Газопровод высокого давления это: Оптимальное давление газа в газопроводе для квартиры и загородного дома

Содержание

Классификация природного газа по давлению

Единица измеренияНизкое давление газаСреднее давление газаВысокое давление газа II категорииВысокое давление газа I категории
1 МПа

до 0,005

от 0,005 до 0,3

от 0,3 до 0,6

от 0,6 до 1,2

1 кПа

до 5

от 5 до 300

от 300 до 600

от 600 до 1200

1 мбар

до 50

от 50 до 3000

от 3000 до 6000

от 6000 до 12000

1 бар

до 0,05

от 0,05 до 3

от 3 до 6

от 6 до 12

1 атм

до 0,049

от 0,049 до 2,960

от 2,960 до 5,921

от 5,921 до 11,843

1 кгс/см2

до 0,050

от 0,050 до 3,059

от 3,059 до 6,118

от 6,118 до 12,236

1 н/м2 (Па)

до 5000

от 5000 до 300000

от 300000 до 600000

от 600000 до 1200000

1 мм. вод. ст.

до 509,858

от 509,585 до 30591,48

от 30591,48 до 61182,96

от 61182,96 до 122365,92

Газопровод — это основа газовых сетей. Классифицировать газопроводы принято по давлению:

  • газопроводы низкого давления служат для снабжения отоплением обыкновенных граждан, небольших газовых котельных, некрупных предприятий; давления газа в них составляет до до 5кПа;
  • газопроводы среднего давления до 0,3МПа;
  • газопроводы высокого давления до 1,2МПа, которые, в свою очередь, подразделяются на I, II и III категории.

Тогда как газопроводы низкого давления служат для работы в небольших газовых котельных, газопроводы среднего и высокого давления обеспечивают теплом и горячим водоснабжением различные коммунальные и промышленные предприятия. Обычно они работают через газорегуляторные установки.

Газоснабжение осуществляется при помощи разных систем, многоступенчатых и одноступенчатых. Обычно в небольших населённых пунктах предпочтение отдаётся двухступенчатому газопроводу, а в больших городах применяются, по большей части, многоступенчатые газопроводы высокого давления. Совсем крупные потребители газа имеют возможность подключиться к ТЭЦ с помощью газорегуляторной установки или напрямую к магистрали.

Кроме того, газопроводы разного давления делятся на наземные (или наводные) и подземные (или подводные).

Таблицы в картинках

Приведенные ниже картинки вы можете сохранить к себе для личного пользования.

Для расчёта стоимости котельной, пожалуйста,
заполните опросный лист на котельную.
Опросный лист можно заполнить в онлайн-режиме или скачать.

По всем возникшим вопросам:
телефон: 8 (906) 700-40-55
электронная почта: [email protected]

Вас также может заинтересовать

Как происходит запуск котельной?

Запуск котельной необходим для новых, модернизированных и реконструированных установок, а также в ситуации, когда котельную перевели с одного топлива на другое. Непосредственно запуск подразумевает пусконаладку котлов, вспомогательного и дополнительного оборудования и систем, обеспечивающих бесперебойную и безопасную работу всей котельной.

Дизельное топливо

Одним из самых распространённых видов жидкого топлива для котельных является дизельное — продукт перегонки нефти, которые производится из газойлево-керосиновых фракций…

Производственно-отопительная котельная

Производственно-отопительными называются котельные установки, которые работают не только на производственные нужды (тепло, пар и горячая вода для технологических нужд), но и на отопительные путём отапливания жилых, бытовых, социальных и административных зданий, входящих в инфраструктуру предприятия.

Резервные котельные установки

Перебои могут возникнуть в работе даже самого надёжного оборудования. Котельные — отнюдь не исключение: прекращение подачи электричества, газа или просто выход из строя котла — ситуация достаточно «штатная».

Классификация газопроводов по давлению

Для любого трубопровода, максимальное внутреннее давление является одной из ключевых характеристик. Данный показатель помогает установить предел мощности трубопровода (максимальный объем прокачиваемого материала за единицу времени), его уровень надежности, а так же и уровень опасности и потенциального риска (чем более высокое давление внутри трубопровода, тем больше потенциальной угрозы он несет).

Все вышесказанное в полной мере относится и к газопроводам. Классификация газопроводов по давлению тесно связана с их назначением. Так как газопровод является потенциально опасным объектом, строительство газопровода с давлением, превышающим необходимое для данных целей, является серьезным нарушением, чреватым большими рисками.

Принятая в России классификация такова:

  • Категория высокого давления I-а. Давление газа составляет более чем 1,2 МПа (1 мега паскаль – 9,8 атмосфер). Используются для подведения газа к парогазовым и турбинным установкам на территории тепловых электростанций.
  • Категория высокого давления I. Давление составляет: 0,6 – 1,2 Мпа. Используются для транспортировки газа к газораспределительным пунктам. Напрямую к потребителям (промышленным, естественно) газопроводы такого давления могут быть подключены только в исключительных случаях.
  • Категория высокого давления II. Давление составляет: 0,3 – 0,6 МПа. Применяются для газораспределительных пунктов внутри городской черты, а так же для подачи газа промышленным потребителям.
  • Категория среднего давления III. Давление составляет: 5 КПа – 0,3 Мпа. Используются для подведения газа к газораспределительным пунктам, расположенным непосредственно на зданиях жилых домов либо вблизи них.
  • Категория низкого давления IV. Давление допускается до 5 КПа. С помощью таких газопроводов осуществляется подача газа непосредственно населению или предприятиям бытового сектора.

Классификация газопроводов по давлению так же тесно связана с иными типами классификации. Например, то или иное рабочее давление может требовать особого местоположения, особой конструкции соединений труб и т.д.

При подводе газа к промышленному объекту (особенно, в случае нового строительства) чрезвычайно важно правильно рассчитать потребность в газе и подобрать оптимальные параметры газопровода, в частности – рабочее давление.

как без отключения, в магистральный и в стояк

Содержание статьи:

Для газификации частного дома требуется врезка в газовую трубу. Выполняют эту работу только специализированные организации. Самостоятельно подключаться к газовым магистралям категорически запрещено. Несоблюдение технологии приводит к взрывам, отравлениям, ожогам и другим несчастным случаям.

Пропускная способность газопровода

Перед врезкой в газопровод нужно рассчитать пропускную способность магистрали и давление в ней

При врезке в городской газопровод выполняют предварительную работу – расчет пропускной способности. При этом принципиальное значение имеет назначение газопровода. Для бытовых нужд обустраивают простую систему с низким давлением. В таких условиях расчеты выполняют по самым простым формулам, с учетом только диаметра трубы и среднего значения давления в сети.

Qmax = 0.67 Ду² * p, где

  • Qmax – пропускная способность;
  • Ду – условный проход трубы – внутренний диаметр, указываемый в документах;
  • p – сумма рабочего давления в газопроводе и 0,1 МПа.

При расчетах используют средние величины – скачки давления, величину силы трения, возникающего при перемещении, не учитывают.

Если подключение производится к магистралям с более высоким давлением, нужно учитывать и другие параметры. Используется формула Qмакс =196,386×Д²×P/Z×Т, где:

  • Qмакс – максимальная пропускная способность;
  • Д – внутренний диаметр газопровода;
  • P –сумма рабочего давления и 0,1 МПа;
  • Z – коэффициент сжимаемости газа;
  • Т – температура подаваемого газа в Кельвинах.

Отсюда хороша заметна зависимость пропускной способности от температуры. Чтобы увеличить этот параметр, нужно поддерживать стабильную температуру подаваемого топлива и утеплять газопровод.

Для расчета пропускной способности сети для промышленных нужд используют куда более сложные расчеты по уравнениям движения газа и уравнениям непрерывности.

Начальный этап врезки под давлением в газопровод

Подготовительный этап включает не столько работы, сколько сбор документов и получение разрешений. Обычно врезка в действующий магистральный газопровод требуется при возведении нового частного дома.

Собственник подает в Горгаз следующие документы:

  • проект системы газоснабжения – утвержденный;
  • заявление – документ заверяет глава территориального отделения лично;
  • паспорт и идентификационный код владельца постройки;
  • разрешение на подключение – выдает отдел планирования архитектурного обустройства;
  • техпаспорт на дом – можно подавать копию, подтвержденную нотариусом;
  • фотография – снимок делают во время топографической съемки участка, на фото запечатлевают всю инфраструктуру: водопровод, теплосеть, канализацию; снимок заверяют работники газовой службы.

Если постройка еще не завершена, к пакету прилагают архитектурный проект здания и разрешение на его сооружение. Если общая площадь дома превышает 300 м², потребуется тепловой расчет здания, ситуационный план надела в масштабе 1:5000 и согласие соседей по участку на подключение к газопроводу. Последнее нужно, если часть сети придется прокладывать по их территории.

Помимо документов для разрешения на врезку под давлением в магистральный или городской газопровод нужны сведения об устанавливаемых газовых приборах: котле, газовой плите, газовом счетчике, бойлере. Нужно иметь на руках техпаспорта всех изделий, сертификаты, разрешение на их применение (их получают в городским управлении газового хозяйства), договоры на обслуживание и ремонт приборов.

Для горения топлива требуется достаточная подача воздуха и система, позволяющая избавиться от продуктов сгорания: вытяжки, дымоходы, вентканалов. Если постройка готова, собственнику нужно получить акт обследования вентиляционных и дымоходных систем. Если задание строится – проект вентиляции.

Подключение, выполненное без оформления необходимых документов и разрешений, влечет административное наказание. Если врезка газа привела к повреждению магистрали, грозит уголовная ответственность.

Обеспечение безопасности

Следующий этап выполняется силами приглашенной бригады. Прежде чем подключаться к газопроводу, нужно:

  • составить схему углов подключения;
  • выбрать способ врезки, рассчитать порядок и метод снижения давления, определить способы поддержки показателя на нужном уровне;
  • рассчитать и отобрать нужное количество материалов, инструментов, спасательных и защитных средств;
  • закрыть краны, задвижки, пробки на подключаемой трубе;
  • запастись требуемым количеством воды, чтобы предупредить возгорание или пожар.

Перед врезкой выполняют контрольное тестирование труб, подключаемой системы и выводов воздуха.

Правила проведения работ по врезке

При подключении к газопроводу под любым давлением строго выполняют следующие правила техники безопасности:

  • Врезку в газовую трубу под высоким или низким давлением осуществляют только работники соответствующей организации и только при наличии сертификата, подтверждающего квалификацию. Это очень опасные работы.
  • Подсоединение к сети с низким давлением осуществляют при показателях не выше 20–80 мм рт.ст. Чтобы сделать то же самое при высоком или среднем давлении, необходимо предварительно снизить величину до приемлемой. Используют отключающие устройства, в тупиковых газопроводах монтируют байпас.
  • Если уменьшить давление нельзя, используют специализированное оборудование. Такие работы намного сложнее и дороже.
  • При сварочных работах или резке газом нужно поддерживать давление на рабочем участке в пределах от 40 до 150 кг/см.

При точном соблюдении ТБ вероятность несчастных случаев и нештатных ситуаций снижается до минимума.

Технологии врезки под давлением

Оборудование для врезки в действующий газопровод

Подключение к газовой магистрали выполняется с полным отключением подачи газа либо при сниженном давлении. Второй метод используется чаще, так как сокращает сроки работ и не создает проблем с подачей топлива уже подключенным потребителям.

Холодная врезка

Суть метода – установка регулирующей арматуры до момента собственно подключения. Технология довольно проста.

  1. Очищают газовую трубу от ржавчины и грязи, устанавливают хомут, точно соответствующий диаметру трубы и закрепляют его болтами.
  2. К фланцу хомута фиксируют задвижку. Задвижку плотно закрывают до сверления.
  3. К задвижке присоединяют бур с крышкой. Крепление практически герметичное за счет уплотнений. Длина сверла должна быть достаточной, чтобы оно могло пройти через задвижку и стенку трубы.
  4. Выполняют сверление основной трубы и подсоединение отвода. При этом утечка газа исключается, а перепад давления становится несущественным.

Холодная врезка – один из самых безопасных методов установки.

Сварка

Более надежный способ, так как обеспечивает высокую плотность соединения. При этом он опаснее и может осуществляться только специально обученными людьми.

Врезка в газопровод низкого давления без отключения выполняется через патрубок. К магистральному газопроводу подключают отводы торцевым соединением, тавровой врезкой, телескопической.

Схема таврового соединения:

  1. Изготавливается патрубок – соединительный элемент соответствующих размеров. 1 конец его должен присоединяться к магистрали, второй – к новому газопроводу. В патрубке проделывают окно для выполнения манипуляций, но этот фрагмент – козырек – сохраняют.
  2. На основной трубе размечают будущее отверстие. К отмеченному фрагменту приваривают стальной прут, чтобы позднее его можно было вытащить. Затем выполняют вырезку диска. При этом оставляют перемычку в 5 мм. Во время резки газ загорается. Его гасят, обмазывая глиной место реза.
  3. Монтируют и приваривают патрубок к магистрали и к устанавливаемому газопроводу.
  4. В патрубке закрепляют деревянный диск, обмазанный глиной, чтобы предупредить возможность взрыва.
  5. С помощью прута извлекают деревянную заглушку и вырезанную стенку трубы на стальном пруте. Сразу же фиксируют козырек на листовом асбесте.
  6. Присоединенную трубу продувают, чтобы избавиться от газовоздушной смеси. Затем козырек приваривают. Поверх монтируют стальную накладку.

Такой метод сегодня считается устаревшим.

Врезка в газопровод низкого давления

Газопроводу, обслуживающие частные дома, передают топливо при давлении не более 0,15 МПа. При таких показателях можно не отключать подачу газа, а подсоединение сделать даже без переходного элемента.

Технология похожая.

  1. Трубы очищают от изоляции, прогревают, отмечают место соединения. Подключаемую трубу обрезают и обрабатывают кромку.
  2. Отвод накладывают на основной газопровод и приваривают.
  3. Затем в подсоединенной трубе прорезают технологическое отверстие – козырек. А уже через него проделывают отверстие в магистральной трубе – пятак. Фрагмент не вынимается, а удерживается тонкой перемычкой. Гасят пламя, если оно появилось, промазывая место реза глиной.
  4. Подготовленный козырек прокладывают смоченным асбестом толщиной не менее 3 мм.
  5. Следующий этап выполняют очень быстро: сварщик выбивает пятак, а второй работник тут же накрывает окно козырьком. Щели сразу затирают асбестом. Пятак вынимают. Чтобы сделать это быстрее, можно приварить к нему прут.
  6. Козырек приваривают, швы зачищают. Соединение изолируют.

