамические генераторы, которые сегодня имеют очень ограниченное применение из-за их низкой мощности и технических ограничений. их конструкции и по ряду других причин.Тем не менее генераторы радионуклидов используются в энергонезависимых системах, например, в космосе, в автономных подводных аппаратах и гидроакустических станциях, в маяках, внутри маяковых буев, а также в Арктике и Антарктике.
Коммутатор в мотор-генераторной установке, 1904 г. Канадский музей науки и техники, Оттава
В электротехнике генераторы делятся на генераторы постоянного и переменного тока.
Все эти генераторы работают благодаря электромагнитной индукции, открытой Майклом Фарадеем в 1831 году.Фарадей построил первый униполярный генератор малой мощности, который генерировал постоянный ток. Что касается первого генератора переменного тока, то история гласит, что он был описан Фарадею в 1832 году в анонимном письме, подписанном как «П. М. » После публикации этого письма Фарадей через год получил еще одно, в котором он благодарил и предлагал усовершенствовать конструкцию, добавив стальное кольцо для переноса магнитного потока магнитных полюсов катушек. Однако неясно, соответствует ли эта история действительности.
В то время применение переменного тока еще не было найдено, поскольку для всех практических применений электричества в то время требовался постоянный ток, включая ток, используемый в минной войне, электрохимии, недавно разработанной электротелеграфии и первых электродвигателях.Вот почему многие изобретатели сосредоточились пока на улучшении генераторов постоянного тока, изобретая для этого различные коммутационные устройства.
Одним из первых генераторов, которые нашли практическое применение, был магнитоэлектрический генератор, созданный немецким и российским исследователем Морицем фон Якоби, работавшим в России с 1835 по 1874 год. Он использовался минными подразделениями ВМФ Российской армии для воспламенения взрывателей. морских мин. Улучшенные генераторы этого типа используются и по сей день для активации мин, и их часто можно увидеть в фильмах о Второй мировой войне, где партизаны или диверсанты используют их для взрыва мостов, схода поездов с рельсов и других подобных приложений.
Линза лазера с приводом компакт-дисков
С этого момента ведущие инженеры соревновались друг с другом в улучшении генераторов переменного и постоянного тока, создав окончательное противостояние между двумя титанами современной области производства электроэнергии, с Томасом Эдисоном из General Electric на одном с другой стороны, Никола Тесла из Westinghouse. Победил больший капитал, и технологии Tesla для генерации, транспортировки и преобразования переменного тока стали наследием американского общества. Это дало значительный толчок развитию экономики США и вывело страну на лидирующие позиции в мире.
В дополнение к способности производить электричество для различных нужд, которая зависела от преобразования механического движения в электричество благодаря обратимости электрических машин, стала реальностью еще одна возможность обратного преобразования электрического тока в механическое движение. Это было сделано с помощью электрических двигателей, работающих на постоянном и переменном токе. Можно сказать, что эти типы машин являются одними из наиболее широко используемых технологий, и они включают стартеры автомобилей и мотоциклов, приводы коммерческих машин и станков, а также бытовые устройства и электронику.Благодаря этим устройствам мы научились выполнять различные задачи, такие как резка, сверление и формование. Благодаря этим технологиям мы также используем оптические диски, такие как компакт-диски и жесткие диски, в наших компьютерах — без них мы не смогли бы создать миниатюрные прецизионные электродвигатели постоянного тока.
Помимо привычных нам электромеханических двигателей, ионные двигатели также работают за счет электрического тока. Эти двигатели используют принцип движения за счет испускания ускоренных ионов данного вещества.В настоящее время они используются в космосе в основном для вывода на орбиту небольших спутников. Весьма вероятно, что будущие технологии 22-го века, такие как фотонные лазерные двигатели, которые все еще разрабатываются и которые будут вести наши межзвездные корабли на скоростях, приближающихся к скорости света, также будут зависеть от электрического тока.