Если по схеме трубы относительно друг друга приваривают под углом, используют врезку крутоизогнутым или гнутым отводом в газовый стояк.

Современные инструменты позволяют получать чрезвычайно тонкие швы и места реза. Газ при этом практически не выходит, возгорание исключено.

Врезка в газопровод высокого давления

Врезка под давлением в газопровод делают катушечным или тавровым соединением. Если нужно, подключают новый газопровод не в торец существующего, устанавливают дополнительную переходную деталь: патрубок, тройник, муфту с задвижкой.

Все манипуляции выполняют после предварительного снижения давления на рабочем участке. Делают это при помощи отключающих устройств. Если система закольцована, используют газораспределительные пункты – с предохранительным сбросным клапаном и байпасом. Чтобы не спровоцировать повышение давления на предыдущем участке, монтируют газопровод «свеча». Излишек газа сжигается.

Сварку выполнят по технологической карте. Их разрабатывают на каждый процесс подключения.

Врезка без отключения

Врезку газа под высоким давлением можно проводить и без отключения. Для этого потребуются другие приспособления: конструкция с задвижкой или ПГВМ.

В первом случае к магистрали приваривают муфту и изготовленный под диаметр трубы патрубок с фланцем. К фланцу закрепляют задвижку с камерой. Через муфту вырезают отверстие в основной трубе, вынимают фрагмент стенки и саму фрезу через камеру. Задвижку тут же закрывают, после чего к фланцу приваривают новый газопровод.

Второй способ сложнее, но обеспечивает более надежную эксплуатацию. К магистрали приваривают патрубок, внутри которого к стенке основой трубы закрепляют втулку. Через втулку ввинчивают шпильку, шток с фрезой, затем заливают машинное масло.

На фланце монтируют ПГВМ, а затем фрезой высверливают отверстие для отвода. Отрезанный диск изымают вместе с фрезой и штоком, а отверстие перекрывают резиновой пробкой. Когда открывают газ, пробку заворачивают в патрубок, а ПГВМ удаляют. Пробку обваривают по периметру.

После завершения работ проверяют швы на герметичность с помощью мыльной эмульсии и только затем изолируют.

Особенности врезки под давлением в газопровод

В частных домах и квартирах все чаще при монтаже газопровода используют пластиковые трубы. Материал высокого качества применяют для более крупных секций газопроводной системы. При этом возникает необходимость соединять изделия из разного материала.

Пластиковый газопровод

Сварка пластиковых труб занимает меньше времени и обходится дешевле. Соединяют изделия с помощью полиэтиленовых и стальных вставок. Длина варьируется от 80 до 100 см.

Технология проста: стальную вставку разогревают до 60 С, и насаживают на нее пластиковую конструкцию. Последняя должна стыковаться очень плотно, с усилием, а небольшая температура только увеличивает плотность контакта.

Возможно подключение через шаровой кран. Перед сборкой в сеть монтируют фитинги и нагреватели, затем приваривают накладной кран. На его патрубке закрепляют буровую штангу, с ее помощью высверливают отверстие после опрессовки полученного узла. Затем стравливают газ через газоотводный шланг, снимают с патрубка оборудование и изымают буровую штангу. Вместе с фрезой нужно извлечь и вырезанный диск, и стружку.

На последнем этапе отвод приваривают с помощью муфты на освободившийся конец патрубка.

Врезка пластиковых труб допускается при величине давления в магистрали не более 10 бар.

Газопровод из металлических труб

Подключение к стальным трубам выполняется разными способами. Общим для всех методик является 2 момента.

  • Для сварки и резки металла нужна куда более высокая температура, чем при резке пластиковых. Однако для возгорания газа требуется не только температура, но и кислород. В магистральной трубе его нет, но когда голубое топливо просачивается наружу во время резки, оно смешивается с кислородом и загорается. Концентрация газа невелика. Чтобы его погасить, перед резкой участок замазывают глиной, а в процессе периодически повторяют процедуру.
  • После монтажа обязательно проверяют герметичность, промазывая новые швы мыльным раствором. Если есть утечка, появляются мыльные пузыри.

После подключения нового газопровода к магистрали составляют акт выполнения работ. Документ заверяют подписями. В дальнейшем заключить договор с газоснабжающей организацией можно только при наличии акта подключения.

Ростехнадзор разъясняет: Идентификация и надзор за сетями газораспределения с 1 сентября 2016г.

Письмо Ростехнадзора от 18.07.2016 N 00-06-06/1413 «О внесении изменений в Федеральный закон «О промышленной безопасности опасных производственных объектов»


ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ЭКОЛОГИЧЕСКОМУ, ТЕХНОЛОГИЧЕСКОМУ И АТОМНОМУ НАДЗОРУ

ПИСЬМО от 18 июля 2016 г. N 00-06-06/1413

О ВНЕСЕНИИ ИЗМЕНЕНИЙ В ФЕДЕРАЛЬНЫЙ ЗАКОН «О ПРОМЫШЛЕННОЙ БЕЗОПАСНОСТИ ОПАСНЫХ ПРОИЗВОДСТВЕННЫХ ОБЪЕКТОВ»

Федеральная служба по экологическому, технологическому и атомному надзору в связи с вступлением в силу 1 сентября 2016 г. Федерального закона от 2 июня 2016 г. N 170-ФЗ «О внесении изменений в Федеральный закон «О промышленной безопасности опасных производственных объектов» (далее — Федеральный закон N 170-ФЗ) разъясняет.


Федеральный закон N 170-ФЗ уточняет критерии идентификации сетей газораспределения и сетей газопотребления в качестве опасных производственных объектов. Согласно внесенным изменениям к опасным производственным объектам не относятся сети газораспределения и сети газопотребления, работающие под давлением природного или сжиженного углеводородного газа до 0,005 МПа включительно.

В отношении сетей газораспределения и сетей газопотребления с давлением до 0,005 МПа включительно Ростехнадзором будет осуществляться контроль (надзор) за соблюдением эксплуатирующими организациями требований технического регламента о безопасности сетей газораспределения и газопотребления, утвержденного постановлением Правительства Российской Федерации от 29 октября 2010 г. N 870, в соответствии с требованиями Федерального закона от 26 декабря 2008 г. N 294-ФЗ «О защите прав юридических лиц и индивидуальных предпринимателей при осуществлении государственного контроля (надзора) и муниципального контроля».

При этом сети газораспределения и сети газопотребления с давлением до 0,005 МПа включительно как опасные производственные объекты не рассматриваются и идентифицируются как объекты технического регулирования с учетом величины давления природного газа.

При идентификации объектов в качестве сети газораспределения и сети газопотребления необходимо учитывать, что каждая из указанных сетей является единым производственно-технологическим комплексом, включающим в себя соответствующие газопроводы, сооружения, технические и технологические устройства, газоиспользующее оборудование.


Объекты, включая межпоселковые газопроводы и сети газораспределения населенных пунктов с давлением свыше 0,005 МПа, находящиеся на балансе газораспределительной организации или иной организации, до точки разграничения балансовой принадлежности в соответствии с Правилами подключения (технологического присоединения) объектов капитального строительства к сетям газораспределения, утвержденными постановлением Правительства Российской Федерации от 15 апреля 2014 г. N 1314, до границы давлений (0,005 МПа и ниже) в ГРП, ГРУ, ГРПШ и других редуцирующих устройствах, являются опасными производственными объектами независимо от количества единовременно находящегося в них газа и формы собственности (юридические лица и индивидуальные предприниматели).

Согласно разделу 11 Требований к ведению государственного реестра опасных производственных объектов в части присвоения наименований опасным производственным объектам для целей регистрации в государственном реестре опасных производственных объектов, утвержденных приказом Ростехнадзора от 7 апреля 2011 г. N 168, в составе сети газопотребления учитываются наружные и внутренние газопроводы, сооружения, технические и технологические устройства, площадки газифицированных котельных и их оборудование, газораспределяющее оборудование, а также газовая часть газопотребляющего оборудования и установок, газовых турбин, технологических линий и др. в зданиях и сооружениях на территории организации.

То есть сеть газопотребления представляет собой единый производственно-технологический объект.

Таким образом, объект «Сеть газопотребления» попадает под критерии опасного производственного объекта при наличии оборудования, работающего под давлением природного или сжиженного углеводородного газа свыше 0,005 МПа, даже если в составе опасного производственного объекта есть оборудование, работающее под давлением природного или сжиженного углеводородного газа 0,005 МПа и ниже. При этом в сведениях, характеризующих опасный производственный объект, отражаются все характеристики объекта, в том числе участки газопроводов и оборудование низкого давления. Разделение объекта «Сеть газопотребления» на регистрируемые и не регистрируемые в реестре опасных производственных объектов мелкие участки, технологически связанные и эксплуатируемые в рамках одного предприятия, необоснованно.


Начиная с даты вступления в силу Федерального закона N 170-ФЗ сети газораспределения и сети газопотребления, работающие под давлением природного газа или сжиженного углеводородного газа до 0,005 МПа включительно, подлежат исключению из государственного реестра опасных производственных объектов на основании заявления эксплуатирующей организации по основанию, предусмотренному подпунктом «в» пункта 7 Правил регистрации объектов в государственном реестре опасных производственных объектов, утвержденных постановлением Правительства Российской Федерации от 24 ноября 1998 г. N 1371.

В целях недопущения ошибок при идентификации сетей газораспределения и сетей газопотребления территориальным органам Ростехнадзора необходимо обеспечить особый контроль, в том числе при проведении поверок, за правильностью идентификации объектов с учетом ее подтверждения проектной документацией, техническими условиями, актами разграничения балансовой принадлежности и актами вводов в эксплуатацию.

В настоящее время в соответствии с поручением Ростехнадзора от 14 января 2016 г. N ПЧ-1 «Об усилении контроля за исполнением технического регламента о безопасности сетей газораспределения и газопотребления, утвержденного постановлением Правительства Российской Федерации от 29 октября 2010 г. N 870», территориальными органами Ростехнадзора организована регистрация поступивших заявлений об участии должностных лиц территориальных органов Ростехнадзора в работе приемочных комиссий по приемке сетей газораспределения и сетей газопотребления.

В целях оптимизации учета поднадзорных объектов на территориальные органы Ростехнадзора возлагается ответственность за ведение реестра сетей газораспределения и сетей газопотребления, работающих под давлением природного или сжиженного углеводородного газа до 0,005 МПа включительно.

Также следует отметить, что в соответствии с пунктом 5 Приложения к Положению о лицензировании эксплуатации взрывопожароопасных и химически опасных производственных объектов I, II и III классов опасности, утвержденному постановлением Правительства Российской Федерации от 10 июня 2013 г. N 492, организации, эксплуатирующие опасные производственные объекты «Сеть газораспределения» и «Сеть газопотребления», должны иметь лицензию на эксплуатацию взрывопожароопасных и химически опасных производственных объектов I, II и III классов опасности, с правом выполнения работ по транспортированию опасных веществ.

С.Г.РАДИОНОВА


Вопрос от 27.03.2018:

Как идентифицируются объекты технического регулирования в качестве сети газораспределения?

Ответ: Объект технического регулирования может быть идентифицирован в качестве сети газораспределения, если транспортирует природный газ:

  • а) по территориям населенных пунктов — с давлением, не превышающим 1,2 к газоиспользующему оборудованию газифицируемых зданий и газоиспользующему оборудованию, размещенному вне зданий, — с давлением, не превышающим 1,2 мегапаскаля.
  • б) к газотурбинным и парогазовым установкам — с давлением, не превышающим 2,5 мегапаскаля.
  • в) между населенными пунктами — с давлением, превышающим 0,005 мегапаскаля.

Вопрос от 01.03.2018:

Технический регламент, общие положения, термин «сеть газопотребления»: При регистрации ОПО что определяет слово «производственная площадка», если до производственной площадки от места подключения газопровода собственника еще 3,5 км. до территории предприятия, а по территории предприятия 1,2 км до объектов газопотребления. Куда отнести при регистрации ОПО наружные сети до территории предприятия (Сеть газораспределения или газопотребления)?

Ответ: Сеть газопотребления является единым технологическим комплексом и идентифицируется, прежде всего, по технологическому предназначению (использование газа в качестве топлива) и составу. При этом протяженность газопроводов от места подключения к сети газораспределения значения не имеет. Выражение «находящийся на одной производственной площадке» следует понимать как «использующийся для газоснабжения одной организации». Подводящий газопровод, транспортирующий газ к конкретному предприятию, по технологическому назначению не может быть идентифицирован как «сеть газораспределения».


Вопрос от 01.03.2018:

Понятие «Газопровод-ввод» в Техническом Регламенте отсутствует, а в ГОСТ Р 56865-2010 понятие «Газопровод-ввод» есть. Чем руководствоваться?

Ответ: «Газопровод-ввод» является частью газопровода, входящего в состав сети газопотребления. Никаких отдельных требований к эксплуатации сети газопотребления, связанных с существованием термина «газопровод-ввод», не установлено, и необходимости чем-либо руководствоваться в связи с этим не возникает.


Вопрос от 01.03.2018:

В соответствии с пунктом 11.5. «Сеть газопотребления» <31>» Приложения №1 к приказу Федеральной службы по экологическому, технологическому и атомному надзору «Об утверждении Требований к регистрации объектов в государственном реестре опасных производственных объектов и ведению государственного реестра опасных производственных объектов» от 25.11.2016 № 495 дано определение «Сеть газопотребления», с идентификацией по признакам 2.1. и 2.2. В частности, в нем указывается различное оборудование с давлением природного газа свыше 1,2 Мпа или сжиженного углеводородного газа под давлением свыше 1,6 Мпа.

В связи с эти возникает вопрос: к какому ОПО отнести наружные (межцеховые) газопроводы СУГ, в том числе газоиспользующее оборудование с давлением 0,3 Мпа, а также межцеховые газопроводы природного газа с давлением 0,3 Мпа?

Ответ: В примечании <31> к п. 11.5. давление природного газа свыше 1,2 Мпа или сжиженного углеводородного газа свыше 1,6 Мпа. указано как признак сетей газопотребления II класса опасности.

В том же примечании выше указываются признаки сетей газопотребления III класса опасности: «с давлением природного газа до 1,2 Мпа». Очевидно, что в данном случае упущено упоминание о сетях СУГ. В то же время, в соответствии с п. 4 приложения 2 Федерального закона № 116-ФЗ сети газопотребления СУГ с давлением газа свыше 0,005 Мпа и до 1,6 Мпа включительно являются ОПО III класса опасности.

Таким образом, указанные вами газопроводы и газоиспользующее оборудование должны входить в состав ОПО ««Сеть газопотребления» III класса опасности.


Вопрос от 01.03.2018:

В информационном письме Ростехнадзора «О внесении изменений в Федеральный закон «О промышленной безопасности опасных производственных объектов» от 18.07.2016 № 00-06-06/1413 (см.выше) дается разъяснение по регистрации ОПО, связанных с потреблением СУГ и природного газа. При этом по тексту письма имеются ссылки на отмененные нормативные документы. Например, «Требования к ведению государственного реестра», утвержденные приказом Ростехнадзора от 07.04.2011 № 168 и др.

В связи с этим вопрос: актуальны ли на сегодняшний момент настоящие разъяснения и в какой степени ими можно руководствоваться при регистрации (перерегистрации, снятии с государственного регистрационного учета) объектов, использующих СУГ.

Ответ: В указанном вами письме Ростехнадзора даются разъяснения, связанные идентификацией ОПО «сеть газораспределения» и «сеть газопотребления» с учетом вступления в силу изменений в Федеральный закон № 116-ФЗ о том, что не относятся к ОПО сети низкого давления (до 0,005 Мпа). Разъяснения по этому вопросу полностью актуальны. Приказ Ростехнадзора от 07.04.2011 № 168 утверждал только лишь типовые наименования ОПО.

газопровод распределительный высокого давления — это… Что такое газопровод распределительный высокого давления?


газопровод распределительный высокого давления

3.8 газопровод распределительный высокого давления: Газопровод, обеспечивающий некомпримируемую подачу газа от магистрального газопровода или других объектов ЕСГ (ПХГ, месторождения) в отводы или до ГРС крупных потребителей.

Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.

  • газопровод подключения
  • газопровод-ввод

Смотреть что такое «газопровод распределительный высокого давления» в других словарях:

  • газопровод — 3.4 газопровод: Трубопровод, предназначенный для транспорта газа. Источник: СТО Газпром 2 2.1 249 2008: Магистральные трубопроводы 3.5 газопровод отвод: Газопровод, предназначенный для подачи газа от распределительных или магистральных… …   Словарь-справочник терминов нормативно-технической документации

  • СТО Газпром 2-3.5-051-2006: Нормы технологического проектирования магистральных газопроводов — Терминология СТО Газпром 2 3.5 051 2006: Нормы технологического проектирования магистральных газопроводов: 3.46 «узкое место»: Объект газотранспортной системы (магистральный газопровод, газопровод отвод, газопровод перемычка, распределительный… …   Словарь-справочник терминов нормативно-технической документации

  • Борзовая Заимка — Посёлок Борзовая Заимка Страна РоссияРоссия …   Википедия

  • СТО 45167708-02-2009: Безопасное подключение зданий к газовым сетям — Терминология СТО 45167708 02 2009: Безопасное подключение зданий к газовым сетям: Газопровод ввод в соответствии с [3] это газопровод от места присоединения к распределительному газопроводу до отключающего устройства перед вводным газопроводом… …   Словарь-справочник терминов нормативно-технической документации

  • СТО 45167708-002-2009: Безопасное подключение зданий к газовым сетям — Терминология СТО 45167708 002 2009: Безопасное подключение зданий к газовым сетям: Газопровод ввод в соответствии с [3] это газопровод от места присоединения к распределительному газопроводу до отключающего устройства перед вводным газопроводом… …   Словарь-справочник терминов нормативно-технической документации

Газопровод — это… Что такое Газопровод?

Газопрово́д — инженерное сооружение, предназначенное для транспортировки газа (в основном природного газа) с помощью трубопровода. Газ по газопроводам и газовым сетям подаётся под определённым избыточным давлением.

Типы газопроводов

Газопроводы подразделяются на:

  • Магистральные газопроводы — предназначены для транспортировки газа на большие расстояния. Через определённые интервалы на магистрали установлены газокомпрессорные станции, поддерживающие давление в трубопроводе. В конечном пункте магистрального газопровода расположены газораспределительные станции, на которых давление понижается до уровня, необходимого для снабжения потребителей.
  • Газопроводы распределительных сетей — предназначены для доставки газа от газораспределительных станций к конечному потребителю.

По давлению в магистрали:

  • Магистральные[1]:
    • первой категории — до 10 МПа
    • второй категории — до 2,5 МПа
  • Распределительные:
    • низкого давления — до 0,005 МПа;
    • среднего — от 0,005 до 0,3 МПа;
    • высокого — второй категории от 0,3 до 0,6 МПа и первой категории — от 0,6 до 1,2 МПа (для СУГ до 1,6 МПа).

По типу прокладки:

  • Наземные;
  • Надземные;
  • Подземные;
  • Подводные.

Резервные газопроводы сооружаются по стратегическим соображениям, для обеспечения гибкости в погрузке газовозов и для снижения длины маршрута транспортировки.

Составные части газопроводов

История

Использование газа для освещения и отопления началось в первой половине XIX века, тогда же появились и первые газопроводы. В Санкт-Петербурге первый газовый завод (производивший светильный газ из импортного каменного угля) и система распределения построены в 1835 году, в Москве — в 1865 году. Затраты на сооружение и эксплуатацию газопроводов велики, поэтому первые газопроводы большой длины появились с началом эксплуатации месторождений природного газа.

Первый в СССР газопровод от Дашавских промыслов до Львова был построен в 1940—1941 гг. (первый газопровод от Дашавы — до Стрыя был построен в 1924 году). Во время Великой Отечественной войны были построены газопроводы от Бугуруслана и Похвистнево до Куйбышева (160 км, диаметр трубы 300 мм), а также от Елшанки до Саратова[2].

Первым магистральным газопроводом в СССР стал газопровод Саратов — Москва вступивший в строй в 1946 году.

Крупнейшей системой газопроводов в мире является Единая система газоснабжения.

Газопроводы

Российские магистральные

См. также

Литература

  • Кудинов В. И. «Основы нефтегазопромыслового дела», изд. «ИКИ», 2005, 720 стр., ISBN 5-93972-333-0
  • Шаммазов А. М. и др.: “История нефтегазового дела России”, Москва, “Химия”, 2001, 316 стр., УДК 622.276, ББК 65.304.13, ISBN 5-7245-1176-2
  • Шухов В. Г. Расчёт газопровода (техническая документация), 1920г., Архив Российской Академии Наук, фонд №1508, опись 1, дело № 18.

Ссылки

Примечания

Портал о нефти и газе — о добыче и использовании природных энергетических ресурсов

»Транспортировка природного газа NaturalGas.org

Транспортировка природного газа

Для эффективного и действенного перемещения природного газа из регионов добычи в регионы потребления требуется разветвленная и продуманная транспортная система. Во многих случаях природный газ, добытый из конкретной скважины, должен пройти большое расстояние, чтобы достичь точки использования. Система транспортировки природного газа состоит из сложной сети трубопроводов, предназначенных для быстрой и эффективной транспортировки природного газа от места его происхождения в районы с высоким спросом на природный газ.Транспортировка природного газа тесно связана с его хранением: если транспортируемый природный газ не понадобится немедленно, его можно поместить в хранилища, когда он понадобится.

На маршруте транспортировки есть три основных типа трубопроводов: система сбора, система межгосударственных трубопроводов и система распределения. Система сбора состоит из трубопроводов низкого давления и малого диаметра, по которым неочищенный природный газ транспортируется от устья скважины до перерабатывающего завода.Если природный газ из конкретной скважины имеет высокое содержание серы и диоксида углерода (высокосернистый газ), необходимо установить специальный трубопровод для сбора высокосернистого газа. Кислый газ является коррозионным, поэтому его транспортировка от устья скважины к очистительной установке должна осуществляться осторожно. Обзор обработки и переработки природного газа.

Трубопроводы можно охарактеризовать как межгосударственные и внутригосударственные. Межгосударственные трубопроводы аналогичны межгосударственным магистралям: они транспортируют природный газ через государственные границы, а в некоторых случаях — через всю страну.С другой стороны, внутригосударственные трубопроводы транспортируют природный газ в пределах определенного государства. В этом разделе будут рассмотрены только основы межгосударственных трубопроводов природного газа, однако обсуждаемые технические и эксплуатационные детали по существу одинаковы для внутригосударственных трубопроводов.

Межгосударственные газопроводы

Межгосударственные газопроводы
Источник: Национальная лаборатория энергетических технологий, DOE

Сеть межгосударственных газопроводов транспортирует переработанный природный газ с перерабатывающих заводов в добывающих регионах в районы с высокими потребностями в природном газе, особенно в большие густонаселенные городские районы.Как видно, трубопроводная сеть проходит по всей стране.
Межгосударственные трубопроводы — это «магистрали» транспортировки природного газа. Природный газ, который транспортируется по межгосударственным трубопроводам, движется по трубопроводу под высоким давлением, от 200 до 1500 фунтов на квадратный дюйм (psi). Это позволяет сократить объем транспортируемого природного газа (до 600 раз), а также объем транспортировки природного газа по трубопроводу.

В этом разделе будут рассмотрены компоненты системы межгосударственных трубопроводов, строительство трубопроводов, а также проверка и безопасность трубопроводов.Для получения дополнительной информации о межгосударственных газопроводах в целом щелкните здесь, чтобы посетить веб-сайт Межгосударственной ассоциации природного газа Америки.

Компоненты трубопровода

Межгосударственные трубопроводы состоят из ряда компонентов, которые обеспечивают эффективность и надежность системы, доставляющей такой важный источник энергии круглый год, двадцать четыре часа в сутки, и включают в себя ряд различных компонентов.

Трубопроводы передачи

Транзитные трубы
Источник: Duke Energy Gas Transmission Canada

Передаточные трубы могут иметь диаметр от 6 до 48 дюймов, в зависимости от их функции.Некоторые составляющие трубные секции могут даже состоять из труб небольшого диаметра, всего 0,5 дюйма в диаметре. Однако эта труба небольшого диаметра обычно используется только в системах сбора и распределения. Магистральные трубопроводы, являющиеся основным трубопроводом в данной системе, обычно имеют диаметр от 16 до 48 дюймов. Боковые трубопроводы, по которым природный газ поступает в магистраль или из нее, обычно имеют диаметр от 6 до 16 дюймов. Диаметр большинства крупных межгосударственных трубопроводов составляет от 24 до 36 дюймов.Сам трубопровод, обычно называемый «трубопроводом», состоит из прочной углеродистой стали, спроектированной в соответствии со стандартами, установленными Американским институтом нефти (API). Напротив, некоторые распределительные трубы изготовлены из высокотехнологичного пластика из-за необходимости гибкости, универсальности и простоты замены.

Магистральные трубопроводы производятся на сталелитейных заводах, которые иногда специализируются на производстве только трубопроводов. Существует два различных метода производства: один для труб малого диаметра, а другой — для труб большого диаметра.Для труб большого диаметра, от 20 до 42 дюймов в диаметре, трубы производятся из листов металла, которые складываются в форму трубы, а концы свариваются вместе, образуя отрезок трубы. С другой стороны, трубы малого диаметра могут изготавливаться без швов. При этом металлический стержень нагревается до очень высоких температур, а затем делается отверстие в середине стержня для получения полой трубы. В любом случае труба проверяется перед отправкой с сталелитейного завода, чтобы убедиться, что она соответствует стандартам давления и прочности для транспортировки природного газа.

Труба

Line также покрыта специальным покрытием, которое предотвращает коррозию после помещения в землю. Покрытие предназначено для защиты трубы от влаги, вызывающей коррозию и ржавчину. Есть несколько различных техник нанесения покрытия. Раньше трубопроводы покрывали специальной каменноугольной эмалью. Сегодня трубы часто защищают так называемой эпоксидной смолой, которая придает трубе заметный голубой цвет. Кроме того, часто используется катодная защита; это метод пропускания электрического тока через трубу для предотвращения коррозии и ржавчины.

Компрессорные станции

Как уже упоминалось, природный газ находится под высоким давлением, поскольку он проходит через межгосударственный трубопровод. Для обеспечения того, чтобы природный газ, протекающий по любому трубопроводу, оставался под давлением, необходимо периодически производить сжатие этого природного газа вдоль трубы. Это достигается с помощью компрессорных станций, которые обычно размещаются на расстоянии от 40 до 100 миль вдоль трубопровода. Природный газ поступает на компрессорную станцию, где сжимается турбиной, двигателем или двигателем.

A Компрессорная станция
Источник: Duke Energy Gas Transmission Canada

Турбинные компрессоры получают энергию за счет использования небольшой доли природного газа, который они сжимают. Сама турбина служит для работы центробежного компрессора, который содержит тип вентилятора, который сжимает и перекачивает природный газ по трубопроводу. Некоторые компрессорные станции работают с использованием электродвигателя, который вращает центробежный компрессор того же типа.Этот тип сжатия не требует использования природного газа из трубы, но требует наличия поблизости надежного источника электроэнергии. Поршневые двигатели, работающие на природном газе, также используются для питания некоторых компрессорных станций. Эти двигатели напоминают очень большой автомобильный двигатель и работают на природном газе из трубопровода. Сгорание природного газа приводит в действие поршни снаружи двигателя, которые служат для сжатия природного газа.

Помимо сжатия природного газа, компрессорные станции также обычно содержат сепараторы жидкости определенного типа, подобные тем, которые используются для осушки природного газа во время его обработки.Обычно эти сепараторы состоят из скрубберов и фильтров, которые улавливают любые жидкости или другие нежелательные частицы из природного газа в трубопроводе. Хотя природный газ в трубопроводах считается «сухим» газом, нередки случаи, когда определенное количество воды и углеводородов конденсируется из газового потока во время транспортировки. Сепараторы жидкости на компрессорных станциях обеспечивают максимально возможную чистоту природного газа в трубопроводе и обычно фильтруют газ перед сжатием.

Узлы учета

Помимо сжатия природного газа для уменьшения его объема и проталкивания его по трубе, узлы учета периодически размещаются вдоль межгосударственных газопроводов.Эти станции позволяют трубопроводным компаниям контролировать количество природного газа в их трубах. По сути, эти измерительные станции измеряют поток газа по трубопроводу и позволяют трубопроводным компаниям «отслеживать» поток природного газа по трубопроводу. Эти узлы учета используют специализированные счетчики для измерения расхода природного газа по трубопроводу, не препятствуя его движению.

Клапаны

Клапан заземления
Источник: Duke Energy Gas Transmission Canada

Межгосударственные трубопроводы включают большое количество арматуры по всей своей длине.Эти клапаны работают как шлюзы; они обычно открыты и позволяют природному газу свободно течь, или их можно использовать для остановки потока газа на определенном участке трубы. Существует множество причин, по которым трубопровод может ограничивать поток газа в определенных областях. Например, если часть трубы требует замены или обслуживания, клапаны на любом конце этой части трубы могут быть закрыты, чтобы обеспечить безопасный доступ инженеров и рабочих бригад. Эти большие клапаны могут быть размещены через каждые 5–20 миль вдоль трубопровода и подлежат регулированию в соответствии с правилами безопасности.