Аналоговый мультиметр со снятой верхней крышкой
Генераторы постоянного тока можно использовать еще и для выращивания кристаллов для электронных компонентов.Этот процесс требует дополнительных стабильных генераторов постоянного тока. Такие прецизионные твердотельные генераторы электрического тока называются стабилизаторами тока.
Измерение электрического тока
Следует отметить, что устройства для измерения электрического тока, такие как микроамперметры, миллиамперметры и амперметры, сильно отличаются друг от друга в зависимости от их конструкции и принципов измерения, которые они используют. К ним относятся амперметры постоянного тока, амперметры переменного тока низкой частоты и амперметры переменного тока высокой частоты.
Измерительные механизмы этих устройств можно разделить на подвижную катушку, подвижное железо, подвижный магнит, электродинамические, индукционные, термоанемометрические и цифровые амперметры. Большинство аналоговых амперметров включает подвижную или неподвижную раму с намотанной катушкой и неподвижными или подвижными магнитами. Благодаря такой конструкции типичный амперметр имеет эквивалентную схему, которая представляет собой последовательное соединение катушки индуктивности и резистора с конденсатором, подключенным параллельно им. Из-за этого аналоговые амперметры недостаточно чувствительны для измерения высокочастотного тока.
Подвижная катушка с иглой и спиральными пружинами измерителя, используемая в аналоговом мультиметре выше. Некоторые люди по-прежнему предпочитают аналоговые мультиметры, которые практически не изменились с 1890-х годов.
Основное измерительное устройство амперметра состоит из миниатюрного гальванометра. Его диапазоны измерения создаются за счет использования дополнительных шунтирующих резисторов с малым сопротивлением, и это сопротивление ниже, чем у обычного гальванометра. Таким образом, используя одно устройство в качестве основы, можно создавать различные измерительные устройства для измерения токов с разными диапазонами, включая микроамперметры, миллиамперметры, амперметры и даже килоамперметры.
Обычно при электрических измерениях важно поведение тока. Он может быть измерен как функция времени и иметь разные типы, например постоянный, гармонический, гармонический, импульсный и т. Д. Его величина характеризует способ работы электронных схем и устройств. Идентифицируются следующие значения тока:
- мгновенное,
- размах амплитуды,
- среднее,
- среднеквадратичная амплитуда.
Мгновенный ток I i — значение тока в любой момент времени.Его можно просмотреть на экране осциллографа и измерить каждый момент времени, глядя на осциллограф.
Размах амплитуды тока I м — наибольшее мгновенное значение тока за данный период времени.
Среднеквадратичное значение амплитуды тока I находится как квадратный корень из среднего арифметического квадратов мгновенных токов для периода формы сигнала.
Все аналоговые амперметры обычно измеряют среднеквадратичное значение амплитуды тока.
Среднее значение тока — это среднее значение всех значений мгновенного тока за время измерения.
Разница между максимальным и минимальным значением электрического тока называется размахом сигнала.
В наши дни для измерения электрического тока широко используются мультиметры и осциллографы. Оба этих устройства предоставляют информацию не только о форме , тока или напряжения, но и о других важных характеристиках сигнала.К ним относятся частота периодических сигналов, и поэтому важно знать предел частоты измерительного устройства при измерении электрического тока.
Измерение электрического тока с помощью осциллографа
Проиллюстрируем сказанное выше серией экспериментов по измерению активных и пиковых значений тока синусоидального и треугольного сигналов. Мы будем использовать генератор сигнала, осциллограф и мультиметр.
Схема эксперимента 1 показана ниже:
Генератор сигналов FG подключен к нагрузке, которая состоит из мультиметра (MM), соединенного последовательно с шунтом Rs и нагрузочным резистором R.Сопротивление шунтирующего резистора R s составляет 100 Ом, а сопротивление нагрузочного резистора R — 1 кОм. Осциллограф ОС подключен параллельно шунтирующему резистору R s . Номинал шунтирующего резистора выбирается из условия R s << R. Проводя этот эксперимент, помним, что рабочая частота осциллографа намного выше рабочей частоты мультиметра.