C Станции управления и системы SCADA

Компании, занимающиеся трубопроводом природного газа, имеют потребителей на обоих концах трубопровода — производителей и переработчиков, которые подают газ в трубопровод, а также потребителей и местных газовых компаний, которые забирают газ из трубопровода. Чтобы управлять природным газом, который поступает в трубопровод, и гарантировать, что все клиенты получают своевременную поставку своей части этого газа, требуются сложные системы контроля, чтобы контролировать газ, когда он проходит через все участки, что может быть очень продолжительным. трубопроводная сеть.Для выполнения этой задачи по мониторингу и контролю природного газа, который проходит по трубопроводу, централизованные станции контроля газа собирают, ассимилируют и обрабатывают данные, полученные от станций мониторинга и компрессорных станций по всей длине трубы.

Пункт управления трубопроводом
Источник: Duke Energy Gas Transmission Canada

Большая часть данных, получаемых станцией управления, предоставляется системами диспетчерского управления и сбора данных (SCADA).Эти системы по существу представляют собой сложные системы связи, которые проводят измерения и собирают данные вдоль трубопровода (обычно на измерительных или компрессорных станциях и арматуре) и передают их на централизованную станцию ​​управления. Показания расхода через трубопровод, рабочее состояние, давление и температура могут использоваться для оценки состояния трубопровода в любой момент. Эти системы также работают в режиме реального времени, а это означает, что между измерениями, выполненными вдоль трубопровода, и их передачей на станцию ​​управления есть небольшая задержка.
Данные передаются на централизованную станцию ​​управления, что позволяет инженерам трубопроводов в любое время точно знать, что происходит вдоль трубопровода. Это позволяет быстро реагировать на сбои в работе оборудования, утечки или любую другую необычную активность на трубопроводе. Некоторые системы SCADA также включают возможность удаленного управления определенным оборудованием вдоль трубопровода, включая компрессорные станции, что позволяет инженерам в централизованном центре управления немедленно и легко регулировать расход в трубопроводе.

Строительство газопровода

По мере увеличения использования природного газа возрастает необходимость в транспортной инфраструктуре для удовлетворения возросшего спроса. Это означает, что трубопроводные компании постоянно оценивают потоки природного газа через США и строят трубопроводы, чтобы обеспечить транспортировку природного газа в районы, которые недостаточно обслуживаются.

Измерение полосы отвода
Источник: Duke Energy Gas Transmission Canada

Строительство газопроводов требует тщательного планирования и подготовки.Помимо фактического строительства трубопровода, необходимо завершить несколько разрешительных и регулирующих процессов. Во многих случаях, до начала процессов получения разрешений и доступа к земле, компании, работающие с природным газом, готовят технико-экономический анализ, чтобы убедиться, что существует приемлемый маршрут для трубопровода, который оказывает наименьшее воздействие на окружающую среду и уже существующую общественную инфраструктуру.

Если трубопроводная компания получит все необходимые разрешения и выполняет все нормативные требования, можно начинать строительство трубы.Завершено всестороннее обследование предполагаемого маршрута, как с воздуха, так и на суше, чтобы гарантировать отсутствие неожиданностей во время фактического монтажа трубопровода.

Установка трубопровода очень похожа на процесс на сборочной линии, при этом секции трубопровода завершаются поэтапно. Во-первых, путь трубопровода очищается от всех устранимых препятствий, включая деревья, валуны, кусты и все остальное, что может помешать строительству. После того, как путь трубопровода очищен в достаточной степени, чтобы строительное оборудование могло получить доступ, секции труб укладываются вдоль намеченного пути, и этот процесс называется «натягиванием» трубы.Эти участки труб обычно имеют длину от 40 до 80 футов и зависят от их назначения. То есть на определенных участках предъявляются разные требования к материалу покрытия и толщине трубы.

«Нанизать» трубу
Источник: Duke Energy Gas Transmission Canada

После установки трубы вдоль уложенной трубы выкапываются траншеи. Эти траншеи обычно имеют глубину от пяти до шести футов, так как правила требуют, чтобы труба располагалась как минимум на 30 дюймов ниже поверхности.Однако на некоторых участках, в том числе на пересечениях дорог и в водоемах, труба заглублена еще глубже. После того, как траншеи вырыты, труба собирается и контурируется. Это включает сварку секций трубы вместе в один непрерывный трубопровод и, при необходимости, его небольшой изгиб, чтобы он соответствовал контуру траектории трубопровода. Покрытие наносится на концы труб. Покрытие, наносимое на стане для нанесения покрытий, обычно оставляет концы трубы чистыми, чтобы не мешать сварке. Наконец, проверяется все покрытие трубы, чтобы убедиться, что на нем нет дефектов.

После того, как труба сварена, согнута, покрыта и осмотрена, ее можно опускать в ранее вырытые траншеи. Это делается с помощью специального строительного оборудования, которое поднимает трубу ровно и опускает ее в траншею. После опускания в землю траншея тщательно засыпается, чтобы труба и ее покрытие сохраняли целостность. Последний этап строительства трубопровода — это гидростатические испытания. Он состоит из проточной воды под давлением выше, чем это необходимо для транспортировки природного газа, по всей длине трубы.Это служит тестом, чтобы убедиться, что трубопровод достаточно прочен и нет каких-либо утечек трещин, прежде чем природный газ будет прокачиваться по трубопроводу.

Трубка опускания
Источник: Duke Energy Gas Transmission Canada

Укладку труб через ручьи или реки можно выполнить одним из двух способов. Открытый переход предполагает рытье траншей на дне реки для размещения трубы.Когда это делается, сама труба обычно оснащается бетонным кожухом, который гарантирует, что труба остается на дне реки, и добавляет дополнительное защитное покрытие для предотвращения утечки природного газа в воду. В качестве альтернативы может использоваться форма направленного бурения, при которой «туннель» пробуривается под рекой, через которую может проходить труба. Те же методы используются для пересечений дорог — либо через дорогу выкапывается открытая траншея, которая заменяется после установки трубы, либо под дорогой может быть пробурен туннель.

После того, как трубопровод был установлен и перекрыт, предпринимаются обширные усилия для восстановления пути трубопровода до его исходного состояния или для смягчения любых экологических или других воздействий, которые могли возникнуть в процессе строительства. Эти шаги часто включают замену верхнего слоя почвы, заборов, оросительных каналов и всего остального, что могло быть удалено или нарушено в процессе строительства. Для получения дополнительной информации о строительстве газопровода посетите веб-сайт Межгосударственной газовой ассоциации Америки.

Контроль и безопасность трубопроводов

Свинья — Инструмент для осмотра трубопроводов
Источник: Duke Energy Gas Transmission Canada

Для обеспечения эффективной и безопасной эксплуатации разветвленной сети газопроводов трубопроводные компании регулярно проверяют свои трубопроводы на предмет коррозии и дефектов. Это достигается за счет использования сложного оборудования, известного как «умные свиньи».«Умные скребки — это интеллектуальные роботизированные устройства, которые перемещаются по трубопроводу для оценки внутренней части трубы. Умные скребки могут проверять толщину и округлость трубы, проверять наличие признаков коррозии, обнаруживать мельчайшие утечки и любые другие дефекты внутри трубопровода, которые могут либо препятствовать потоку газа, либо представлять потенциальную угрозу безопасности для работы трубопровод. Отправка «умного» скребка по трубопроводу уместно называется «очисткой» трубопровода.

В дополнение к проверке с помощью умных свиней существует ряд мер предосторожности и процедур, позволяющих минимизировать риск несчастных случаев.Фактически, транспортировка природного газа является одним из самых безопасных способов транспортировки энергии, в основном из-за того, что инфраструктура закреплена и находится под землей. По данным Министерства транспорта (DOT), трубопроводы — самый безопасный способ транспортировки нефти и природного газа. По данным Управления безопасности трубопроводов Департамента транспорта США в 2009 году, в 2009 году число смертей, связанных с линиями электропередачи, превышало 100 человек, и 10 случаев смерти были связаны с системами распределения.Чтобы узнать больше о безопасности трубопроводов, посетите Управление безопасности трубопроводов DOT.

Некоторые меры безопасности, связанные с трубопроводами природного газа, включают:

  • Воздушное патрулирование — Самолеты используются, чтобы гарантировать, что строительные работы не ведутся слишком близко к маршруту трубопровода, особенно в жилых районах. Согласно INGAA
  • , несанкционированное строительство и земляные работы являются основной угрозой безопасности трубопровода.
  • Обнаружение утечек — Оборудование для обнаружения природного газа периодически используется персоналом трубопроводов на поверхности для проверки на утечки.Это особенно важно в регионах, где природный газ не одорирован.
  • Маркировочные знаки для трубопроводов — Знаки на поверхности над трубопроводами природного газа указывают на наличие подземных трубопроводов для населения, чтобы уменьшить вероятность любого вмешательства в трубопровод.
  • Отбор проб газа — Регулярный отбор проб природного газа в трубопроводах обеспечивает его качество и может также указывать на коррозию внутри трубопровода или приток загрязняющих веществ.
  • Профилактическое обслуживание — Включает в себя тестирование клапанов и устранение поверхностных препятствий для проверки трубопровода.
  • Реагирование на чрезвычайные ситуации — Трубопроводные компании имеют обширные группы реагирования на чрезвычайные ситуации, которые тренируются на случай возникновения широкого круга потенциальных аварий и чрезвычайных ситуаций.
  • Программа одного звонка — Все 50 штатов ввели так называемую программу «один звонок», которая предоставляет экскаваторам, строительным бригадам и всем, кто заинтересован в рытье земли вокруг трубопровода, с одним номером телефона, который может вызывается, когда планируются какие-либо раскопки.Этот звонок предупреждает трубопроводную компанию, которая может пометить территорию или даже послать представителей для наблюдения за раскопками. Национальный трехзначный номер для одного звонка — «811».

В то время как крупные межгосударственные газопроводы транспортируют природный газ из регионов переработки в регионы-потребители и могут напрямую обслуживать крупных оптовых потребителей, таких как промышленные предприятия или потребители электроэнергии, именно система распределения фактически доставляет природный газ большинству розничных потребителей, в том числе бытовые потребители природного газа.

Оценка падения давления вдоль трубопроводов

Самый простой способ перекачать жидкость в замкнутой системе из точки A в точку B — с помощью канала или трубы ( Рис. 1 ).

  • Рис. 1 — Система потока жидкости (любезно предоставлена ​​AMEC Paragon).

Конструкция трубопровода

Минимальные основные параметры, необходимые для проектирования системы трубопроводов, включают, но не ограничиваются, следующим.

  • Характеристики и физические свойства жидкости.
  • Требуемый массовый расход (или объем) транспортируемой жидкости.
  • Давление, температура и высота в точке А.
  • Давление, температура и высота в точке Б.
  • Расстояние между точками A и B (или длина, которую должна пройти жидкость) и эквивалентная длина (потери давления), вносимые клапанами и фитингами.


Эти основные параметры необходимы для проектирования системы трубопроводов.Предполагая установившийся поток, существует ряд уравнений, основанных на общем уравнении энергии, которые можно использовать для проектирования системы трубопроводов. Переменные, связанные с флюидом (например, жидкость, газ или многофазность), влияют на поток. Это приводит к выводу и развитию уравнений, применимых к конкретной жидкости. Хотя конструкция трубопроводов и трубопроводов может быть сложной, подавляющее большинство проектных проблем, с которыми сталкивается инженер, можно решить с помощью стандартных уравнений потока.

Уравнение Бернулли

Основным уравнением, разработанным для представления установившегося потока жидкости, является уравнение Бернулли, которое предполагает, что полная механическая энергия сохраняется для установившегося, несжимаемого, невязкого, изотермического потока без теплопередачи или работы. Эти ограничительные условия могут быть характерны для многих физических систем.

Уравнение указано как
(Уравнение 1)
где

Z = напор, фут,
п. = давление, psi,
ρ = Плотность, фунт / фут 3 ,
В = скорость, фут / сек,
г = гравитационная постоянная, фут / сек 2 ,
и
H L = потеря напора, фут.


На рис. 2 представлена ​​упрощенная графическая иллюстрация уравнения Бернулли.

  • Рис. 2 — Набросок четырех уравнений Бернулли (любезно предоставлено AMEC Paragon).


Уравнение Дарси дополнительно выражает потерю напора как
(уравнение 2)
и
(уравнение 3)
, где

H L = потеря напора, фут,
f = Коэффициент трения по Муди, безразмерный,
л = длина трубы, фут,
D = диаметр трубы, фут,
В = скорость, фут / сек,
г = гравитационная постоянная фут / сек 2 ,
Δ П = перепад давления, psi,
ρ = Плотность, фунт / фут 3 ,
и
г = внутренний диаметр трубы, дюйм.

Число Рейнольдса и коэффициент трения Муди

Число Рейнольдса — это безразмерный параметр, который полезен для характеристики степени турбулентности в режиме потока и необходим для определения коэффициента трения Муди. Он выражается как
(уравнение 4)
, где

Вязкость
ρ = Плотность, фунт / фут 3 ,
D = внутренний диаметр трубы, фут,
В = скорость потока, фут / сек,
и
мкм =, фунт / фут-сек.


Число Рейнольдса для жидкостей может быть выражено как
(уравнение 5)
где

мкм = вязкость, сП,
г = внутренний диаметр трубы, дюйм,
SG = удельный вес жидкости по отношению к воде (вода = 1),
Q л = Расход жидкости, B / D,
и
В = скорость, фут / сек.


Число Рейнольдса для газов может быть выражено как
(уравнение 6)
где

мкм = вязкость, сП,
г = внутренний диаметр трубы, дюйм,
S = удельный вес газа при стандартных условиях по отношению к воздуху (молекулярный вес, деленный на 29),
и
Q г = Расход газа, млн куб. Футов / сут.


Коэффициент трения по Муди, f , выраженный в предыдущих уравнениях, является функцией числа Рейнольдса и шероховатости внутренней поверхности трубы и определяется как Рис. 3 . На коэффициент трения Moody влияет характеристика потока в трубе. Для ламинарного потока, где Re <2000, протекающая жидкость перемешивается слабо, а скорость потока параболическая; Коэффициент трения Муди выражается как f = 64 / Re.Для турбулентного потока, где Re> 4000, происходит полное перемешивание потока, и скорость потока имеет однородный профиль; f зависит от Re и относительной шероховатости (Є / D ). Относительная шероховатость — это отношение абсолютной шероховатости, Є, показателя дефектов поверхности к внутреннему диаметру трубы, D . Таблица 9.1 перечисляет абсолютную шероховатость для нескольких типов материалов труб.

  • Рис. 3 — Таблица коэффициента трения (любезно предоставлено AMEC Paragon).


Если вязкость жидкости неизвестна, Рис. 4 может использоваться для вязкости сырой нефти, Рис. 5 для эффективной вязкости смесей сырая нефть / вода и Рис. 6 для вязкость природного газа. При использовании некоторых из этих цифр необходимо использовать соотношение между вязкостью в сантистоксах и вязкостью в сантипуазах
(уравнение 7)
где

γ = кинематическая вязкость, сантистокс,
ϕ = абсолютная вязкость, сП,
и
SG = удельный вес.
  • Рис. 4 — Стандартные графики вязкости / температуры для жидких нефтепродуктов (любезно предоставлены ASTM).

  • Рис. 5 — Эффективная вязкость смеси масло / вода (любезно предоставлено AMEC Paragon).

  • Рис. 6 — Вязкость углеводородного газа в зависимости от температуры (любезно предоставлено Western Supply Co.).

Падение давления для потока жидкости

Общее уравнение

Ур.3 можно выразить через внутренний диаметр трубы (ID), как указано ниже.
(уравнение 8)
где

д = внутренний диаметр трубы, дюйм,
f = Коэффициент трения по Муди, безразмерный,
л = длина трубы, фут,
Q л = Расход жидкости, B / D,
SG = удельный вес жидкости по отношению к воде,
и
Δ П = Падение давления, фунт / кв. Дюйм (полное падение давления).

Уравнение Хазена Вильямса

Уравнение Хазена-Вильямса, которое применимо только для воды в турбулентном потоке при 60 ° F, выражает потерю напора как
(уравнение 9)
, где

H L = потеря напора из-за трения, фут,
л = длина трубы, фут,
С = постоянный коэффициент трения, безразмерный ( таблица 2 ),
г = внутренний диаметр трубы, дюйм.,
Q л = Расход жидкости, B / D,
и
галлонов в минуту = Расход жидкости, гал / мин.


Падение давления можно рассчитать по
(уравнение 10)

Падение давления для потока газа

Общее уравнение

Общее уравнение для расчета расхода газа указано как
(Ур.11)
где

w = расход, фунт / сек,
г = ускорение свободного падения, 32,2 фут / сек 2 ,
А = Площадь поперечного сечения трубы, фут 2 ,
V 1 = удельный объем газа на входе, фут 3 / фунт,
f = коэффициент трения, безразмерный,
л = длина, фут,
D = диаметр трубы, фут,
П 1 = давление на входе, psia,
и
п 2 = давление на выходе, фунт / кв.


Допущения: работа не выполняется, поток установившийся и f = постоянный как функция длины.

Упрощенное уравнение

Для практических целей трубопровода Ур. 11 можно упростить до
(уравнение 12)
, где

п. 1 = давление на входе, psia,
п 2 = давление на выходе, psia,
S = удельный вес газа,
Q г = Расход газа, млн куб. Футов / сут,
Z = коэффициент сжимаемости газа, безразмерный,
т = температура протока, ° Р,
f = Коэффициент трения по Муди, безразмерный,
г = ID трубы, дюйм.,
и
л = длина, фут.


Коэффициент сжимаемости Z для природного газа можно найти в Рис.7 .

  • Рис. 7 — Сжимаемость низкомолекулярных природных газов (любезно предоставлено Natl. Gas Processors Suppliers Assn.).


Для расчета расхода газа в трубопроводах можно использовать три упрощенных производных уравнения:

  • Уравнение Веймута
  • Уравнение Панхандла
  • Уравнение Шпицгласа

Все три эффективны, но точность и применимость каждого уравнения попадают в определенные диапазоны расхода и диаметра трубы.Далее формулируются уравнения.

Уравнение Веймута

Это уравнение используется для потоков с высоким числом Рейнольдса, где коэффициент трения Муди является просто функцией относительной шероховатости.
(уравнение 13)
где

Q г = Расход газа, млн куб. Футов / сут,
г = внутренний диаметр трубы, дюйм,
П 1 = давление на входе, psia,
п 2 = давление на выходе, psia,
л = длина, фут,
Т 1 = Температура газа на входе, ° Р,
S = удельный вес газа,
и
Z = Коэффициент сжимаемости газа, безразмерный.
Уравнение Panhandle

Это уравнение используется для потоков с умеренным числом Рейнольдса, где коэффициент трения Муди не зависит от относительной шероховатости и является функцией числа Рейнольдса в отрицательной степени.
(уравнение 14)
где

КПД
E = (новая труба: 1,0; хорошие условия эксплуатации: 0,95; средние условия эксплуатации: 0,85),
Q г = Расход газа, млн куб. Футов / сут,
г = ID трубы, дюйм.,
П 1 = давление на входе, psia,
п 2 = давление на выходе, psia,
Д м = длина, миль,
Т 1 = Температура газа на входе, ° Р,
S = удельный вес газа,
и
Z = Коэффициент сжимаемости газа, безразмерный.
Уравнение шпицгласа


(уравнение 15)
где

Q г = Расход газа, млн куб. Футов / сут,
Δ h W = потеря давления, дюймы водяного столба,
и
г = ID трубы, дюйм.


Допущения:

из = (1+ 3,6 / д + 0,03 г) (1/100),
т = 520 ° R,
П 1 = 15 фунтов / кв. Дюйм,
Z = 1.0,
и
Δ П = <10% от P 1.

Применение формул

Как обсуждалось ранее, существуют определенные условия, при которых различные формулы более применимы. Далее дается общее руководство по применению формул.

Упрощенная формула газа

Эта формула рекомендуется для большинства расходных приложений общего назначения.

Уравнение Веймута

Уравнение Веймута рекомендуется для труб меньшего диаметра (обычно 12 дюймов.и менее). Он также рекомендуется для сегментов меньшей длины (<20 миль) в производственных батареях и для ответвлений сборных линий, приложений среднего и высокого давления (от +/– 100 фунтов на кв. Дюйм до> 1000 фунтов на кв. Дюйм) и высоких чисел Рейнольдса.

Уравнение Panhandle

Это уравнение рекомендуется для труб большего диаметра (12 дюймов и больше). Он также рекомендуется для протяженных участков трубопровода (> 20 миль), таких как магистральные газопроводы, и для умеренных чисел Рейнольдса.

Уравнение шпицгласа

Уравнение Spitzglass рекомендуется для вентиляционных линий низкого давления диаметром <12 дюймов (Δ P <10% от P 1 ).

Инженер-нефтяник обнаружит, что общее уравнение газа и уравнение Веймута очень полезны. Уравнение Веймута идеально подходит для проектирования ответвлений и магистральных трубопроводов в промысловых системах сбора газа.

Многофазный поток

Режимы потока

Жидкость из ствола скважины в первую часть производственного оборудования (сепаратор) обычно представляет собой двухфазный поток жидкость / газ.

Характеристики горизонтальных многофазных режимов потока показаны на Рис. 8 . Их можно описать следующим образом:

  • Пузырь: Возникает при очень низком соотношении газ / жидкость, когда газ образует пузырьки, которые поднимаются к верху трубы.
  • Пробка: Возникает при более высоком соотношении газ / жидкость, когда пузырьки газа образуют пробки среднего размера.
  • Стратифицированный: По мере увеличения соотношения газ / жидкость пробки удлиняются, пока газ и жидкость не потекут в отдельные слои.
  • Волнистый: По мере дальнейшего увеличения соотношения газ / жидкость энергия текущего газового потока вызывает волны в текущей жидкости.
  • Пробка: По мере того, как соотношение газ / жидкость продолжает увеличиваться, высота волны жидкости увеличивается до тех пор, пока гребни не соприкасаются с верхом трубы, создавая пробки жидкости.
  • Распылитель: При очень высоких соотношениях газ / жидкость жидкость диспергируется в потоке газа.
  • Фиг.8 — Двухфазный поток в горизонтальном потоке (любезно предоставлен AMEC Paragon).


Рис. 9 [1] показывает различные режимы потока, которые можно ожидать при горизонтальном потоке, в зависимости от приведенных скоростей потока газа и жидкости. Поверхностная скорость — это скорость, которая существовала бы, если бы другая фаза отсутствовала.

  • Рис. 9 — Карта горизонтального многофазного потока (по Гриффиту). [1]


Многофазный поток в вертикальной и наклонной трубе ведет себя несколько иначе, чем многофазный поток в горизонтальной трубе.Характеристики режимов вертикального потока показаны на Рис. 10, и описаны далее.

  • Рис. 10 — Схема двухфазного потока в вертикальном потоке (любезно предоставлено AMEC Paragon).

Пузырь

Если соотношение газ / жидкость небольшое, газ присутствует в жидкости в виде маленьких случайно распределенных пузырьков переменного диаметра. Жидкость движется с довольно равномерной скоростью, в то время как пузырьки движутся вверх через жидкость с разными скоростями, которые определяются размером пузырьков.За исключением общей плотности композитной жидкости, пузырьки мало влияют на градиент давления.

Пробковый поток

По мере увеличения соотношения газ / жидкость высота волны жидкости увеличивается до тех пор, пока гребни не соприкасаются с верхом трубы, создавая пробки жидкости.

Переходный поток

Текучая среда переходит из непрерывной жидкой фазы в непрерывную газовую фазу. Жидкие пробки практически исчезают и уносятся в газовую фазу.Влияние жидкости по-прежнему значимо, но преобладает влияние газовой фазы.

Кольцевой поток тумана

Газовая фаза является непрерывной, и основная часть жидкости увлекается газом. Жидкость смачивает стенку трубы, но влияние жидкости минимально, поскольку газовая фаза становится контролирующим фактором. Рис. 11 [2] показывает различные режимы потока, которые можно ожидать при вертикальном потоке, в зависимости от приведенных скоростей потока газа и жидкости.

  • Рис. 11 — Карта вертикального многофазного потока (по Taitel et al. ). [2]

Двухфазный перепад давления

Расчет перепада давления в двухфазном потоке очень сложен и основан на эмпирических соотношениях для учета фазовых изменений, которые происходят из-за изменений давления и температуры вдоль потока, относительных скоростей фаз и сложных эффектов возвышения. изменения. Таблица 3 перечисляет несколько коммерческих программ, которые доступны для моделирования перепада давления. Поскольку все они в какой-то степени основаны на эмпирических отношениях, их точность ограничена наборами данных, на основе которых были построены отношения. Нет ничего необычного в том, что измеренные перепады давления в поле отличаются на ± 20% от рассчитанных по любой из этих моделей.

Упрощенная аппроксимация падения давления на трение для двухфазного потока

Ур.16 дает приблизительное решение проблемы падения давления на трение в двухфазных задачах потока, которое соответствует заявленным предположениям.
(уравнение 16)
где

Δ P = Падение давления на трение, psi,
f = Коэффициент трения по Муди, безразмерный,
л = длина, фут,
Вт = расход смеси, фунт / час,
ρ M = Плотность смеси, фунт / фут 3 ,
и
г = ID трубы, дюйм.


Формула скорости потока смеси:
(уравнение 17)
где

Q г = Расход газа, млн куб. Футов / сут,
Q L = Расход жидкости, B / D,
S = удельный вес газа при стандартных условиях, фунт / фут 3 (воздух = 1),
и
SG = удельный вес жидкости по отношению к воде, фунт / фут 3 .


Плотность смеси определяется как
(уравнение 18)
где

п. = рабочее давление, psia,
R = Соотношение газ / жидкость, футы 3 / баррель,
т = рабочая температура, ° Р,
SG = удельный вес жидкости по отношению к воде, фунт / фут 3 ,
S = удельный вес газа при стандартных условиях, фунт / фут 3 (воздух = 1),
и
Z = Коэффициент сжимаемости газа, безразмерный.


Формула применима, если выполняются следующие условия:

  • Δ P меньше 10% входного давления.
  • Пузырь или туман существует.
  • Нет перепадов высот.
  • Нет необратимой передачи энергии между фазами.

Падение давления из-за изменения высоты

Есть несколько примечательных характеристик, связанных с падением давления из-за перепадов высоты в двухфазном потоке.Характеристики потока, связанные с изменениями высоты, включают:

  • В нисходящих трубопроводах поток становится расслоенным, поскольку жидкость течет быстрее, чем газ.
  • Глубина слоя жидкости регулируется в зависимости от статического напора и равна падению давления на трение.
  • Нет восстановления давления в линии спуска.
  • При низком расходе газа / жидкости поток на участках подъема может быть «полным» жидкостью при малых расходах. Таким образом, при низких расходах полное падение давления представляет собой сумму падений давления для всех подъемов.
  • При увеличении расхода газа общий перепад давления может уменьшиться, поскольку жидкость удаляется с участков подъема.


Падение давления при низких расходах, связанное с изменением высоты подъема, может быть аппроксимировано уравнением Eq. 19 .
(уравнение 19)
где

Δ P Z = Падение давления из-за увеличения высоты сегмента, psi,
SG = удельный вес жидкости в сегменте относительно воды,
и
Δ Z = увеличение высоты сегмента, фут.


Общее падение давления затем можно приблизительно определить как сумму падений давления для каждого участка подъема.

Падение давления из-за клапанов и фитингов

Одним из наиболее важных параметров, влияющих на падение давления в трубопроводных системах, является потеря давления в фитингах и клапанах, встроенных в систему. Для трубопроводных систем на производственных объектах падение давления через арматуру и клапаны может быть намного больше, чем на прямом участке самой трубы.В протяженных трубопроводных системах падение давления через арматуру и клапаны часто можно не учитывать.

Коэффициенты сопротивления

Потери напора в клапанах и фитингах могут быть рассчитаны с помощью коэффициентов сопротивления как
(уравнение 20)
где

H L = потеря напора, фут,
K r = коэффициент сопротивления, безразмерный,
D = Внутренний диаметр трубы, фут,
и
В = скорость, фут / сек.


Общая потеря напора представляет собой сумму всех K r V 2 /2 g .

Коэффициенты сопротивления K r для отдельных клапанов и фитингов можно найти в табличной форме в ряде отраслевых публикаций. Большинство производителей публикуют табличные данные для всех размеров и конфигураций своей продукции. Одним из лучших источников данных является документ Crane Flow of Fluids , технический документ №410. [3] Ассоциация поставщиков переработчиков природного газа. (NGPSA) Engineering Data Book [4] и Ingersoll-Rand Cameron Hydraulic Data Book [5] также являются хорошими источниками справочной информации. Некоторые примеры коэффициентов сопротивления приведены в Таблицах 4 и 5 .