Test 1
Подаем на нагрузочный резистор синусоидальный сигнал частотой 60 Гц и амплитудой 9 В.Современные осциллографы имеют очень удобную кнопку Auto Set, которая позволяет отображать любой измеренный сигнал, не касаясь других органов управления осциллографа. Нажимаем кнопку Auto Set и наблюдаем за сигналом на экране, как на иллюстрации 1. Здесь диапазон сигнала составляет около пяти больших делений, а значение каждого деления составляет 200 мВ. Мультиметр показывает значение электрического тока как 3,1 мА. Осциллограф определяет среднеквадратичную амплитуду на резисторе как U = 312 мВ. Среднеквадратичное значение тока на резисторе R s можно определить по закону Ома:
I RMS = U RMS / R = 0.31 В / 100 Ом = 3,1 мА,
, что соответствует значению 3,1 мА на мультиметре. Обратите внимание, что диапазон тока в нашей цепи, состоящей из двух последовательно соединенных резисторов и мультиметра, равен
I PP = U PP / R = 0,89 В / 100 Ом = 8,9 мА
Мы знаем, что пиковый и фактические значения электрического тока и напряжения отличаются в √2 раза. Если мы умножим I RMS = 3,1 мА на √2, мы получим 4,38. Удвоим это значение — получим 8.8 мА, что очень близко к измеренному осциллографом току (8,9 мА).
Test 2
Теперь уменьшим генерируемый сигнал вдвое. Диапазон сигнала на осциллографе также уменьшится примерно вдвое (463 мВ), а мультиметр покажет значение, которое также примерно уменьшено вдвое и составляет 1,55 мА. Определим значение активного тока на осциллографе:
I RMS = U RMS / R = 0,152 В / 100 Ом = 1,52 мА,
что примерно такое же значение, которое показывает мультиметр (1 .55 мА).
Test 3
Теперь увеличим частоту генератора до 10 кГц. Изображение на осциллографе изменится, но диапазон сигнала останется прежним. Значение на мультиметре уменьшится — это связано с диапазоном частот мультиметра.
Test 4
Давайте снова воспользуемся начальной частотой 60 Гц и напряжением 9 В, но изменим форму сигнала на генераторе с синусоидальной на треугольную. Диапазон сигнала на осциллографе остается прежним, но значение на мультиметре уменьшается по сравнению со значением тока, которое он показал в тесте 1.Это связано с изменением среднеквадратичного значения тока. Осциллограф показывает приведенное значение среднеквадратичного напряжения, измеренного на резисторе R s = 100 Ом.
Меры безопасности при измерении электрического тока и напряжения
Подставка для самостоятельной камеры с телесуфлером и тремя мониторами для домашней видеостудии
- При измерении тока и напряжения мы должны помнить, что в зависимости от того, насколько безопасно здание, например, относительно малое напряжение 12–36 В может быть опасным и даже опасным для жизни.Поэтому крайне важно соблюдать следующие меры безопасности.
- Не измеряйте токи, если для измерения требуются специальные навыки (например, измерение токов в цепях с напряжением выше 1000 В).
- Не измеряйте токи в труднодоступных местах и на высоте.
- При измерении токов в жилой распределительной сети используйте специальные средства защиты, такие как резиновые перчатки, коврики или ботинки.
- Не используйте сломанные или поврежденные измерительные приборы.
- При использовании мультиметров убедитесь, что установлены параметры измерения и правильный диапазон измерения.
- Не используйте измерительный прибор со сломанными зондами.
- Тщательно следуйте инструкциям производителя по использованию измерительного прибора.
Эту статью написал Сергей Акишкин
У вас возникли трудности с переводом единицы измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.