Коэффициенты расхода

Коэффициент расхода жидкости, C V , определяется экспериментально для каждого клапана или фитинга как расход воды в галлонах / мин при 60 ° F для перепада давления через фитинг на 1 фунт / кв. Дюйм.Связь между коэффициентами расхода и сопротивления может быть выражена как
(уравнение 21)
В любом фитинге или клапане с известным C V падение давления может быть рассчитано для различных условий потока и жидкости. свойства с Eq. 22 .
(уравнение 22)
где

Q L = Расход жидкости, B / D,
и
SG = удельный вес жидкости относительно воды.


Опять же, CV опубликован для большинства клапанов и фитингов, и его можно найти в Crane Flow of Fluids, [3] Engineering Data Book, [4] Cameron Hydraulic Data Book, [5] , а также технические данные производителя.

Эквивалентные длины

Потери напора, связанные с клапанами и фитингами, также можно рассчитать, рассматривая эквивалентные «длины» сегментов трубы для каждого клапана и фитинга. Другими словами, рассчитанная потеря напора, вызванная прохождением жидкости через задвижку, выражается как дополнительная длина трубы, которая добавляется к фактической длине трубы при расчете падения давления.

Все эквивалентные длины, обусловленные клапанами и фитингами внутри сегмента трубы, должны быть сложены вместе для вычисления падения давления для сегмента трубы. Эквивалентная длина L e может быть определена из коэффициента сопротивления K r и коэффициента расхода C V , используя следующие формулы.
(уравнение 23)

(уравнение 24)
и
(уравнение.25)
где

К r = коэффициент сопротивления, безразмерный,
D = диаметр трубы, фут,
f = Коэффициент трения по Муди, безразмерный,
г = ID трубы, дюйм.,
и
С В = Коэффициент расхода жидкостей, безразмерный.


В таблице 6 показаны эквивалентные длины труб для различных клапанов и фитингов для ряда стандартных размеров труб.

Номенклатура

Вязкость
Z = напор, фут,
п. = давление, psi,
ρ = Плотность, фунт / фут 3 ,
В = скорость, фут / сек,
г = гравитационная постоянная, фут / сек 2 ,
H L = потеря напора, фут.
f = Коэффициент трения по Муди, безразмерный,
л = длина трубы, фут,
D = диаметр трубы, фут,
Δ П = перепад давления, psi,
мкм =, фунт / фут-сек.
SG = удельный вес жидкости по отношению к воде (вода = 1),
Q л = Расход жидкости, B / D,
S = удельный вес газа при стандартных условиях по отношению к воздуху (молекулярный вес, деленный на 29),
Q г = Расход газа, млн куб. Футов / сут.
γ = кинематическая вязкость, сантистокс,
ϕ = абсолютная вязкость, сП
Q л = Расход жидкости, B / D,
w = расход, фунт / с
П 1 = давление на входе, фунт / кв. Дюйм
п 2 = давление на выходе, фунт / кв.
Δ h W = потеря давления, дюймы водяного столба,
Вт = расход смеси, фунт / час,
ρ M = Плотность смеси, фунт / фут 3
П = рабочее давление, psia,
R = Соотношение газ / жидкость, футы 3 / баррель,
т = рабочая температура, ° Р,
Δ P Z = Падение давления из-за увеличения высоты сегмента, psi,
Δ Z = увеличение высоты сегмента, фут.
H L = потеря напора, фут,
K r = коэффициент сопротивления, безразмерный
С В = Коэффициент расхода жидкостей, безразмерный.
K r = коэффициент сопротивления, безразмерный,

Ссылки

  1. 1.0 1,1 Гриффит П. 1984. Многофазный поток в трубах. J Pet Technol 36 (3): 361-367. SPE-12895-PA. http://dx.doi.org/10.2118/12895-PA.
  2. 2,0 2,1 Taitel, Y., Bornea, D., and Dukler, A.E. 1980. Моделирование переходов режимов течения для установившегося восходящего потока газа и жидкости в вертикальных трубах. Айше Дж. 26 (3): 345-354. http://dx.doi.org/10.1002/aic.6

    304.

  3. 3,0 3,1 Крановый поток жидкостей, Технический документ № 410.1976 г. Нью-Йорк: Crane Manufacturing Co.
  4. 4,0 4,1 Сборник технических данных, девятое издание. 1972. Талса, Оклахома: Ассоциация поставщиков переработчиков природного газа.
  5. 5,0 5,1 Уэстуэй, К.Р. и Лумис, А.В. изд. 1979. Cameron Hydraulic Data Book, шестнадцатое издание. Озеро Вудклифф, Нью-Джерси: Ингерсолл-Рэнд.

Интересные статьи в OnePetro

Используйте этот раздел, чтобы перечислить статьи в OnePetro, которые читатель, желающий узнать больше, обязательно должен прочитать

Внешние ссылки

Используйте этот раздел для предоставления ссылок на соответствующие материалы на других веб-сайтах, кроме PetroWiki и OnePetro.

См. Также

Трубопроводы и трубопроводные системы

Трубопроводы

Очистка трубопровода

Соображения и стандарты проектирования трубопроводов

PEH: Трубопроводы и трубопроводы

Порядок строительства газопровода — Как строится газопровод

Инвестиционная аренда на бурение природного газа помогает удовлетворить этот спрос, открывая возможность для поиска новых источников природного газа и одновременно давая вам возможность получить финансовую прибыль.


Когда вы делаете финансовые вложения в бурение на природный газ, важно знать обо всех аспектах операции, в том числе о порядке строительства газопровода.


Строительство новых газопроводов

Трубопроводы, используемые для транспортировки природного газа, имеют стальную конструкцию — трубы производятся на сталелитейных заводах и должны быть спроектированы в соответствии со стандартами для трубопроводов природного газа. Диаметр трубопровода обычно составляет от шести до 48 дюймов, в зависимости от местоположения и конкретного назначения трубопровода в этой области.Магистральные трубы обычно имеют диаметр от 16 до 48 дюймов, а боковые трубопроводы, по которым газ подается в магистраль и из нее, имеют диаметр от шести до 16 дюймов.

По данным Министерства транспорта США, по данным Министерства транспорта США, по состоянию на 2014 год по трубопроводам протяженностью 1 585 329 миль по территории страны идет природный газ. Строятся новые трубопроводы для подключения новых буровых площадок к перерабатывающим предприятиям, распределяющим источник энергии.

После ввода в эксплуатацию газовых скважин необходимы трубопроводы природного газа для транспортировки газа от источника к перерабатывающим предприятиям.Проект строительства газопровода осуществляется на участке земли, называемом полосой отчуждения. Целью полосы отвода является ограничение строительства утвержденной площадью на основе запланированного маршрута трубопровода. Строительство нового трубопровода — это очень кропотливый процесс, в котором задействованы меры предосторожности и специализированные команды, что делает партнерские инвестиции в бурение природного газа надежными и ответственными вложениями.


Новый проект трубопровода занимает до 18 месяцев от начала до конца.Строительные бригады обычно остаются на стройплощадке от шести до 12 недель и ежедневно прокладывают около одной мили трубопровода. Если проект большой, он разбивается на более мелкие управляемые части. Эти секции называются разворотами, и несколько бригад, каждая из которых выполняет свою работу, работают над каждым разворотом, чтобы построить трубопровод.

Процесс строительства включает несколько этапов. На каждом этапе специально обученные команды выполняют конкретную задачу, чтобы обеспечить высочайшее качество работы. Испытания проводятся в различных точках конструкции, чтобы предотвратить поломку или утечку.

Этапы строительства газопровода:


  1. Проектирование и одобрение маршрута
  2. Съемка и разметка полосы отвода строительства
  3. Расчистка земли
  4. Градуировка площади
  5. Рытье траншей
  6. Обвязка трубопровода
  7. Гибка труб по контуру грунта
  8. Сварка сегментов трубопровода вместе
  9. Покрытие стыков
  10. Опускание трубопровода на место
  11. Установка клапанов
  12. Засыпка траншеи
  13. Гидростатические испытания, чтобы убедиться, что трубопровод выдерживает давление
  14. Пуск трубопровода
  15. Реставрация, чтобы вернуть землю в первоначальное состояние

1.Проектирование и утверждение маршрута

Строительство нового газопровода требует тщательного проектирования и согласования, чтобы обеспечить доставку природного газа туда, куда он должен идти, при сохранении эффективного и экологически безопасного маршрута. Компания должна приобрести права на землю или сервитуты на частные и государственные земли вдоль трассы трубопровода. Строительство трубопровода также требует множественных разрешений и разрешений для защиты природных ресурсов и местных структур.

Процесс часто включает спутниковые снимки и аэрофотоснимки для определения маршрута.Маршруты трубопроводов обычно избегают участков с потенциально уязвимыми экологическими проблемами, а также густонаселенных районов. После масштабного определения маршрута инженеры приземлились, пройдя по маршруту, чтобы изучить фактическую топографию, растительность и другие уникальные характеристики маршрута. В процессе планирования учитываются исторические и культурные объекты, водно-болотные угодья и другие потенциально опасные области в каждом сообществе.


Средняя длина проекта означает, что трубопровод будет проходить через широкий диапазон условий и различий окружающей среды.На этапе планирования инженеры определяют наилучший размер труб для различных участков, а также необходимость в специальных покрытиях на определенных участках трубопровода.

Эта фаза планирования является важной частью процесса строительства трубопровода. Это гарантирует, что трубопровод попадет туда, куда нужно, без воздействия на сообщества или окружающую среду вдоль маршрута. Интенсивный процесс планирования также обеспечивает целостность трубопровода для повышения безопасности.


2.Обследование и разметка строительной площадки

Перед тем, как приступить к проекту трубопровода, появляется исследовательская бригада, чтобы обозначить полосу отчуждения для строительства. На этом этапе все предварительное планирование маршрута становится реальностью. Исследовательская группа обследует и разметляет строительную полосу отчуждения и временные рабочие места для проведения строительных работ на основании утверждения проекта.


Это дает строительной бригаде четкую основу для строительных работ, чтобы минимизировать воздействие на прилегающие территории.Исследовательская бригада также отмечает осевую линию траншеи в качестве ориентира для рытья.


3. Очистка территории

Следующий этап включает расчистку трассы для газопровода и строительных работ. Строительным бригадам необходима свободная рабочая зона, чтобы доставить строительную технику на площадку. Чтобы свести к минимуму воздействие на окружающую территорию, бригада удаляет только деревья и растительность, необходимые для завершения строительных работ.


Если у землевладельца есть заборы на полосе отвода строительства, бригада срезает и укрепляет существующие заборы и устанавливает временные ворота и заборы, когда и где это необходимо для содержания домашнего скота.

Верхний слой почвы осторожно удаляется перед началом рытья траншеи. Цель состоит в том, чтобы сохранить первоначальный верхний слой почвы с участка, чтобы вернуть его в естественное состояние без потери богатого верхнего слоя почвы. Этот верхний слой почвы отправляется в отвал, где он остается защищенным до конца строительства, когда рабочие вернут его на место.

На этом этапе вступают в силу меры по борьбе с эрозией, включая противоиловые заграждения вдоль водных путей и заболоченных территорий.


4. Градация рабочей зоны

После расчистки грунт готов для любого необходимого профилирования.Трубопровод обычно движется с учетом рельефа местности, но для завершения проекта на определенных участках необходимо некоторое выравнивание. Профилирование помогает избежать чрезмерного изгиба труб на участках с крутыми склонами. Если проект трубопровода требует от бригады прорезания крутых склонов во избежание резких изгибов трубопровода, исходные крутые контуры возвращаются в конце этапа строительства.

Выравнивание земли также может потребоваться для безопасной работы крупной строительной техники.В этом процессе задействовано много очень крупных единиц оборудования, и обеспечение безопасности бригады имеет первостепенное значение для успеха проекта трубопровода.


5. Разработка траншеи на трассе

После завершения наземной подготовки бригада рытья траншеи приступает к рытью траншеи, в которой находится трубопровод. Так же, как верхний слой почвы, который был удален на этапе расчистки, почва, удаленная во время рытья траншей, отправляется на хранение в течение всего процесса строительства. Эта почва возвращается в землю, чтобы засыпать трубу ближе к концу проекта.Эти методы помогают сохранить первоначальное состояние местности при сохранении ресурсов.

Бригада должна создать траншею достаточной глубины для размещения трубопровода, плюс необходимое расстояние от трубопровода до поверхности земли — минимум 30 дюймов. Типичная траншея для трубопровода имеет глубину от двух до пяти футов и ширину от четырех до шести футов в областях со стабильной почвой. Определенные области, такие как водные пути и пересечения дорог, требуют большей минимальной глубины, чтобы соответствовать правилам для трубопроводов природного газа.

Бригады рытья траншеи работают с разнообразным рельефом и захороненными обломками. Камни часто падают вдоль трассы трубопровода, а расчистить их экипажу помогает специальное оборудование и взрывчатка. Когда требуется взрыв, бригады используют взрывчатые вещества в соответствии со строгими инструкциями для контроля взрыва.

Камень, удаленный из траншеи, возвращается в землю в качестве засыпки в конце строительства. Эта каменистая засыпка используется до верхней части профиля коренных пород в этой области.


6.Обвязка трубопровода

Обвязка трубопровода — это, по сути, «сухой» запуск компоновки с целью собрать вместе все секции трубопровода. Секции бывают длиной от 40 до 80 футов и остаются на складской территории рядом с полосой отвода строительных материалов до тех пор, пока они не понадобятся. Бригада-натяжитель перемещает участки трубопровода с использованием специализированных трейлеров для перевозки больших участков.


Этот этап может показаться простым, но процесс требует точности, чтобы обеспечить правильную установку трубопровода.Не все участки трубопровода одинаковы. Толщина стен и покрытия меняются в зависимости от конкретных почвенных условий и других факторов на маршруте. Бригада по натяжке обращается к планам проектирования, чтобы убедиться, что нужные сегменты попадают в нужное место.


7. Гибка трубы

Поскольку трасса газопровода проходит не только по равнине, иногда трубы необходимо изгибать, чтобы вписаться в рельеф местности. Именно здесь в процесс вступает бригада по гибке труб.Используя специальный гибочный станок в соответствии с федеральными стандартами, бригада сгибает определенные секции по мере необходимости, чтобы они встали на место. Зажимы и гидравлическое давление позволяют машине контролировать изгибы для получения гладких конечных результатов.


8. Сварка участков трубопровода

На этом этапе сварочная бригада вступает в процесс строительства, чтобы соединить трубы в непрерывный отрезок. Качественные сварные швы необходимы для строительства безопасного газопровода. Сварщики должны пройти квалификационный тест, прежде чем им будет разрешено работать над проектом трубопровода, чтобы гарантировать качество и безопасность проекта.

Боковая балка поднимает и выравнивает сегменты, чтобы позволить бригаде выполнить первый сварочный проход. Затем выполняются дополнительные проходы для стабилизации суставов. Количество требуемых проходов зависит от толщины стенки, для некоторых участков требуется три или более проходов.

Каждый шов проходит процесс неразрушающего контроля, чтобы убедиться в его безупречном состоянии. Этот процесс проверки обычно включает рентгеновские лучи или ультразвук для проверки на наличие проблем, не влияющих на целостность сварного шва.При обнаружении дефекта сварщик либо исправляет его, либо дефект вырезается и делается заново.


9. Покрытие швов

Стальные трубопроводы требуют специальных покрытий для защиты от влаги и защиты от коррозии. Стандартная эпоксидная смола на основе сплавления подходит для большинства участков трубопровода. Участки, проходящие через каменистый грунт, требуют дополнительных покрытий, чтобы выдерживать удары и нагрузки, которые могут возникнуть из-за камней. Эти покрытия могут включать бетон, стойкую к абразивному воздействию эпоксидную смолу или полиэтилен.


Каждый отрезок трубопровода прибывает на строительную площадку с нанесенным покрытием на расстоянии от трех до шести дюймов от каждого конца. Эта непокрытая область необходима для правильной сварки, но она также оставляет незащищенными участки. Чтобы снизить вероятность коррозии, эти секции покрываются на рабочей площадке.

После завершения и проверки всех сварочных работ можно начинать процесс нанесения покрытия. Экипажи должны сначала хорошо очистить стыки, чтобы удалить грязь и мусор, которые могут мешать покрытию.После нанесения покрытие должно высохнуть, прежде чем трубопровод уйдет в землю.

Бригада также проверяет существующее покрытие на трубопроводе, чтобы убедиться, что покрытие безупречно. Помимо визуального осмотра на предмет царапин или других неисправностей, бригада использует высоковольтный инструмент для обнаружения любых дефектов. Ремонтные покрытия наносятся на пораженные участки до того, как трубопровод уйдет в землю.


10. Опускание трубопровода

Надежные сварные швы и бездефектное покрытие указывают на то, что собранный трубопровод готов к спуску в траншею.Перед спуском инспектор проверяет, нет ли в траншее дикой природы, домашнего скота, камней или мусора, которые могут представлять проблему. Те же боковые штанги, которые помогали поднимать и размещать сегменты трубопровода для сварки, поднимать и опускать трубопровод на место. Этот процесс требует крайней координации, когда все операторы боковой стрелы работают медленно и слаженно.

Большое внимание уделяется защите покрытия в процессе опускания. Специальные стропы, защищающие покрытие, проходят вокруг трубопровода, чтобы легко перемещать участок, не царапая покрытие.Каменистая местность требует использования мешков с песком, пеноблоков или прокладочного материала, такого как песок или земля, вдоль траншеи, чтобы предотвратить повреждение покрытия.


11. Установка клапана

Специальные клапаны для предотвращения проблем и контроля потока природного газа попадают в трубопровод в определенных точках. Клапаны позволяют операторам перекрыть поток природного газа или изолировать участок трубопровода. Эти клапаны и другая специальная арматура устанавливаются на место до заполнения траншеи.


12.Засыпка

После установки трубопровода бригада начинает засыпку траншеи, чтобы перекрыть трубопровод. Исходный грунт возвращается в траншею в порядке, обратном его удалению. Это означает, что грунт входит в первую очередь, чтобы сохранить слои и состав такими же, какими они были изначально. Экскаватор или подбивочная машина перемещает почву обратно в траншею с большой осторожностью, чтобы не повредить трубопровод или покрытие. Как только грунт заполняет траншею, верхний слой почвы снова возвращается наверх.

Как и на других этапах, каменистая местность требует дополнительных шагов и осторожности, чтобы предотвратить повреждение покрытий трубопровода. Перед засыпкой траншеи бригада может просеивать почву для удаления камней. Вместо экранирования бригада может использовать защитный материал для покрытия трубы перед заполнением траншеи каменистым грунтом. Последний вариант — использовать новую почву вместо старой каменистой почвы.


13. Испытания трубопровода давлением

Природный газ не может поступать в недавно построенный трубопровод до тех пор, пока бригада не завершит комплексные испытания под давлением в соответствии с федеральными правилами.Рабочее давление трубопроводов передачи обычно составляет от 500 до 1400 фунтов на квадратный дюйм манометра. Цель испытаний — убедиться, что трубопровод может выдержать высокое давление природного газа, проходящего через трубопровод.


Гидростатические испытания используют воду для испытания трубы при 125 процентах максимального давления природного газа, который будет проходить по трубопроводу. Труба должна выдерживать это давление в течение заданного времени без утечки — обычно не менее восьми часов.Целью испытания является проверка на утечки и обеспечение способности трубы выдерживать давление в течение длительного периода времени.

Каждый участок трубопровода проходит гидростатические испытания. Экипажи блокируют один сегмент за раз с помощью тестовых коллекторов. Если при проверке обнаруживается утечка, этот участок подлежит ремонту. Гидростатическое испытание проводится снова, чтобы убедиться, что ремонтные работы направлены на устранение утечки. Этот процесс продолжается до тех пор, пока раздел не будет соответствовать требованиям тестирования.

После прохождения участка бригада сливает воду и сушит трубопровод, чтобы удалить всю воду до того, как в трубопровод попадет природный газ. В процессе сушки используются механические инструменты для подачи сжатого сухого воздуха по трубопроводу и предотвращения внутренней коррозии. Бригада снимает испытательные коллекторы и все окончательные врезки, и проводятся проверки.

Вода, используемая для гидростатических испытаний, может поступать из местной реки, водохранилища или муниципального источника. Если эти возможности недоступны, вода доставляется на место.Во время испытаний вода часто попадает в каждую новую секцию. Перед сбросом вода подвергается анализу на соответствие требованиям разрешений на сбросы Национальной системы устранения сбросов загрязняющих веществ. В некоторых случаях перед сливом воду необходимо обработать. Вода и процесс тестирования должны соответствовать федеральным, государственным и местным правилам.


14. Пуск газопровода

Ввод в эксплуатацию — это процесс проверки правильности работы трубопровода.Процесс проверяет установку и гарантирует, что системы управления и связи находятся на месте и функционируют должным образом. Как только трубопровод считается готовым к эксплуатации, трубопровод очищается от воздуха и заполняется природным газом.


15. Реставрация

После завершения строительства трубопровода и ввода его в эксплуатацию начинается процесс очистки полосы отвода строительства. Цель этого последнего шага — восстановить землю до ее первоначального состояния, как если бы не было никакого строительства.Экипажи пытаются очистить и восстановить землю в течение 20 дней после засыпки траншеи трубопровода. Погода и условия местности иногда задерживают усилия, но команда усердно работает, чтобы как можно быстрее привести землю в норму.

Однако бригада не просто берет инструменты и не идет дальше. Процесс восстановления включает в себя несколько этапов, чтобы гарантировать целостность области.

Ликвидационные бригады выполняют следующие задачи:


  • Удалите все временные конструкции, большие камни, поднятые на поверхность во время строительства, и любой другой мусор, оставшийся от процесса
  • Стабилизация строительной полосы отвода
  • Выполнить окончательную оценку
  • Как можно точнее воссоздать первоначальные контуры земли для обеспечения отвода воды
  • Заменить удаленный верхний слой почвы
  • Засейте землю заново, если позволяют время и погода
  • Заменить растительность для стабилизации почвы и восстановления естественного вида местности
  • Мульчируйте только что засеянные или засеянные участки, чтобы семена оставались на месте и поддерживали рост
  • Установите средства защиты от эрозии, особенно на холмах, например на перехватывающих дамбах, которые помогают отводить воду
  • Укладка каменной или деревянной каменной наброски возле ручьев или заболоченных территорий для стабилизации грунта
  • Добавьте маркеры трубопроводов вдоль ограждений, водных путей и переходов дорог для обозначения местоположения (маркеры включают имя владельца трубопровода и информацию о чрезвычайных ситуациях)

Разумное инвестирование

Аренда для инвесторов, занимающихся бурением природного газа, открывает путь к процессу строительства трубопровода.


В связи с ростом спроса на газ и нефть инвестирование в источники природного топлива дает вам потенциал для получения прибыли. Инвестиционное образование в области бурения природного газа поможет вам понять процесс от начала до конца, чтобы вы могли принимать обоснованные решения при инвестировании.


Узнайте больше, заполнив нашу форму бесплатной консультации по инвестициям. Наши специалисты по нефти и газу могут посоветовать вам инвестировать в нефть и природный газ.

Добро пожаловать в Совет по регулированию нефти и природного газа, Индия

Технические стандарты и спецификации, включая стандарты безопасности для трубопроводов природного газа



Скачать сводный регламент (внесены поправки до 12.01.2015)
Примечание *: пожалуйста, соблюдайте Бюллетень, поскольку справочные копии / сводные правила предназначены только для удобства пользователя.В случае каких-либо несоответствий, Бюллетень считается абсолютным / авторитетным.

СОВЕТ ПО РЕГУЛИРОВАНИЮ НЕФТИ И ПРИРОДНОГО ГАЗА

УВЕДОМЛЕНИЕ

Нью-Дели, 11 ноября 2009 г.

G.S.R. 808 (E) .- Во исполнение полномочий, предоставленных статьей 61 Закона о нефти и природном газе 2006 г. (19 от 2006 г.), Совет по регулированию нефти и природного газа настоящим принимает следующие постановления, а именно: —

1.Краткое название и начало.

(1) Эти правила могут называться Правилами Совета по регулированию нефти и природного газа (технические стандарты и спецификации, включая стандарты безопасности для трубопроводов природного газа), 2009 г.

(2) Они вступают в силу с даты их публикации в Официальном вестнике.

2. Определения.

(3) В настоящих правилах, если контекст не требует иного,

(a) «Акт» означает Закон о Совете по регулированию нефтегазовой промышленности, 2006 г .;

(b) «активный регулятор» означает регулятор на станции регулирования давления (PRS), который обычно регулирует давление на выходе;

(c) «активная и контролирующая система регулятора» означает расположение двух регулирующих устройств последовательно, одно (Активное) обычно для управления давлением на выходе, а другое (Мониторинг) для управления в случае выхода из строя активного регулятор;

(d) «ASME B 31.8 «означает стандарт, охватывающий систему трубопроводов передачи и распределения газа, упомянутую в Приложении VI.

(e) «Совет» означает Совет по регулированию нефти и природного газа, учрежденный в соответствии с подразделом (1) раздела 3 Закона;

(f) «городская газораспределительная организация» означает организацию, уполномоченную Советом на прокладку, строительство, эксплуатацию или расширение городской или местной распределительной сети природного газа;

(ж) «компрессорная станция» означает установку на трубопроводе с компрессорными установками для повышения давления газа;

(h) «предохранительный клапан от ползучести» означает предохранительный клапан, установленный для сброса избыточного давления, вызванного ползучестью в системе, и имеющий пропускную способность не более 1% такой системы;

(i) «Промежуточная станция скребков» означает установку, имеющую оборудование для приема и спуска скребков для операций скребков;

(j) «оншорный» означает районы, отличные от оффшорных, которые составляют область применения этих стандартов.Подводящие трубопроводы от причала или других точек хранения также должны быть частью береговых трубопроводов. Оффшорное и наземное покрытие согласно этому стандарту представлено в Приложении-I;

(k) «операционная компания или оператор» означает организацию, занимающуюся эксплуатацией газопроводной сети с разрешения Совета;

(l) «владелец» означает организацию, которая владеет сетью трубопроводов природного газа и была уполномочена Советом директоров;

(м) «Трубопровод природного газа» означает любой трубопровод, включая ответвления для транспортировки природного газа, и включает в себя все подключенное оборудование и сооружения, такие как компрессоры, хранилища, узлы учета и т. Д.и газопроводы для морского и наземного охвата, указанные в Приложении I, но не включают —

(i) выделенный трубопровод проложен для транспортировки природного газа конкретному потребителю для удовлетворения его требований, а не для перепродажи;

(ii) трубопровод в городской или местной газораспределительной сети, которые регулируются Регулирующим советом по нефти и природному газу (уполномоченные организации на прокладку, строительство, эксплуатацию или расширение городских или местных газораспределительных сетей), 2008 г .;

(n) «положительная изоляция» означает изоляцию с помощью глухих или очковых шторок в случае фланцевых соединений или с приваркой колпачка в случае сварных соединений;

(o) «Право пользователя или отчуждение» означает территорию или часть земли, в пределах которой оператор или владелец трубопровода приобрел право в соответствии с Законом о нефте- и минеральных трубопроводах 1962 года или в соответствии с соглашением. с землевладельцем или агентством, обладающим юрисдикцией над землей для прокладки и эксплуатации газопроводов;

(p) «отсекающий клапан» означает клапан, который предназначен для быстрого закрытия в случае обнаружения аномального давления (избыточного или низкого) в выбранной точке газопроводной системы;

(q) «субпроводящий трубопровод» означает трубопровод высокого давления, соединяющий основной трубопровод природного газа с городской станцией, но принадлежащий организации CGD;

(r) «система передачи» означает один или несколько сегментов трубопровода, обычно соединенных между собой, чтобы сформировать сеть, которая транспортирует газ из системы сбора, выхода газоперерабатывающего завода или месторождения хранения на высокий, средний или низкий уровень система напорных трубопроводов, крупный заказчик или другое хранилище;

(4) Слова и выражения, используемые и не определенные в настоящих правилах, но определенные в Законе или в правилах или постановлениях, принятых в соответствии с ним, имеют значения, соответственно присвоенные им в Законе или в правилах или постановлениях, как случай может быть.

3. Заявление.

    (1) Эти правила должны применяться ко всем организациям, уполномоченным Советом на прокладку, строительство, эксплуатацию или расширение трубопроводов природного газа в рамках Совета по регулированию нефти и природного газа (уполномоченные организации на прокладку, строительство, эксплуатацию или расширение Трубопроводы природного газа), 2008 г., а также любые другие трубопроводы природного газа, включая выделенные трубопроводы, о которых время от времени уведомляет Совет.

    (2) Определения конструкции, материалов и оборудования, сварки, изготовления, монтажа, испытаний, ввода в эксплуатацию, эксплуатации и технического обслуживания, а также контроля коррозии трубопроводной сети природного газа должны соответствовать требованиям ASME B31.8 за исключением случаев, когда такие требования специально отменяются, заменяются или изменяются требованиями, указанными в настоящих правилах.

4. Сфера действия .

(1) Требования настоящих правил распространяются на все существующие и новые трубопроводы природного газа, включая выделенные трубопроводы.

(2) Настоящие правила должны охватывать проектирование трубопроводов, материалы и оборудование, сварку, изготовление, монтаж, испытания, ввод в эксплуатацию, эксплуатацию и техническое обслуживание, а также контроль коррозии трубопроводов природного газа общего или контрактного перевозчика (передача или субпередача), включая безопасность требования к трубопроводам природного газа.Покрытие трубопроводов должно соответствовать Приложению I и включать выделенные трубопроводы для конкретных потребителей.

5. Намерение.

Эти стандарты предназначены для обеспечения единообразного применения принципов проектирования, а также для руководства при выборе и применении материалов и компонентов, оборудования и систем, а также единообразной эксплуатации и технического обслуживания системы трубопроводов природного газа, и в первую очередь должны быть сосредоточены на аспектах безопасности сотрудников и общественные и объекты, связанные с газопроводами.

6. Стандарт.

Технические стандарты и спецификации, включая стандарты безопасности (далее именуемые как стандарт) для трубопроводов природного газа, включены в Список I, который охватывает материалы и оборудование (Приложение 1A), сварку (Приложение 1B), компоненты системы трубопроводов и их изготовление (Приложение 1C), Проектирование, установка и испытания (Приложение 1D), процедуры эксплуатации и технического обслуживания (Приложение 1E), Контроль коррозии (Приложение 1F), Разное (Приложение 1G), как указано в Приложении I к Приложению VI.

7. Соответствие этим нормам.

(1) Совет должен контролировать соблюдение этих правил либо напрямую, либо через аккредитованную третью сторону в соответствии с отдельными правилами оценки соответствия третьей стороной.

(2) Если организация проложила, построила, построила или расширила сеть трубопроводов природного газа на основе какого-либо другого стандарта или не соответствует требованиям, указанным в этих правилах, организация должна провести подробный технический аудит своей инфраструктуры. через уполномоченное Советом или одобренное Советом стороннее агентство.После этого организация должна представить отчет о соответствии, подготовленный третьей стороной, вместе со своим планом смягчения последствий с установленными сроками и графиком реализации в Совет для утверждения в течение шести месяцев с даты уведомления об этих правилах.

(3) Продолжение эксплуатации существующей газопроводной сети допускается только при соблюдении следующих требований, а именно: —

(i) Система газопровода должна быть испытана первоначально при вводе в эксплуатацию в соответствии с ASME B 31.8. Предприятие должно иметь соответствующие записи. Такая запись испытаний должна быть действительна для текущей операции. В качестве альтернативы, если такая запись недоступна, организация должна предоставить протокол эксплуатационных испытаний сети газопровода, прошедшей испытания в соответствии с ASME B 31.8;

(ii) Система газопровода имеет систему обнаружения утечек на компрессорной станции, приемной и конечной станции газа и находится в рабочем состоянии;

(iii) Должна быть обеспечена защита системы от повреждений третьей стороной:

При условии —

(a) организация должна предоставить самосертификат в подтверждение выполнения вышеуказанных требований в течение месяца с момента уведомления об этих правилах;

(b) Сертификаты , указанные в параграфе (а), должны быть выполнены для трубопровода природного газа при строительстве и вводе в эксплуатацию, эксплуатации и техническом обслуживании.Самостоятельная сертификация должна быть представлена ​​Совету вместе с планом смягчения последствий и графиком реализации;

(c) критические компоненты системы, определенные Советом для таких существующих сетей, должны соответствовать этим правилам в течение периода, указанного в Приложении I, и уполномоченный орган должен поддерживать целостность существующей системы трубопроводов природного газа в все время; и

(d) Положения настоящих правил, относящиеся к процедурам эксплуатации и технического обслуживания, также должны применяться ко всем таким существующим установкам.

8. Неисполнение обязательств и последствия.

(1) Должна существовать система для обеспечения соблюдения положений настоящих правил посредством проведения технических аудитов и проверок безопасности на этапе строительства, ввода в эксплуатацию и эксплуатации, а также на постоянной основе, как может быть указано. время от времени.

(2) В случае невыполнения обязательств в соответствии с подправилом (1), организация должна квалифицироваться как дефолтная организация в соответствии с правилом 16 (1) Совета по регулированию нефти и природного газа (уполномоченные организации на закладку, строительство, эксплуатацию или расширить трубопроводы природного газа), Правила, 2008.

(3) В случае любого отклонения или невыполнения требований, включая любое из следующих дефолтов, предприятию должен быть предоставлен срок для исправления такого отклонения, дефицита, невыполнения обязательств, а в случае несоблюдения организация несет ответственность за прекращение работы или прекращение действия разрешения, помимо любых штрафных санкций в соответствии с положениями Закона, а именно: —

(a) , если организация не выполняет в течение указанного срока критических действий, указанных в Приложении I.

(b) организация трижды нарушает свои обязательства в соответствии с подпунктом (1) правила 16 Совета по регулированию нефти и природного газа (уполномоченные лица на прокладку, строительство, эксплуатацию или расширение трубопроводов природного газа), Положения, 2008 г.

(c) обнаружено, что предприятие эксплуатирует трубопроводы за пределами условий максимально допустимого рабочего давления (MAOP) (исходное или пониженное давление).

(d) обнаружено, что предприятие эксплуатирует трубопроводную систему без проведения гидроиспытаний, как указано в этих правилах;

(e) в случае, если установка будет признана небезопасной для эксплуатации в соответствии с оценкой периодической проверки третьей стороной, и соблюдение требований не достигается в течение периода уведомления Правлением.

9. Требования других законодательных актов.

Необходимо соблюдать все законодательные нормы, правила и действующие законы, если это применимо, и необходимые разрешения должны быть получены от соответствующих компетентных органов для системы трубопроводов природного газа.

10. Разное.

(1) 1 Если возникает какой-либо вопрос относительно толкования этих правил, то он должен быть решен Советом.

(2) Правление может в любое время внести соответствующие изменения в настоящие правила.

ПРИЛОЖЕНИЕ-I
ПЕРЕЧЕНЬ ОСНОВНЫХ ДЕЯТЕЛЬНОСТИ
в
Трубопроводы природного газа

*******

Старший №

Критическая инфраструктура / деятельность / процессы

Срок реализации

План реализации

1

Протокол испытаний радиографии, ультразвукового испытания или других применимых методов неразрушающего контроля (выполненных перед вводом в эксплуатацию)

6 месяцев

можно подавать поэтапно в течение 6 месяцев

2

Гидравлические испытания (выполненные перед вводом в эксплуатацию) Отчет

6 месяцев

можно подавать поэтапно в течение 6 месяцев

3

Протокол катодной защиты трубопровода

6 месяцев

можно подавать поэтапно в течение 6 месяцев

4

Записи о строительстве трубопровода

6 месяцев

можно подавать поэтапно в течение 6 месяцев

5

Должна выполняться интеллектуальная очистка скребков для обнаружения потери металла в трубопроводах размером NPS 12 дюймов и более и длиной 10 км и более.

2 года

Если очистка скребков не проводилась более 5 лет для высокосернистого газа и 10 лет для трубопровода сладкого газа, то интеллектуальная очистка скребками должна выполняться в течение двух лет, в противном случае должны быть представлены соответствующие записи.

6

Система менеджмента ОТ, ПБ и ООС (включая систему противопожарной защиты)

6 месяцев

К реализации

7

Высота вентиляционного отверстия должна быть не менее 3 метров над рабочим уровнем

6 месяцев

Увеличьте высоту вентиляционного отверстия

8

Детекторы газа должны быть установлены на компрессорной станции, терминалах приема и сдачи газа

1 год

Установить детекторы газа для резервной системы SCADA, в другом месте должен быть предусмотрен ручной детектор газа

9

Экологически безопасная система пожаротушения закрытых помещений.

2 года

Для диспетчерской, распределительного устройства, аккумуляторной и т. Д. (CO2 допустим только для беспилотных станций)

10

HAZOP выполнить по всем объектам трубопровода

1 год

Отчет

HAZOP должен быть представлен вместе с планом смягчения последствий


Приложение I
Технические стандарты и спецификации

% PDF-1.4 % 1 0 obj >>> endobj 2 0 obj > поток 2013-05-23T15: 23: 30-05: 002013-05-23T15: 23: 48-05: 002013-05-23T15: 23: 48-05: 00Adobe InDesign CS6 (Macintosh) 1uuid: abde9bff-57d3-3642- ac29-13d3864fd1ccadobe: docid: indd: cbb3e55a-7ae7-11df-aa2f-835f4b84b6a5xmp.id: 1BE9DCDC3F2068118083B99A03F66FCAproof: pdf

  • adobe: docid: indfd2f2f6f6689
  • Adobe: docid: indd: 7bed4fba-6256-11d9-a753-89b2188038f9proof: pdf
  • xmp.iid: 7D2F64D62C2068118083B99A03F66FCAxmp.did: 163AD6083D206811822A81A735242925adobe: docid: indd: cbb3e55a-7ae7-11df-aa2f-835f4b84b6a51default приложение для Mac / InDesign 15 / InDB3-05: приложение IntoDesign для Mac / приложение IntoDesign 15 / InDB3-05: приложение IntoDesign 15 / InDFA3 для Mac, преобразованное в приложение Macintosh, приложение IntoDesign15 / InDF3-05: приложение в формате PDF 00 application / pdf Adobe PDF Library 10.0.1 Ложь конечный поток endobj 5 0 obj > endobj 3 0 obj > endobj 7 0 объект > endobj 8 0 объект > endobj 14 0 объект > / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / TrimBox [0.0 0,0 585,0 783,0] / Тип / Страница >> endobj 15 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / TrimBox [0.0 0.0 585.0 783.0] / Type / Page >> endobj 16 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / TrimBox [0.0 0.0 585.0 783.0] / Type / Page >> endobj 17 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / TrimBox [0.0 0.0 585.0 783.0] / Type / Page >> endobj 18 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / TrimBox [0._ʻUt8fs + ۃ Eb9c% 0 ~ [Xr8b ~ 4Ru6L ޿? G. \ {~: N)> s4fOqV6) «Gjzf1bjï ֧ !! nHLDCP» CbI0] | 29 % Sga ۣ 3 DEJ̮ 4 ~ א wl P-V1: 3L # ӂS7 * = 4? * & ʯ5 \ F) 5’k% 눻 6i,} ǡS- (L8f4Cqnek ۠ I’Rf T $ bb5,> 4 + V «| JFaL2̢lQHQ26TB3T] 6їFicQ? _Rqt [ěHJKXR> fR / (ut9_I̪T_ # p`WirW`.% | _DQHl4wPPK ~ ec t ߭ hgŬ3kC4 jK

    Журнал трубопроводных технологий 5-2017

    Безопасность трубопроводов в Германии История успеха Трубопроводы — это линия жизни нашего общества и нашей экономики, поэтому они заслуживают нашего внимания, чтобы работать безопасно и надежно.По трубопроводам газ, нефть, вода и другие продукты транспортируются на большие расстояния, чаще всего на тысячи километров, от производственных объектов к потребителю. По пути трубопроводы пересекают горы, озера и густонаселенные районы. Повреждения трубопроводов угрожают жизни людей, могут повлечь за собой большие расходы и нанести вред окружающей среде. В то же время все больше и больше трубопроводов пересекает развивающиеся и развивающиеся страны, которые не имеют современных технических стандартов, и это представляет высокий риск.Поэтому международный обмен опытом необходим для передачи знаний о том, как применять наиболее надежные и безопасные технологии. Это важно на всех этапах производственно-сбытовой цепочки трубопроводов: планирование, строительство и эксплуатация. В частности, в случае газо- и нефтепроводов, PIPELINE TECHNOLOGY JOURNAL 3 РЕДАКЦИЯ Проф. Д-р Джеральд Линке Генеральный директор DVGW д-р Клаус Риттер Президент EITEP Ошибки EITEP могут привести к катастрофическим инцидентам с далеко идущими последствиями. Учитывая, что протяженность трубопроводной сети (высокого давления) составляет около 4 млн км и ежегодно расширяется на 25 000 км, мы обязаны проявлять осмотрительность и внимание к безопасности.Конференция по трубопроводным технологиям (ptc) и ее публикация «Pipeline Technology Journal» (ptj) являются инструментами для содействия обмену опытом и передовой практикой. На этой ведущей конференции по трубопроводам Европы ученые, операторы, поставщики услуг и администраторы представят новейшие технологические разработки. С момента первого ptc, более 12 лет назад, безопасность была основной темой. Безопасность также широко обсуждалась во время последнего ptc в мае 2017 года. DVGW — Немецкую научно-техническую ассоциацию газа и воды — попросили сообщить на специальной сессии о своем техническом наборе правил, их применении на местах и ​​их положительных результатах. влияние на трубопроводную практику.Немецкая система газоснабжения отличается высоким уровнем технической безопасности, не в последнюю очередь благодаря постоянному совершенствованию технических стандартов в ходе работы DVGW над Сводом правил. Основное внимание в этом выпуске ptj уделяется статистической оценке данных об инцидентах и ​​авариях, целостной методологии безопасности DVGW и дальнейшему развитию Свода правил с учетом текущей судебной практики и научных исследований, а также усовершенствования процесса проверки Свода правил.Снижение числа инцидентов в газопроводной сети Германии за последние 30 лет на 90% является замечательным результатом процесса обеспечения безопасности в Германии и ведет к тому, что трубопроводная сеть значительно увеличилась в протяженности и устарела за тот же период. период — с текущей частотой около 0,01 инцидента на 1000 км в год. Тем не менее, улучшения должны быть сделаны в тех областях, где инциденты происходят чаще, чтобы систематически сокращать инциденты, вызванные технической ошибкой или ошибкой человека.Технические документы сессии по безопасности DVGW представлены в этом специальном выпуске ptj. В связи с международным интересом к вышеупомянутой технической сессии мы решили дополнить это издание дополнительными статьями по связанным темам. Конференция по трубопроводным технологиям продолжит обсуждение последних технологических разработок, связанных с безопасностью. Журнал трубопроводных технологий будет держать вас в курсе. Д-р Клаус Риттер Президент EITEP Европейский институт передачи информации и технологий в области защиты окружающей среды Проф.

    Вам может понравится

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *