Ватты в амперы онлайн: Калькулятор преобразования Ватт в Амперы онлайн

Содержание

Конвертер ватт в амперы. Конвертер ватт в амперы Онлайн калькулятор по расчету ватт в амперы

Электрические системы часто требуют сложного анализа при проектировании, ведь нужно оперировать множеством различных величин, ватты, вольты, амперы и т.д. При этом точно необходимо высчитать их соотношение при определенной нагрузке на механизм. В некоторых системах напряжение фиксированное, например, в домашней сети, а вот мощность и сила тока обозначают разные понятия, хоть и являются взаимозаменяемыми величинами.

Онлайн калькулятор по расчету ватт в амперы

Для получения результата обязательно указывать напряжение и потребляемую мощность.

В таких случая очень важно иметь помощника, дабы точно перевести ваты в амперы при постоянном значении напряжения.

Нам поможет перевести амперы в ватты калькулятор онлайн. Перед тем как воспользоваться интернет-программой по расчету величин, нужно иметь представление о значении необходимых данных.

  1. Мощность – это скорость потребления энергии. Например, лампочка в 100 Вт использует энергию – 100 джоулей за секунду.
  2. Ампер – величина измерения силы электрического тока, определяется в кулонах и показывает число электронов, которые прошли через определенное сечение проводника за указанное время.
  3. В вольтах измеряется напряжение протекания электрического тока.

Чтобы перевод ватт в амперы калькулятор используется очень просто, пользователь должен ввести в указанные графы показатель напряжения (В), далее потребляемую мощность агрегата (Вт) и нажать кнопку рассчитать. Через несколько секунд программа покажет точный результат силы тока в амперах. Формула сколько ватт в ампере

Внимание: если показатель величины имеет дробное число, значит его нужно вписывать в систему через точку, а не запятую. Таким образом, перевести ватты в амперы калькулятором мощности позволяет за считанное время, Вам не нужно расписывать сложные формулы и думать над их ре

шением. Все просто и доступно!


Таблица расчета Ампер и нагрузки в Ватт

Собранным в том же корпусе.

Работает от любого источника постоянного тока напряжением от 12 до 24 вольт . Соединив его, например, с аккумулятором 12V или 24V любого типа, Вы получите мобильный источник света довольно внушительной силы.

Особенности

  • Алюминиевый корпус и закалённое стекло.
  • Высокая светоотдача встроенной матрицы мощностью 20 ватт.
  • Широкий угол пучка света — 120 градусов.
  • Неизменная яркость в диапазоне от 12 до 24 вольт благодаря встроенному драйверу .
  • Регулируемое направление светового потока.

Назначение светодиодных прожекторов 12 вольт

  • Переносной источник большого количества света.
  • Охранные системы и аварийное освещение.
  • Энергонезависимый дом.
  • Специальные рабочие места и объекты, не допускающие использования высоких напряжений.
  • Установка в катер или автомобиль .

Как долго этот прожектор проработает от аккумулятора 12V?

Рабочий ток будет 20W / 12V = 1.

7А. Если, например, использовать аккумулятор 7.2Ач, используемый в UPS, то получится, что предельное теоритическое время работы составит 4 с небольшим часа.

Будьте внимательны при таком подключении! Вы можете случайно допустить глубокий разряд аккумулятора, т.к. прожектор не будет менять яркость по мере разряда аккумулятора.

Предупреждение: подключение к напряжению выше 26 вольт недопустимо и является нарушением условий гарантийного обслуживания .

Как то мне так понравилось экспериментировать со светодиодным освещением и переделывать светильники, что когда мне предложили выбрать товар для тестирования, то я не смог удержаться и решил попробовать светодиодный драйвер фабричного изготовления.

Кому интересно, развитие этой идеи под катом.

Как я дал понять в аннотации, драйвер был предоставлен бесплатно, впрочем особого значения в данном случае это не имеет, так как цель любого обзора — показать что вообще товар из себя представляет и стоит его покупать или нет. Обещаю быть не предвзятым и показать кто есть кто, да и обзора 20 Ватт драйвера я здесь еще не встречал.

Итак преамбула, давно стал замечать, что светильники с люминесцентными лампами, сделанные по принципу — чем дешевле- тем лучше, имеют характерный дефект, при частом включении\выключении они долго не живут, что лампы, что сами электронные балласты.

Дома есть пара светильников с фирменными балластами, Vossloh Schwabe и Philips, они работают отлично, но цена на них обычно несколько завышена, не говоря о том, что качественные Филлипсы из продажи пропали. И если для основного освещения я пока опасаюсь применять светодиоды, то для второстепенного вполне допускаю. Один из таких вариантов будет описан в обзоре.

Но буду последователен.
Приехал драйвер относительно быстро, примерно недели три, точно не скажу, так как ехал он без трека. Упакован был в стандартный желтый конвертик с пупырчатой пленкой внутри, сам драйвер лежал в пакетике с защелкой. Впрочем учитывая монолитную конструкцию драйвера поломать его сложно.

В общем ничего особо интересного, упаковка как упаковка.

Длина входного кабеля и выходных проводов одинаковая, 27см, выходные провода в силиконовой изоляции, очень мягкие (где бы купить такого провода отдельно).
Размеры корпуса 75х30х20мм, длина с учетом крепежных лапок — 90мм.

С обратной стороны драйвер залит массой, похожей на эпоксидную смолу, разборке и ремонту он не подлежит. А жаль, интересно было бы попробовать изготовить такой драйвер самому или доработать этот. Но хотел именно IP65. В общем ешьте что заказали и не квакайте. 🙂

Характеристики драйвера заявленные производителем.

Основные характеристики драйвера.
Количество светодиодов 6-9.
Выходное напряжение драйвера — 28-40 Вольт.
Ток 600мА.
У продавца указано что 20-35V 600mAh 20W LED Driver (10 series 2 parallel)
Немного не сходится. Да и минимум 6 светодиодов дадут максимум 24 Вольта, здесь не сходится уже данными производителя, но эксперименты покажут кто прав.

Максимум, что мне удалось узнать из того, что у него внутри, это то, что емкость выходного конденсатора 100мкФ, и то предположительно.
Кстати включается драйвер с задержкой около 0.5-0.7 секунды, немного раздражает.

Дальше я начал испытания (самому было любопытно).
На холостом ходу драйвер дает около 44 Вольт (на всякий случай, сетевое входное было 230 Вольт)

Сначала я его нагрузил на 100 Ватт матрицу (схема 10х10), напряжение упало до 30,9 Вольта, ток составил 0.57 Ампера, соответственно мощность 17,6 Ватта.

После этого я перешел к испытаниям с той нагрузкой, с которой планировал использовать.
Светодиоды 10 Ватт (схема 3х3)

2 светодиода последовательно, напряжение 19.04 В, ток 0.58 А, мощность 11 Ватт.

3 светодиода последовательно, напряжение 28.11 В, ток 0.57 А, мощность 16 Ватт.

Ну и напоследок испытание того, что я планировал к нему подключать, 4 светодиода 10 Ватт последовательно, напряжение поднялось до 37. 08 В, ток упал до 0.53 А, мощность составила 19,65 Ватта.

Фактически это максимум этого драйвера. Я считаю что довольно неплохо.

Нагрузка немного нештатная, но тем интереснее.

Кстати интересно что светодиоды немного разные, у трех штук четко видно кристаллы при работе, а у четвертого (на фото правый верхний) как бы смазаны, на фото меньше заметно, почему так, непонятно, вероятно другая партия

Для гурманов.

Осциллограммы напряжения и тока.

Пульсации напряжения с частотой 100 Гц, 3 светодиода, шкала 0.2 Вольта.

Пульсации напряжения с частотой 100Гц, 4 светодиода, шкала 0.2 Вольта

Пульсации тока с частотой 100Гц, 3 светодиода, шкала 0.1 Вольта, измерение на резисторе 1 Ом.

Пульсации напряжения ВЧ, частота около 57 КГц, 3 светодиода, шкала 0.2 Вольта.


На этом экспериментальная часть закончена и пора уже перейти к практической.
Как все понимают, драйвер, лежащий на полке, пользы не приносит, разве что если что-то подпирает:)
В одном из обзоров я переделывал светильник китайского производства. В этом ситуация очень похожа, тоже светильник, тоже китайского производства, и не менее распространенный, чем предыдущий. И так же «болеющий» проблемой ненадежной работы.

Описание переделки светильника.

В самом начале я написал, что есть хорошие фирменные электронные балласты для линейных люминесцентных ламп. Есть то они есть, но например в такой светильник они банально не влезут. Когда я несколько лет назад переделывал родной балласт на свой с драйвером на IR2520D, то еле всунул его в тот размер.

Надежд на долгую работу ламп он не оправдал, скорее всего виной частые включения\выключения, как и в первом случае, потому решено было переделать показанный ниже светильник под светодиоды. Наверняка он известен многим, производят их все, кому не лень.

Вообще хотел сначала переделать под светодиодную ленту, как в предыдущей переделке, но решил поэкспериментировать со светодиодами. Кстати, в целях повышения безопасности я выбрал именно вариант драйвера в залитом корпусе, даже в случае выхода из строя он не спалить мне что нибудь (а с учетом того, что потолок из пластика, то пожаробезопасность достаточно критична).
Светодиоды 10 Ватт работают в сильно облегченном режиме, 5 Ватт на сборку. Я на это пошел по нескольким причинам.
КПД и надежность светодиодов в таком режиме заметно выше.
Светодиоды у меня были.
Просто хотелось эксперимента. 🙂

Так как светодиоды надо чем то охлаждать, а корпус лампы изготовлен из металла чуть толще фольги, то в залежах всякого железа был откопан радиатор.
Вид у него немного страшноват, видно что лежал он довольно давно, возможно был скручен откуда то, возможно куплен для чего то, но он подходил очень удачно.

Наверняка многие радиолюбители, да и не только, помнят эти стандартные отверстия под транзисторы типа КТ808, 805 или аналогичные (эх ностальгия, самодельные усилители из журнала Радио, потом Радиотехника УКУ 020, как давно это было).
Но каково же было мое удивление, когда после примерки светодиодов я выяснил, что установочное место под такой транзистор идеально совпадает с размерами 10 Ватт светодиода, кроме того, при определенной доработке можно даже использовать родное крепление транзисторов. Так как радиаторов под такие транзисторы в свое время было произведено очень много, то возможно эта информация будет полезна.

Но всему свое время.
Радиатор был отмыт и распилен пополам, попутно отрезал крепежные элементы с обратной стороны, смысла в них нет, только мешают.

Так выглядит лампа после демонтажа всего лишнего.
Место под установку радиаторов и драйвера около 490х75мм (металлическая часть лампы).

В радиаторах просверлены крепежные отверстия для светодиодов и крепления радиатора к лампе, нарезана резьба М3. Для интереса прикрепил 2 светодиода винтами, как задумал производитель светодиодов, а другие 2 светодиода закреплены шайбами от старых КТ808, как задумывал советский инженер. К слову, для 10 Ватт светодиода расстояние между крепежными отверстиями 19мм (образуют квадрат со сторонами 19мм), вдруг кому пригодится, в интернете эта информация мне не попалась, выяснил экспериментально. Крепить шайбами от транизисторов было удобнее, никакого сверления, нарезания резьбы и т. п.
Естественно КПТ-8, куда же без нее.

Смонтировал радиаторы и драйвер, для клеммы заземления нашлось даже место с резьбой М4 на радиаторе, очень кстати. Драйвер не стал привинчивать, приклеил на двухсторонний скотч, посмотрим, если отвалится, привинчу. Светодиоды к радиаторам и радиаторы к корпусу привинчены винтами с прессшайбой, такими винтами комплектуются компьютерные корпуса, очень удобно.

Соединил светодиоды и драйвер, первое пробное включение.

Если честно, не скажу что понравилось. Но обо всем по порядку.

Погонял примерно с пол часика. Замерил температуру. Прибор думаю немного врёт, на ощупь скорее около 50. Вероятно из-за плохого теплового контакта (хотя датчик был прижат через пасту), на фото датчик вставлен в бывшее отверстие для ножки транзистора в радиаторе.

Драйвер нагрелся градусов до 60, напомню, работает он на своей максимальной мощности.

В общем могу сказать что светит ярко, мощнее чем предыдущий 2х18 Ватт люминесцентный светильник и свет нормальный, на вид примерно как галоген. Нагрев так же в норме, но вот внешне понравилось не очень.
Пластик рассеивателя слишком прозрачный, из-за этого получается некомфортно, когда светильник попадает в поле зрения, думаю что для вспомогательных помещений (мой светильник установлен в кладовке) вполне отлично, в остальных вариантах я лучше переделал бы под светодиодную ленту (вообще хотел изначально так сделать).
Но жене с дочкой новый светильник понравился, для меня то самое главное. 🙂
Хочу еще попробовать добавить матовую пленку, интересно как получится.
Пробовал сделать родной рассеиватель матовым, спирт его не берет, а от ацетона он начинает покрываться очень маленькими трещинками. Если кто знает еще способы, подскажите.

Резюме.
Драйвер вполне нормальный, ток немного занижен относительно декларируемого производителем, 550-580мА против 600 заявленных производителем.
Нагрев даже на максимальной мощности, да еще и в фактически нештатном режиме вполне нормальный, производитель заявляет макс 75 градусов, у меня в закрытом корпусе вышло около 60, посмотрим как будет работать.
Пульсации небольшие, «карандашный» тест проходит, но можно добавить емкость на выходе, скорее всего еще уменьшатся.
Немного напрягает включение с задержкой, но это уже индивидуально.

Покупать или нет, стоит он своих денег или нет, решать Вам, в обзоре я старался максимально показать его реальные характеристики, надеюсь что у меня это получилось.
Вроде ничего не забыл. Особое спасибо тем, кто смог дочитать до конца.

Драйвер был бесплатно предоставлен для тестирования и обзора магазином Chinabuye.

Планирую купить +57 Добавить в избранное Обзор понравился +67 +141

Выбираем в магазине две вещи, которые должны использоваться «в тандеме», например, утюг и розетку, и внезапно сталкиваемся с проблемой — «электропараметры» на маркировке указаны в разных единицах.

Как же подобрать подходящие друг к другу приборы и устройства? Как амперы перевести в ватты?

Смежные, но разные

Сразу надо сказать, что прямого перевода единиц сделать нельзя, поскольку обозначают они разные величины.

Ватт — указывает на мощность, т.е. скорость, с которой потребляется энергия.

Ампер — единица силы, говорящая о скорости прохождения тока через конкретное сечение.

Чтобы электрические системы работали безотказно, можно рассчитать соотношение амперов и ваттов при определенном напряжении в электросети. Последнее — измеряется в вольтах и может быть:

  • фиксированным;
  • постоянным;
  • переменным.

С учетом этого и производится сопоставление показателей.

«Фиксированный» перевод

Зная, помимо величин мощности и силы, еще и показатель напряжения, перевести амперы в ватты можно по следующей формуле:

При этом P — это мощность в ваттах, I — сила тока в амперах, U — напряжение в вольтах.

Онлайн калькулятор

Для того, чтобы постоянно быть «в теме» можно составить для себя «ампер-ватт»-таблицу с наиболее часто встречаемыми параметрами (1А, 6А, 9А и т.п.).

Такой «график соотношений» будет достоверным для сетей с фиксированным и постоянным напряжением.

«Переменные нюансы»

Для расчета при переменном напряжении в формулу включается еще одно значение — коэффициент мощности (КМ). Теперь она выглядит так:

Сделать процесс перевода единиц измерения более быстрым и простым поможет такое доступное средство, как онлайн-калькулятор «ампер в ватты». Не забывайте, что если надо ввести в графу дробное число, производится это через точку, а не через запятую.

Таким образом, на вопрос «1 ватт — сколько ампер?», с помощью калькулятора можно дать ответ — 0,0045. Но он будет справедливым только для стандартного напряжения в 220в.

Используя представленные в интернете калькуляторы и таблицы, вы сможете не мучиться над формулами, а легко сопоставить разные единицы измерения.

Это поможет подобрать автоматические выключатели на разную нагрузку и не тревожиться за свои бытовые приборы и состояние электропроводки.

Ампер — ватт таблица:

612244864110220380Вольт
5 Ватт0,830,420,210,100,080,050,020,01Ампер
6 Ватт10,50,250,130,090,050,030,02Ампер
7 Ватт1,170,580,290,150,110,060,030,02Ампер
8 Ватт1,330,670,330,170,130,070,040,02Ампер
9 Ватт1,50,750,380,190,140,080,040,02Ампер
10 Ватт1,670,830,420,210,160,090,050,03Ампер
20 Ватт3,331,670,830,420,310,180,090,05Ампер
30 Ватт5,002,51,250,630,470,270,140,03Ампер
40 Ватт6,673,331,670,830,630,360,130,11Ампер
50 Ватт8,334,172,031,040,780,450,230,13Ампер
60 Ватт10,0052,501,250,940,550,270,16Ампер
70 Ватт11,675,832,921,461,090,640,320,18Ампер
80 Ватт13,336,673,331,671,250,730,360,21Ампер
90 Ватт15,007,503,751,881,410,820,410,24Ампер
100 Ватт16,673,334,172,081,56,0910,450,26Ампер
200 Ватт33,3316,678,334,173,131,320,910,53Ампер
300 Ватт50,0025,0012,506,254,692,731,360,79Ампер
400 Ватт66,6733,3316,78,336,253,641,821,05Ампер
500 Ватт83,3341,6720,8310,47,814,552,271,32Ампер
600 Ватт100,0050,0025,0012,509,385,452,731,58Ампер
700 Ватт116,6758,3329,1714,5810,946,363,181,84Ампер
800 Ватт133,3366,6733,3316,6712,507,273,642,11Ампер
900 Ватт150,0075,0037,5013,7514,068,184,092,37Ампер
1000 Ватт166,6783,3341,6720,3315,639,094,552,63Ампер
1100 Ватт183,3391,6745,8322,9217,1910,005,002,89Ампер
1200 Ватт200100,0050,0025,0078,7510,915,453,16Ампер
1300 Ватт216,67108,3354,227,0820,3111,825,913,42Ампер
1400 Ватт233116,6758,3329,1721,8812,736,363,68Ампер
1500 Ватт250,00125,0062,5031,2523,4413,646,823,95Ампер

Как узнать киловатты зная ампераж.

Онлайн калькулятор по расчету ватт в амперы.

Для того, чтобы узнать, сколько в киловольт-ампере киловатт, необходимо воспользоваться простым онлайн калькулятором. Введите в левое поле интересующее вас количество киловольт-ампер, которое вы хотите конвертировать. В поле справа вы увидите результат вычисления. Если необходимо перевести киловольт-амперы или киловатты в другие единицы измерения, просто кликните по соответствующей ссылке.

Что такое «киловольт-ампер»

Киловольт-ампер (сокращенно кВА) – единица измерения полной мощности в электрической цепи кратная единице измерения Международной системе единиц (СИ) вольт-амперу. Киловольт-ампер используются только в контексте цепей переменного тока, так как в этом случае значения в киловольт-амперах и в киловаттах будет отличаться, а вот в цепях постоянного тока показатель в киловольт-амперах будет равен показателю мощности в киловаттах. Для некоторых устройств, в том числе блоков бесперебойного питания (UPS), граничная мощность указывается и в ватах, и в вольт-амперах.

Что такое «киловатт»

Киловатт (сокращенно кВт) – это десятичная кратная производной единицы мощности в Международной системе единиц (СИ) ватта, которая равняется 1000 Вт. Один киловат определяется, как мощность, при которой за 1 секунду времени совершается работа в 1000 джоулей. Название единицы измерения происходит от древнегреческого chilioi – тысяча и фамилии шотландско-ирландского изобретателя паровой машины Джеймса Уатта (Ватта). Эту единицу измерения как правило используют для выражения выходной мощности двигателей и мощности электродвигателей, инструментов, электрооборудования и обогревателей. Кроме того, в киловаттах зачастую выражают электромагнитную выходную мощность вещания радио- и телевизионных передатчиков. Небольшой электрический нагреватель с одним нагревательным элементом использует приблизительно 1 кВт, а мощность электрических чайников колеблется от 1 до 3 кВт. Один квадратный метр поверхности Земли, как правило, получает около 1 кВт солнечного света.

Таким вопросом приходится задаваться довольно часто. Например, при выборе индивидуального автомата защиты на линию подключения мощной бытовой техники или осветительного прибора; если требуется рассчитать номинальное сечение жил проводов (кабеля) под определенную нагрузку.

Автор считает, то слово «перевести» в данном случае не совсем верно отражает суть того, что хочет понять неискушенный в электротехнике человек. Уместнее говорить о соотношении между размерностями совершенно разных (хотя и взаимосвязанных) характеристик – силы тока и мощности. Вот с этим и разберемся.

При любых эл/технических расчетах необходимо помнить, что на территории РФ потребителю поступает ~ 220 В/50 Гц. Это отечественный стандарт для электрических сетей.

Общая информация

Чтобы лучше понять, как перевести амперы в киловатты, следует вспомнить школу и некоторые физические величины + уроки математики.

  • Приставка «кило» указывает на то, что данный показатель следует умножить на 1 000. И неважно, о чем идет речь – весе в граммах или тоннах, длине в метрах и так далее.
  • Сила тока обозначается в «А», мощность – в «Вт», напряжение на линии – в «В». Все остальные их выражения – не более чем производные. Например, мкА, мВт, кВ.
  • В инструкциях на некоторые приборы (к примеру, «бесперебойники» к ПК) мощность указывается не в «Вт», а в «В.А» (вольт-ампер). На бытовом уровне это практически одно и то же, и никаких дополнительных преобразований данных величин не требуется. Разницу знают специалисты, но для вопроса перевода ампер в киловатты она большого значения не имеет.

На заметку!

Не следует путать киловатты с «кВт/час». Это совершенно разные характеристики, показывающие: первая – мощность устройства, вторая – потребленную им эл/энергию (или выполненную работу).

Правила перевода ампер в киловатты для разных электрических цепей

~ 1ф

Достаточно вспомнить известный закон Ома: мощность (P) = сила тока (I) х напряжение (U).

Соответственно, кВт = (1А х 1 В) х 1 000.

В среднем мощность стиральной машинки лежит в пределах 1,8 – 2 кВт. Если для нее ставится отдельная розетка, то определяем силу тока (берем значение P по максимуму): 2000 Вт /220 В = 9 А. Следовательно, для прокладки линии понадобится медный провод сечением (мм2) не менее 0,5.

~ 3ф

Здесь несколько иначе, так как добавляется множитель √ 3.

Так как это величина неизменная, то нередко сразу же указывается результат этой математической операции – 0,7. Следовательно, для трехфазной цепи получаем расчетную формулу: P = 0,7 (I х U). Мощность – в ваттах. Умножив результат на 1 000, можно определить ее в кВт.


Как сделать обратные переводы, например, определить , догадаться не трудно – все формулы простейшие. Но чтобы сэкономить читателю время, автор дает некоторые подсказки.


Остается напомнить, что все величины, подставляющиеся в формулы, необходимо изначально перевести в одну систему единиц. Так как напряжение в основном берется в «вольтах», то ток должен быть в амперах, а не в мА или мкА. То же касается и мощности – не кВт, а Вт.


Что такое киловатты?

Ватт – количественный показатель мощности в системе единиц СИ. Она указывает на то, какая мощность потребуется, чтобы выполнить работу в 1Дж за единицу времени. Также ее используют при обозначении количества энергии, потребляемой прибором за временной отрезок. Киловатт – это все та же единица измерения, но с приставкой «кило», которая обозначает условное умножение на 1000.

Название «ватт» было позаимствовано у исследователя, который впервые открыл ее – физик Джеймс Ватт. Такой «перенос» имени ученого на открытую им единицу, был первым в истории науки. Далее такое явление стало встречаться чаще.

Многие люди по ошибке путают киловатты с киловатт*часами. Но это абсолютно разные понятия, которые характеризуют не одинаковые физические явления.

Киловатт*час – измерительная единица, указывающая на количественный показатель, выполняемой прибором за один час, работы. Ватты указывают на количество энергии, потребляемой прибором за временную единицу. То есть, понятия практически противоположенные. В первом случае мы получаем количественную оценку результат работы, а во втором – количественную оценку затрат. Поэтому сравнение, а тем более отожествление обоих единиц измерения, абсолютно неправильно.

Для лучшего понимания, рассмотрим всем известную лампочку с мощностью в 60 ватт. Продолжительность ее работы — 2 часа, то есть для этого потребовалось 60Ватт*2 ч. = 120 киловатт*час.

Сколько в киловатте ампер?

Для определения, сколько в киловатте ампер использую закон Ома. Для цепей постоянного тока мощность рассчитывается, как P=I*U, т.е. например, Ватт = Ампер * Вольт, Ампер = Ватт / Вольт.

Для однофазного переменного тока 220 В/50 Гц с номинальным напряжением (Uм = 220В), действующее значение U вычисляется по следующей формуле U=Uм * (корень из 2), таким образом U = 220 * 1,41 = 314В.

Так как номинальное значение напряжения импульсного, или переменного тока равно напряжению постоянного тока при действии активной нагрузки, то рассмотрим значения пример на 220 В.

Для цепей постоянного напряжения (иногда говорят постоянного тока):

  • при номинальном напряжении в 220 В и силе тока равной 1А мощность соответствует 220 Вт;
  • при номинальном напряжении в 220 В и мощности равной 1 кВт — приближенно 4,55А.

Для цепей переменного напряжения:

  • при номинальном напряжении в 220 В и силе тока равной 1А мощность соответствует 154 Вт;
  • при номинальном напряжении в 220 В и мощности равной 1 кВт — приближенно 6,49 А.

В России в розетках напряжение переменное.

Например для чайника мощностью 2 кВт в случае подключения его к нашей розетке с перменным током напряженностью 220 Вольт ток который будет идти по проводам равен 2 кВт \ 220 = 13 А. Это сильный ток и провода должны его выдержать. Учитывайте это. Тонкие или алюминиевые провода могут сильно греться и привести к всяческим возгораниям.

Перевод киловатт в лошадиные силы

Лошадиная сила – это внесистемная измерительная единица мощности, которая в настоящее время зачастую используется только относительно техники, которая работает на двигателях внутреннего сгорания. Поэтому мы частенько встречаемся с этим понятием и для оценки мощности мы должны уметь переводить л.с. в ватты. Для этого существует специальный пересчеточный коэффициент:

  • 1 кВт = 1, 3596 л.с. или «лошадка», как называют ее в народе.
  • 1 л.с. = 0,7355 кВт.

В такой вот нехитрый способ можно перевести киловатты в «лошадки» и обратно. Но таким образом пересчитывается лишь метрическая лошадиная сила. Помимо данного типа существуют еще и другие. Но сейчас встретить их на производстве или в быту практически невозможно.

Что тянул новую и т.д. Тогда я реально «лохонулся» с кабелем – не ожидал, что индукционная плита будет расходовать 7,5 кВт. И ее не включить в обычную розетку в 16A (Ампер). Прошло какое-то время, и мне написал парень, что он также врезает варочную поверхность, и хочет подключить ее в обычную розетку в 16А? Вопрос был примерно таким – а выдержит ли розетка напряжение от плиты? И 16 A это сколько киловатт ? Просто ужас! Парня я светить не стал, но такое подключение может спалить вам квартиру! Обязательно читайте дальше …

Ребята если сами не знаете, что и как рассчитывается! Если в школе с физикой, а особенно с электрикой было плохо! То лучше вам не лезть в подключение электрических плит! Вызывайте понимающего человека!

А теперь давайте о напряжении и силе тока!

Для начала отвечу на вопрос – 16 A сколько киловатт (кВт)?

Все очень просто – напряжение в домашней электрической сети 220В (Вольт), чтобы узнать сколько может выдержать розетка в 16А достаточно – 220 Х 16 = 3520 Ватт, а как мы знаем в 1кВт – 1000 Вт, то получается – 3,52кВт

Если формула из школьной физики P= I * U, где P (мощность), I (сила тока), U (напряжение)

Простыми словами розетка в 16A в цепи 220В, может максимально выдержать 3,5кВТ!

Индукционная плита и розетка

Индукционная плита потребляет 7,5кВт энергии, при всех включенных 4 конфорках. Если разделить в обратном порядке, то получается 7,5кВт (7500Вт)/220В = 34,09А

Как видите потребление 34А, ваша розетка в 16А просто расплавится!

Ну хорошо думаете вы …

Тогда поставлю розетку в 32 – 40 А и подключу плиту! А не тут то было, нужно знать какой провод у вас заложен в стене, а также на какой автомат все выведено в щитке!

Все дело в том, что провода также имеют максимальный порог мощности! Так если у вас заложен провод в 2,5 мм сечением, то он может выдержать всего 5,9кВт!

Также и автомат нужно ставить на 32A, а лучше на 40A. Еще раз ! Там более подробно!

Так что рассчитывайте правильно! Иначе ваша розетка – проводка расплавится от высоко напряжения и запросто может возникнуть пожар!


Понять, как перевести ватты в киловатты, достаточно легко. Один ватт равно одной тысячной киловатта 1Вт=0.001кВт. Тогда, при переводе, следует разделить число ватт на одну тысячу, знак запятой перенести на три цифры влево и получаться кВт. Пример: 2000Вт/ 1000 =2кВт, 50Вт = 0.005 кВт, 1 Вт = 0,001 кВт, 56000 Вт = 56 кВт. Теперь вам ясно, как перевести ватты.

Чтоб понять, как перевести киловатты (кВт) в ватты (Вт) необходимо помнить, что приставка «кило» означает «тысяча». Один киловатт равно тысяча ватт (1кВт = 1000Вт). Чтоб перевести киловатты в ватты, нужно умножить значение киловатт на тысячу. Умножая число на тысячу, знак запятая переносится вправо на три цифры. Пример: 4кВт*1000=4000Вт, 1.5кВт=1500Вт, 50Вт=0.05кВт=50Вт, как видите ничего сложного.

Как перевести ватты в амперы и какую формулу использовать

Используем формулу, чтоб узнать количество ватт(P = I * U),

P-Ватт, I-Ампер, U-Вольт

Например:

  • 5А*220В=1100Вт
  • 100Вт=220В*0.45А
  • 440Вт=220В*2А
  • 3300Вт=220В*15А

Для перевода ватт в амперы берем формулу:

I-Амперы, P-Ватты, U-Вольты

Например, нужно узнать, сколько ампер в 2640Вт, при напряжении 220В. Нужно ватты разделить на вольты:

  • 2640/220=12, выходит 12 ампер.
  • 3300Вт/220В=15А
  • 220Вт/220В=1А

На сетевых фильтрах, стабилизаторах напряжения и других сетевых приборах пишут максимально разрешенную нагрузку. Например, 1000W, используйте не более 80% нагрузки, более небезопасно.

Например:

  • 12А*220В=2640Вт(2112Вт-80%)
  • 5А*220В=1100Вт(880Вт-80%)

Закон Ома. Вольт Ампер Ом Ватт Метр. Калькулятор.

Закон Ома. Вольт Ампер Ом Ватт Метр. Калькулятор.

Закон Ома. Вольт Ампер Ом Ватт Метр. Калькулятор.

Закон Ома. Вольт Ампер Ом Ватт Метр. Калькулятор.

Напряжение, U = P/I ; I*R ; корень из P*R …

Ток, I = P/U ; U/R ; корень из P/R …

Сопротивление, R = U2/P ; U/I ; P/I2 …

Мощность, P = U*I ; I2R ; U2/R …

Бесплатный калькулятор. Электрические расчеты в интернет. Таблица, формулы.

Наверное, многие электрики и радиолюбители уже имели возможность ознакомится с замечательными диаграммами / шпаргалками (в виде графических таблиц), где в одном месте сведены все основные формулы взаимосвязи электричества в токоведущих цепях (напряжение, ток и сопротивление [Закон Ома]), позже дополненные мощностью, как неизменно сопутствующим атрибутом, сопровождающим описание характеристик электрического тока . ..

Предлагаемый калькулятор расчета формул электричества, по двум известным параметрам — был разработан не из-за лени или неумения считать, а для сокращения времени на перерасчеты с отображением всех сопутствующих величин на одном экране, для удобства … Достаточно задать только два параметра, чтобы получить все исчерпывающие результаты — за один раз (клик) …

Уже давно, в бытовых целях, никто не рассматривает электричество, как движение заряженных частиц … Просто — включают вилку в розетку и получают свет, тепло, готовят еду и работают на оборудовании с электропитанием … Совершенно не задумываясь о физико-математической природе происходящего энергетического процесса …

Существование, взаимодействие и движение электрических зарядов — представляет больший интерес в практических целях … Почему скачет и проседает напряжение в квартире … Отчего греются вилки, розетки и провода … Выдержит ли электрическая сеть совокупную мощность подключенного электооборудования . .. Какого номинала поставить автомат / предохранитель на цепь в электрощиток … Какие провода проложить при ремонте квартиры или здания … Электричество в быту и техника безопасности при работе с ним … Эффективное использование электричества в быту и энергосберегающие технологии … Выбор и замена электропроводки на даче, в бане … Правила электробезопасности в повседневной жизни … Сопротивление проводников и расчет потребляемой мощности по току и напряжению … Как узнать, сколько тока потребляет электрический прибор, по мощности …

Ответы на эти и многие другие вопросы, связанные с электротехникой, надеюсь — поможет дать этот простой и эффективный калькулятор онлайн расчетов и вычислений по формулам Закона Ома …

Сентябрь, 2020 …

Отредактировано : Январь, 2021 …

Популярное : …

… Найти … Как улучшить фото … Делфи на Андроид … Погода М-4, М-5, М-7, Р-22 … Список торрент трекеров … Калькулятор кода радио . .. Частота в длину волны … RTL SDR Radio …

TechStop-Ekb.ru : познавательные развлечения, техника, технологии … На сайте, для работы и соответствия спецификациям — используются … Протокол HTTPS шифрования для безопасного соединения с сервером и защиты пользовательских данных … Антивирус DrWeb для превентивной защиты пользователей от интернет угроз и вирусов … Ресурс входит в рейтинги Рамблер Топ 100 (познавательно-развлекательные сайты) и Mail Top 100 (авто мото информация) …

Тех Стоп Екб RU (РФ) официальный сайт, популярные темы, погода, новости, обзоры с картинками, бесплатно, актуально, без регистрации … Смотреть утром, днем, вечером и ночью — круглосуточно онлайн …

Меню раздела, новости и новые страницы.

… | … ТехСтоп Екб … | … Главное меню … | … Быстрый поиск … | …


© 2021 Тех Остановка Екатеринбург, создаваемый с 2016++ с вами вместе навсегда бесплатно …

Как узнать сколько ампер потребляет устройство, как перевести миллиамперы в ватты?

Наверное, каждый кто делал или делает ремонт электрики сталкивался с проблемой определения той или иной электрической величины. Для кого-то это становится настоящим камнем преткновения, а для кого-то все предельно ясно и каких-либо сложностей при определении той или иной величины нет. Данная статья посвящена именно первой категории – то есть для тех, кто не очень силен в теории электрических цепей и тех показателей, которые для них характерны.

Итак, для начала вернемся немного в прошлое и постараемся вспомнить школьный курс физики, касательно электрики. Как мы помним, основные электрические величины определяются на основании всего одного закона – закона Ома. Именно этот закон является базой проведения абсолютно для любых расчетов и имеет вид:

Отметим, что в данном случае речь идет о расчете самой простейшей электрической цепи, которая выглядит следующим образом:

Подчеркнем, что абсолютно любой расчет ведется именно посредством этой формулы. То есть путем не сложных математических вычислений можно определить ту или иную величину зная при этом два иных электрических параметра. Как бы там ни было, наш ресурс призван упростить жизнь тому кто делает ремонт, а поэтому мы упростим решение задачи определения электрических параметров, вывив основные формулы и предоставив возможность произвести расчет электрических цепей онлайн .

Формула расчета сечения провода и как определяется сечение провода

Довольно много вопросов связано с определением сечения провода при построении электропроводки. Если углубиться в электротехническую теорию, то формула расчета сечения имеет такой вид:

Конечно же, на практике, такой формулой пользуются довольно редко, прибегая к более простой схеме вычислений. Эта схема довольно проста: определяют силу тока, которая будет действовать в цепи, после чего согласно специальной таблице определяют сечение. Более детально по этому поводу можно почитать в материале – «Сечение провода для электропроводки «

Приведем пример. Есть бойлер мощностью 2000 Вт, какое сечение провода должно быть, чтобы подключить его к бытовой электропрводке? Для начала определим силу тока, которая будет действовать в цепи:

Как видим, сила тока получается довольно приличной. Округляем значение до 10 А и обращаемся к таблице:

Таким образом, для нашего бойлера потребуется провод сечением 1,7 мм. Для большей надежности используем провод сечением 2 или 2,5 мм.

Автор — Антон Писарев

Шаги Править

Метод 1 из 3:


Перевод ватт в амперы при фиксированном напряжении Править

Составьте таблицу перевода ватт в амперы. Во многих цепях, например в домашней сети или автомобиле, используется фиксированное напряжение. В этом случае между мощностью и силой тока существует однозначная связь. Таким образом, можно составить таблицу, пользуясь соотношениями, связывающими мощность (ватты), силу тока (амперы) и напряжение (вольты) в любой электрической цепи. Подобную таблицу можно найти в Интернете. При этом следует подобрать таблицу, подходящую для используемого вами напряжения.

  • К примеру, в домашней сети обычно используется переменное напряжение величиной 220 вольт, а в автомобилях − постоянное напряжение 12 вольт.
  • Вы можете еще более упростить себе задачу, используя для пересчета ватт в амперы онлайн-калькулятор.

Найдите величину мощности (в ваттах), которую требуется перевести в силу тока. Составив таблицу или отыскав ее в интернете, найдите в ней интересующую вас мощность. Как правило, подобные таблицы состоят из нескольких строк и столбцов. В вашей таблице должен быть столбец, озаглавленный “Мощность” или “Ватты”. Найдите этот столбец и просмотрите его, найдя величину мощности, соответствующую вашей электрической цепи.

Найдите соответствующий ток (в амперах). После того как вы найдете интересующую вас мощность (в ваттах), перейдите вдоль этой же строки к столбцу “Ток” или “Амперы”. В таблице может быть более двух столбцов, поэтому обращайте внимание на их заголовки, чтобы не ошибиться. Найдя столбец со значениями тока в амперах, еще раз проверьте, чтобы соответствующее значение тока находилось в той же строке, что и интересующая вас мощность в ваттах.

Определите мощность цепи. Ознакомьтесь с характеристиками интересующей вас цепи. Мощность измеряется в ваттах. Величина мощности характеризует количество энергии, потребляемой или вырабатываемой в цепи за единицу времени. Таким образом, 1 ватт = 1 джоуль/ 1 секунду. Величину мощности необходимо знать для того, чтобы найти ток, измеряемый в амперах (сокращенно “А”).

Определите напряжение. Напряжение представляет собой разность электрических потенциалов в цепи, и, наряду с мощностью, его также указывают в характеристиках цепи. Напряжение возникает благодаря тому, что на одном конце цепи создается избыток, а на другом − нехватка электронов. В результате между концами цепи возникает электрическое поле (разность потенциалов). Эта разность потенциалов, то есть напряжение приводит к тому, что по цепи течет электрический ток, стремящийся снять напряжение (выравнять заряды на разных концах цепи). Для нахождения тока (количества ампер) следует определить величину напряжения.

Запишите уравнение. Для постоянного тока уравнение выглядит очень просто. Ватты равны амперам, поделенным на вольты. Таким образом, поделив ватты на вольты, вы узнаете силу тока (количество ампер) в сети.

  • Амперы = ватты/вольты

Найдите силу тока. Записав уравнение, вы сможете найти количество ампер. Для этого выполните деление. Проверьте единицы измерения: в результате у вас должны получиться кулоны, поделенные на секунду. 1 ампер = 1 кулон / секунду.

  • В международной системе единиц (СИ) кулоны служат единицей измерения электрического заряда. При этом один ампер соответствует заряду величиной один кулон, протекшему через сечение проводника за одну секунду.

Определите коэффициент мощности. Коэффициент мощности цепи равен отношению активной мощности к полной мощности, подаваемой на цепь. Полная мощность всегда больше или равна активной мощности, поэтому коэффициент мощности принимает значения в интервале от 0 до 1. Найдите коэффициент мощности, указанный в описании цепи или на ее схеме.

Воспользуйтесь уравнением для однофазных цепей. Уравнение для однофазных цепей переменного тока аналогично уравнению, использованному выше для постоянного тока, и связывает вольты, амперы и ватты. Разница состоит в том, что для переменного тока в уравнение входит коэффициент мощности.

  • Амперы = ватты / (КМ X вольты), где коэффициент мощности (КМ) является безразмерной величиной.

Найдите ток. Подставив в уравнение значения ватт, вольт и коэффициент мощности, вы сможете найти количество ампер. В результате у вас получится количество кулонов за секунду. Если у вас получатся другие единицы измерения, проверьте уравнение еще раз − возможно, вы неправильно записали его.

  • В уравнение для трехфазных цепей входит больше величин, чем для однофазных. Для вычисления количества ампер в трехфазной цепи следует определить, подключаетесь ли вы к двум фазам или фазе и нулю.

Как прочитать маркировку конденсатора

Как вычислить расстояние до молнии

Как понять формулу E=mc2

Как рассчитать напряжение на сопротивлении

Как вычислить общее сопротивление цепи

Как найти полное сопротивление

Как рассчитать длину волны

Как рассчитать силу натяжения в физике

Как вычислить напряжение, силу тока и сопротивление в параллельной цепи

Как найти ускорение

Перевести амперы в киловатты? Легко!

Чтобы подобрать автомат определенной нагрузки, который бы обеспечивал оптимальную работу какого-либо прибора, необходимо знать, как одну информацию или данные, интегрировать в другую. А именно – как перевести амперы в киловатты.

Для того, чтобы безошибочно выполнить такой расчет, многие опытные электрики используют формулу I=P/U, где I – это амперы, P – это ватты, а U – это вольты. Получается, что амперы вычисляются путем деления ватт на вольты. Для примера, обычный электрический чайник потребляет 2 кВт и питается от сети в 220 В. Чтобы в этом случае вычислить ампераж тока в сети, применяем вышеуказанную формулу и получаем: 2000 Вт/220 В = 9,09 А. То есть, когда чайник включен он потребляет ток больше 9 Ампер.

Онлайн калькулятор

На многочисленных сайтах в сети, чтобы узнать сколько ампер в 1 кВт таблица и многие другие данный приведены со всеми подробными пояснениями. Также в этих таблицах указано как рассчитать количество киловатт в самых распространенных случаях, когда речь идет о напряжении в 12, 220 и 380 вольт. Это наиболее распространенные сети, поэтому потребность в расчетах возникает именно в отношении данных сетей.

Для того, чтобы рассчитать и перевести амперы в киловатты не нужно заканчивать специальных учебных заведений. Знание всего лишь одной формулы помогает на бытовом уровне решить многие задачи и быть уверенным в том, что вся бытовая техника в доме работает в оптимальном режиме и надежно защищена.

Мощность Вт, при напряжении в В
А12220380
112220380
224440760
3366601140
4488801520
56011001900
б7213202280
78415402660
89617603040
910819803420
1012022003800
1113224204180
1214426404560
1315628604940
1416830805320
1518033005700
1619235206080
1720437406460
1821639606840
1922841807220
2024044007600
2125246207980
2226448408360
2327650608740
2428852809120
25ЗСО55009500
2631257209880
27324594010260
28336616010640
29348638011020
30360660011400

Как посчитать амперы зная мощность и напряжение

Особенности расчета мощности по току и напряжению

Чтобы электропроводка и все электрическое оборудование, которое имеется в доме, работало исправно и правильно, необходимо правильно сделать вычисление мощности по току и электронапряжению, поскольку при неправильно подобранных показателях может возникнуть короткое замыкание или возгорание. Как сделать расчёт потребляемой мощности по току и напряжению, как вычисляется сила тока, формула через мощность и напряжение и другое, далее.

Как узнать силу тока, зная мощность и напряжения

Чтобы ответить на вопрос, как определить ток, необходимо поделить электронапряжение на общее число ватт. При этом сделать все необходимые вычисления можно самостоятельно, а можно прибегнуть к специальному онлайн-калькулятору.

Узнать потребление электроэнергии по токовой силе резистора можно умножением первой на сопротивление, выражаемое в Омах. В итоге, получится значение, представленное в вольтах, перемноженных на ом. Получится ампер.

Обратите внимание! Если нет сопротивления, нужно поделить ваттный показатель на токовую энергию, то есть следует поделить ватты на амперы и получится значение электроэнергии в вольтах. Понять мощностное показание через величину электричества с электронапряжением, можно умножив соответствующие показания с устройства.

Формулы для расчета тока в трехфазной сети

Подсчитать токовую энергию в трехфазной сети сложно, поскольку вместе одной фазы есть три. К тому же, сложность заключается в использовании нескольких схем соединения. Трудность состоит в симметрии или ее отсутствии во время распределения нагрузки по фазам.

Для определения силы тока в трехфазной сети, нужно общее число ватт поделить на показатель 1,73, перемноженный на напряжение и косинус мощностного коэффициента, который отражает активную и реактивную составляющую сопротивления нагрузки. Что касается однофазной сети, то из выражения для подсчета убирается показатель 1,73. Остается формула I = P/(U*cos φ).

Как рассчитать ампераж

Ампераж является значением электротока, которое выражена в амперах. Рассчитать ампераж можно так: I=P/U.

Расчет потребляемой мощности

Электромощность является величиной, которая отвечает за факт скорости изменения или передачи электрической энергии. Есть полная и активная мощностная нагрузка, а также активная и реактивная. Полная вычисляется так: S = √ (P2 + Q2), где P является активной частью, а Q реактивной. Для нахождения потребляемого мощностного показателя необходимо знать число электротока, которое потребляется нагрузкой, а также питательное напряжение, которое выдается при помощи источника.

Что касается бытового определения потребляемой электрической энергии, необходимо вычислить общее количество ватт питания электрических приборов и паспортные данные номинальной силы электротока котла. Как правило, все электрические приборы работают с переменным током и напряжением в 220 вольт. Для вычисления тока проще всего воспользоваться амперметром. Зная первый и второй параметры, реально узнать величину потребляемой энергии.

Стоит указать, что измерить мощность через напряжение или сделать расчет мощности по сопротивлению и напряжению возможно не только формулой, но и прибором. Для этого можно воспользоваться мультиметром с токоизмерительными клещами или специализированным измерителем — ваттметром.

Обратите внимание! Оба работают по одному и тому же принципу, указанному в руководстве по их эксплуатации.

Мощность, ток и напряжение — три составляющие расчета проводки в доме. Узнать все необходимые параметры в любой сети просто при помощи формул, представленных выше. От этих значений будет зависеть исправность работы всей домашней электрики и безопасность ее владельца.

Расчет электрического тока по мощности: формулы, онлайн расчет, выбор автомата

Проектируя электропроводку в помещении, начинать надо с расчета силы тока в цепях. Ошибка в этом расчете может потом дорого обойтись. Электрическая розетка может расплавиться под действием слишком сильного для нее тока. Если ток в кабеле больше расчетного для данного материала и сечения жилы, проводка будет перегреваться, что может привести к расплавлению провода, обрыва или короткого замыкания в сети с неприятными последствиями, среди которых необходимость полной замены электропроводки – еще не самое плохое.

Знать силу тока в цепи надо и для подбора автоматических выключателей, которые должны обеспечивать адекватную защиту от перегрузки сети. Если автомат стоит с большим запасом по номиналу, к моменту его срабатывания оборудование может уже выйти из строя. Но если номинальный ток автоматического выключателя меньше тока, возникающего в сети при пиковых нагрузках, автомат будет доводить до бешенства, постоянно обесточивая помещение при включении утюга или чайника.

Формула расчета мощности электрического тока

Согласно закону Ома, сила тока(I) пропорциональна напряжению(U) и обратно пропорциональна сопротивлению(R), а мощность(P) рассчитывается как произведение напряжения и силы тока. Исходя из этого, ток в участке сети рассчитывается: I = P/U.

В реальных условиях в формулу добавляется еще одна составляющая и формула для однофазной сети приобретает вид:

а для трехфазной сети: I = P/(1,73*U*cos φ),

где U для трехфазной сети принимается 380 В, cos φ – это коэффициент мощности, отражающий соотношение активной и реактивной составляющих сопротивления нагрузки.

Для современных блоков питания реактивная компонента незначительна, величину cos φ можно принимать равной 0,95. Исключение составляют мощные трансформаторы (например, сварочные аппараты) и электродвигатели, они имеют большое индуктивное сопротивление. В сетях, где планируется подключение подобных устройств, максимальную силу тока следует рассчитывать с использованием коэффициента cos φ, равного 0,8 или рассчитать силу тока по стандартной методике, а потом применить повышающий коэффициент 0,95/0,8 = 1,19.

Подставив действующие значения напряжения 220 В/380 В и коэффициента мощности 0,95, получаем I = P/209 для однофазной сети и I = P/624 для трехфазной сети, то есть в трехфазной сети при одинаковой нагрузке ток втрое меньше. Никакого парадокса тут нет, так как трехфазная проводка предусматривает три фазных провода, и при равномерной нагрузке на каждую из фаз она делится натрое. Поскольку напряжение между каждым фазным и рабочим нулевым проводами равно 220 В, можно и формулу переписать в другом виде, так она нагляднее: I = P/(3*220*cos φ).

Подбираем номинал автоматического выключателя

Применив формулу I = P/209, получим, что при нагрузке с мощностью 1 кВт ток в однофазной сети будет 4,78 А. Напряжение в наших сетях не всегда равно в точности 220 В, поэтому не будет большой ошибкой силу тока считать с небольшим запасом как 5 А на каждый киловатт нагрузки. Сразу же видно, что в удлинитель, промаркированный «5 А», утюг мощностью 1,5 кВт включать не рекомендуется, так как ток будет в полтора раза превышать паспортную величину. А еще сразу можно «проградуировать» стандартные номиналы автоматов и определить, на какую нагрузку они рассчитаны:

  • 6 А – 1,2 кВт;
  • 8 А – 1,6 кВт;
  • 10 А – 2 кВт;
  • 16 А – 3,2 кВт;
  • 20 А – 4 кВт;
  • 25 А – 5 кВт;
  • 32 А – 6,4 кВт;
  • 40 А – 8 кВт;
  • 50 А – 10 кВт;
  • 63 А – 12,6 кВт;
  • 80 А – 16 кВт;
  • 100 А – 20 кВт.

С помощью методики «5 ампер на киловатт» можно оценить силу тока, возникающую в сети при подключении бытовых устройств. Интересуют пиковые нагрузки на сеть, поэтому для расчета следует использовать максимальную потребляемую мощность, а не среднюю. Эта информация содержится в документации на изделия. Вряд ли стоит самому рассчитывать этот показатель, суммируя паспортные мощности компрессоров, электродвигателей и нагревательных элементов, входящих в устройство, так как есть еще такой показатель, как коэффициент полезного действия, который придется оценивать умозрительно с риском сильно ошибиться.

При проектировании электропроводки в квартире или загородном доме не всегда доподлинно известны состав и паспортные данные электрооборудования, которое будет подключаться, но можно воспользоваться ориентировочными данными обычных для нашего быта электроприборов:

  • электросауна (12 кВт) — 60 А;
  • электроплита (10 кВт) — 50 А;
  • варочная панель (8 кВт) — 40 А;
  • электроводонагреватель проточный (6 кВт) — 30 А;
  • посудомоечная машина (2,5 кВт) — 12,5 А;
  • стиральная машина (2,5 кВт) — 12,5 А;
  • джакузи (2,5 кВт) — 12,5 А;
  • кондиционер (2,4 кВт) — 12 А;
  • СВЧ-печь (2,2 кВт) — 11 А;
  • электроводонагреватель накопительный (2 кВт) — 10 А;
  • электрочайник (1,8 кВт) — 9 А;
  • утюг (1,6 кВт) — 8 А;
  • солярий (1,5 кВт) — 7,5 А;
  • пылесос (1,4 кВт) — 7 А;
  • мясорубка (1,1 кВт) — 5,5 А;
  • тостер (1 кВт) — 5 А;
  • кофеварка (1 кВт) — 5 А;
  • фен (1 кВт) — 5 А;
  • настольный компьютер (0,5 кВт) — 2,5 А;
  • холодильник (0,4 кВт) — 2 А.

Потребляемая мощность осветительных приборов и бытовой электроники невелика, в целом суммарную мощность осветительных приборов можно оценить в 1,5 кВт и автомата на 10 А на группу освещения достаточно. Бытовая электроника подключается к тем же розеткам, что и утюги, дополнительные мощности резервировать для нее нецелесообразно.

Если просуммировать все эти токи, цифра получается внушительная. На практике, возможности подключения нагрузки ограничивает величина выделенной электрической мощности, для квартир с электрической плитой в современных домах она составляет 10 -12 кВт и на квартирном вводе стоит автомат номиналом 50 А. И эти 12 кВт надо распределить, учитывая то, что самые мощные потребители сосредоточены на кухне и в ванной комнате. Проводка будет доставлять меньше поводов для беспокойства, если разбить ее на достаточное количество групп, каждая со своим автоматом. Для электроплиты (варочной панели) делается отдельный ввод с автоматом на 40 А и устанавливается силовая розетка с номинальным током 40 А, ничего больше туда подключать не надо. Для стиральной машины и другого оборудования ванной комнаты делается отдельная группа, с автоматом соответствующего номинала. Эту группу обычно защищают УЗО с номинальным током на 15% большим, чем номинал автоматического выключателя. Отдельные группы выделяют для освещения и для настенных розеток в каждой комнате.

На расчет мощностей и токов придется потратить некоторое время, но можно быть уверенным, что труды не пропадут даром. Грамотно спроектированная и качественно смонтированная электропроводка – залог комфорта и безопасности вашего жилища.

Расчет электрических цепей онлайн и основная формула расчета

Наверное, каждый кто делал или делает ремонт электрики сталкивался с проблемой определения той или иной электрической величины. Для кого-то это становится настоящим камнем преткновения, а для кого-то все предельно ясно и каких-либо сложностей при определении той или иной величины нет. Данная статья посвящена именно первой категории – то есть для тех, кто не очень силен в теории электрических цепей и тех показателей, которые для них характерны.

Итак, для начала вернемся немного в прошлое и постараемся вспомнить школьный курс физики, касательно электрики. Как мы помним, основные электрические величины определяются на основании всего одного закона – закона Ома. Именно этот закон является базой проведения абсолютно для любых расчетов и имеет вид:

Отметим, что в данном случае речь идет о расчете самой простейшей электрической цепи, которая выглядит следующим образом:

Подчеркнем, что абсолютно любой расчет ведется именно посредством этой формулы. То есть путем не сложных математических вычислений можно определить ту или иную величину зная при этом два иных электрических параметра. Как бы там ни было, наш ресурс призван упростить жизнь тому кто делает ремонт, а поэтому мы упростим решение задачи определения электрических параметров, вывив основные формулы и предоставив возможность произвести расчет электрических цепей онлайн.

Как узнать ток зная мощность и напряжение?

В данном случае формула вычисления выглядит следующим образом:

Расчет силы тока онлайн:

(Не целые числа вводим через точку. Например: 0.5)

Как узнать напряжение зная силу тока?

Для того, чтобы узнать напряжение, зная при этом сопротивление потребителя тока можно воспользоваться формулой:

Расчет напряжения онлайн:

Если же сопротивление неизвестно, но зато известна мощность потребителя, то напряжение вычисляется по формуле:

Определение величины онлайн:

Как рассчитать мощность зная силу тока и напряжения?

Здесь необходимо знать величины действующего напряжения и действующей силы тока в электрической цепи. Согласно формуле предоставленной выше, мощность определяется путем умножения силы тока на действующее напряжение.

Расчет цепи онлайн:

Как определить потребляемую мощность цепи имея тестер, который меряет сопротивление?

Этот вопрос был задан в комментарие в одном из материалов нашего сайта. Поспешим дать ответ на этот вопрос. Итак, для начала измеряем тестером сопротивление электроприбора (для этого достаточно подсоединить щупы тестера к вилке шнура питания). Узнав сопротивление мы можем определить и мощность, для чего необходимо напряжение в квадрате разделить на сопротивление.

Формула расчета сечения провода и как определяется сечение провода

Довольно много вопросов связано с определением сечения провода при построении электропроводки. Если углубиться в электротехническую теорию, то формула расчета сечения имеет такой вид:

Конечно же, на практике, такой формулой пользуются довольно редко, прибегая к более простой схеме вычислений. Эта схема довольно проста: определяют силу тока, которая будет действовать в цепи, после чего согласно специальной таблице определяют сечение. Более детально по этому поводу можно почитать в материале – «Сечение провода для электропроводки»

Приведем пример. Есть бойлер мощностью 2000 Вт, какое сечение провода должно быть, чтобы подключить его к бытовой электропрводке? Для начала определим силу тока, которая будет действовать в цепи:

Как видим, сила тока получается довольно приличной. Округляем значение до 10 А и обращаемся к таблице:

Таким образом, для нашего бойлера потребуется провод сечением 1,7 мм. Для большей надежности используем провод сечением 2 или 2,5 мм.

Рекомендуем ознакомиться:

Как рассчитать амперы

При создании и ремонте электрической сети питания необходимо уточнение базовых параметров: тока, напряжения, мощности, сопротивления. Такие действия выполняют перед подключением нагревательных приборов, станков, других мощных потребителей. В данной публикации рассказано о том, как рассчитать амперы и другие характеристики без ошибок.

Электрический ток

Для простоты электрические параметры часто объясняют на примере перемещения воды по трубам. Данным термином, выраженным в амперах (А), обозначают скорость передвижения электронов в проводнике. Препятствия для жидкости создают малые размеры и дистанция транспортной системы. На сопротивление электрическому току оказывают влияние:

  • наличие свободных электронов, химическая чистота материала;
  • площадь поперечного сечения (длина) провода;
  • температурные условия.

О напряжении, токе и мощности

Продолжив аналогии с водой, напряжение можно сравнить с давлением в магистрали. По мере увеличения разницы потенциалов (вольтаж) получают большую силу электрического тока при остальных равных условиях. Если подключить в цепь лампу накаливания, будет видно, как соответствующим образом изменяется свечение спирали.

Мощность – это комплексный показатель, определяющий потребляемую энергию. Его рассчитывают с учетом приложенного напряжения и тока в цепи.

Как рассчитать число ампер в сети

На практике применяют разные схемы вычислений. В частности, пользуются автоматизированными программами (калькуляторами). Такие инструменты предлагают бесплатно специализированные сайты в режиме онлайн. Ниже представлены формулы и примеры, которые помогут рассчитывать электрические параметры самостоятельно.

Как узнать ток, зная мощность и напряжение

Источник питания постоянного тока (аккумулятор) обеспечивает напряжение на выходе 12 Вольт. Известна мощность потребления – 2 Вт. Как рассчитать ампераж, показано на примере:

К сведению. Для удобства на практике применяют дробные и кратные величины. В данном примере – 167 мА (миллиампер).

Как узнать напряжение, зная силу тока

Выше показано, как посчитать амперы, зная мощность и напряжение. Эту же формулу используют для обратного действия. Если сила тока равна 200 мА, при мощности 2 Вт в точках измерения, прибор покажет следующее напряжение:

U = P/I = 2/0,2 = 10 V.

Как рассчитать мощность, зная силу тока и напряжение

Результат можно вычислить с помощью следующего примера:

P = I*U = 0,2 * 10 = 2 Вт.

В левой части рисунка приведена формула для расчета механической мощности:

  • А – полезная работа в Джоулях;
  • t – временной период, за который выполнена эта операция.

Как определить мощность цепи, имея тестер сопротивления

В реальных условиях существенное влияние оказывает электрическое сопротивление проводника. Выбрав соответствующий режим, можно узнать действительное значение с помощью мультитестера. Переключатель устанавливают в положение, которое соответствует определенному диапазону. Переходят от больших значений к малым до появления индикации на экране.

При R=20 Ом, зная силу тока I= 200 мА, мощность вычисляют по следующей формуле:

P = I2*R = 0,04*20 = 0,8 Вт.

При необходимости уточняют напряжение:

U = I*R = 0,2*20 = 4 V.

Формула расчета сечения провода

Площадь сечения цилиндрического проводника вычисляют по стандартной геометрической формуле подсчета:

где:

К сведению. Для измерения провода используют микрометр или штангенциркуль.

При отсутствии специализированных инструментов узнавать размер можно с применением подручных средств. Взяв карандаш или другую подходящую основу с одинаковой шириной по продольной оси, наматывают последовательно провод. Приложив конструкцию к линейке, уточняют длину. Делением на количество витков получают диаметр проводника. Далее пользуются рассмотренной выше формулой.

Таблица ватт ампер для выбора сечения проводников по максимальному току (суммарной мощности потребления)

Расчет электрических цепей онлайн и основная формула расчета

Наверное, каждый кто делал или делает ремонт электрики сталкивался с проблемой определения той или иной электрической величины. Для кого-то это становится настоящим камнем преткновения, а для кого-то все предельно ясно и каких-либо сложностей при определении той или иной величины нет. Данная статья посвящена именно первой категории – то есть для тех, кто не очень силен в теории электрических цепей и тех показателей, которые для них характерны.

Итак, для начала вернемся немного в прошлое и постараемся вспомнить школьный курс физики, касательно электрики. Как мы помним, основные электрические величины определяются на основании всего одного закона – закона Ома. Именно этот закон является базой проведения абсолютно для любых расчетов и имеет вид:

Отметим, что в данном случае речь идет о расчете самой простейшей электрической цепи, которая выглядит следующим образом:

Подчеркнем, что абсолютно любой расчет ведется именно посредством этой формулы. То есть путем не сложных математических вычислений можно определить ту или иную величину зная при этом два иных электрических параметра. Как бы там ни было, наш ресурс призван упростить жизнь тому кто делает ремонт, а поэтому мы упростим решение задачи определения электрических параметров, вывив основные формулы и предоставив возможность произвести расчет электрических цепей онлайн.

Как узнать ток зная мощность и напряжение?

В данном случае формула вычисления выглядит следующим образом:

Расчет силы тока онлайн:

(Не целые числа вводим через точку. Например: 0.5)

Как узнать напряжение зная силу тока?

Для того, чтобы узнать напряжение, зная при этом сопротивление потребителя тока можно воспользоваться формулой:

Расчет напряжения онлайн:

Если же сопротивление неизвестно, но зато известна мощность потребителя, то напряжение вычисляется по формуле:

Определение величины онлайн:

Как рассчитать мощность зная силу тока и напряжения?

Здесь необходимо знать величины действующего напряжения и действующей силы тока в электрической цепи. Согласно формуле предоставленной выше, мощность определяется путем умножения силы тока на действующее напряжение.

Расчет цепи онлайн:

Как определить потребляемую мощность цепи имея тестер, который меряет сопротивление?

Этот вопрос был задан в комментарие в одном из материалов нашего сайта. Поспешим дать ответ на этот вопрос. Итак, для начала измеряем тестером сопротивление электроприбора (для этого достаточно подсоединить щупы тестера к вилке шнура питания). Узнав сопротивление мы можем определить и мощность, для чего необходимо напряжение в квадрате разделить на сопротивление.

Формула расчета сечения провода и как определяется сечение провода

Довольно много вопросов связано с определением сечения провода при построении электропроводки. Если углубиться в электротехническую теорию, то формула расчета сечения имеет такой вид:

Конечно же, на практике, такой формулой пользуются довольно редко, прибегая к более простой схеме вычислений. Эта схема довольно проста: определяют силу тока, которая будет действовать в цепи, после чего согласно специальной таблице определяют сечение. Более детально по этому поводу можно почитать в материале – «Сечение провода для электропроводки»

Приведем пример. Есть бойлер мощностью 2000 Вт, какое сечение провода должно быть, чтобы подключить его к бытовой электропрводке? Для начала определим силу тока, которая будет действовать в цепи:

Как видим, сила тока получается довольно приличной. Округляем значение до 10 А и обращаемся к таблице:

Таким образом, для нашего бойлера потребуется провод сечением 1,7 мм. Для большей надежности используем провод сечением 2 или 2,5 мм.

Рекомендуем ознакомиться:

Как рассчитать силу тока – практические советы для домашнего электрика

Для подбора кабеля, сечения проводов, выключателей защиты, следует вычислить силу тока. Проводка, автоматы с неверно подобранными показателями опасны: может случиться замыкание и пожар.

Говоря об электроприборах, сети, прежде всего упоминают о напряжении. Его величина указывается в вольтах (В), обозначается U. Показатель напряжения зависит от нескольких факторов:

  • материала проводки;
  • сопротивления прибора;
  • температуры.

Один из главных показателей электричества — напряжение

Различают виды напряжения – постоянное и переменное. Постоянное, если на один конец цепи поступает отрицательный потенциал, на другой – положительный. Самый доступный пример постоянного напряжения – батарейка. Нагрузку подключают, соблюдая полярность, иначе можно повредить устройство. Постоянный ток невозможно без потерь передать на значительные расстояния.

Переменный ток возникает, когда постоянно меняется его полярность. Количество изменений называют частотой, измеряется в герцах. Переменные напряжения возможно передавать очень далеко. Используют экономически выгодные трехфазные сети: в них минимальные потери электроэнергии. Они выполнены четырьмя проводами: три фазных и нулевой. Если посмотреть на линию электропередач, увидим 4 провода между столбами. От них к дому подводят два – фазный ток 220 В. Если подключить 4 провода, потребитель получит линейный ток 380 В.

Характеристика электричества не ограничивается напряжением. Важна сила тока в амперах (А), обозначение – латинская I. В любом месте цепи она одинакова. Для измерения служат амперметр, миллиамперметр, мультиметр. Ток бывает очень большой, тысячи ампер, и маленький – миллионные части ампер. Малую силу измеряют миллиамперами.

Амперметр служит для измерения силы тока

Движение электричества по любому материалу вызывает сопротивление. Оно выражается омами (Ом), обозначается R или r. Сопротивление зависимо от сечения и материала проводника. Чтобы охарактеризовать сопротивление разных материалов, употребляется термин удельное сопротивление. Медь характеризуется меньшим сопротивлением, чем алюминий: 0,017 и 0,03 Ом соответственно. У короткого провода сопротивление меньше, чем у длинного. Толстый провод отличается от толстого меньшим сопротивлением.

Характеристика любого прибора содержит указания мощности (ватты (В) или киловатты (кВт). Мощность обозначают P, зависит от напряжения и тока. Из-за сопротивления проводки энергия частично теряется – от источника требуется ток больше необходимого.

При двух известных величинах всегда можно найти третью. Для вычислений наиболее часто пользуются законом Ома с тремя величинами: силой тока, напряженим, сопротивлением: I=U/R.

Он применяется для цепи с нагрузкой из ТЭНов, лампочек, резисторов, имеющих активное сопротивление.

Если имеются катушки, конденсаторы, это уже реактивное сопротивление, обозначают X. Катушки создают индуктивное (XL), конденсаторы – емкостное сопротивление (XC). Сила тока рассчитывается с применением формулы, в основе которой также закон Ома: I=U/X.

Прежде определяют индуктивное и емкостное сопротивления, они вместе составляют реактивное сопротивление (C+L).

Индуктивное вычисляется: XC=1/2πfC. Для расчета емкостного используем формулу XL=2πfL.

Формулы содержат обозначения, требующие объяснения: π=3,14, f – это частота. По ним вычисляется ток, если имеется катушка или конденсатор.

Прокладывая электропроводку, предварительно следует узнать силу тока. Ошибки чреваты неприятностями – проводка, розетки плавятся. Если он фактически превышает расчетный, проводка нагревается, плавится, происходит обрыв или замыкание. Ее приходится менять, но это не самое неприятное – возможен и пожар.

При монтаже проводки необходимо знать силу тока

Ток сети для практических потребностей находят, зная мощность приборов: I=P/U, где P – мощность потребителя. В реальности учитывается коэффициент мощности – cos φ. Для однофазной сети: I = P/(U∙cos φ),

трехфазной – I = P/(1,73∙U∙cos φ).

Для одной фазы U принимают 220, для трех – 380. Коэффициент большинства приборов 0,95. Если подключают электродвигатель, сварку, дроссель, коэффициент 0,8. Подставляя 0,95, для однофазной сети выходит:

I = P/209, трехфазной – I = P/624. Если коэффициент 0,8, для двух проводов: I = P/176, для четырех: I = P/526.

Трехфазный ток меньше втрое, нагрузка распределяется поровну между фазами. Подсчитывая нагрузку, предусматривают запас 5%, для двигателей, сварочных агрегатов – 20%.

Приборы иногда используют одновременно. Чтобы вычислить нагрузку, суммируют токи устройств. Подход возможен, если они имеют схожий коэффициент мощности. Для потребителей с разными коэффициентами используют средний показатель. Иногда к трехфазной системе подключают однофазные и трехфазные изделия. Вычисляя ток, складывают все нагрузки.

Ток, протекающий по проводке, нагревает ее. Степень нагрева зависит от его силы и сечения проводки. Правильно подобранный греется несильно. Если ток имеет большую силу, проводка недостаточное сечение, она сильно нагревается, изоляция плавится, возможен пожар. Для правильного подбора сечения пользуются таблицами ПУЭ.

Сечение провода и сила тока определяют степень нагрева проводки

Предположим, требуется подключить электрокотел 5 кВт. Используем медный трехжильный кабель в рукаве. Проводим вычисления: 5000/220 = 22,7. Подходящее значение в таблице 27 А, сечение 4 мм2, диаметр – 2,3 мм. Сечение всегда выбирают с небольшим запасом для полной гарантии. Теперь есть уверенность, что провода не перегреются, не загорятся.

Для защиты сети пользуются плавкими предохранителями. Они работают так, что при некоторой силе тока предохранитель плавится и разрывает цепь. Поэтому гвоздь или первый попавшийся медный провод вместо предохранителя использовать нельзя, когда-нибудь это приведет к серьезным проблемам. Если нужного предохранителя нет, используют медный провод подходящего диаметра, пользуясь таблицей.

Плавкие предохранители постепенно уходят, им на смену пришли автоматические выключатели. Выбрать их не так просто, как кажется. Допустим, проводка рассчитана на 22 А, ближайший автомат на 25 А. Значит, ставить его? Оказывается, нет. Обозначение С25 вовсе не значит, что при 26 амперах он разорвет цепь. Даже если нагрузка превысит значение в полтора раза, он моментально не отключит сеть. Нагреется и сработает минуты через две.

Ставить нужно автомат меньшего номинала. Ближайший – С16. Он может отключить сеть при 17 А и при 24, и никто не скажет, сколько времени пройдет. На срабатывание влияет много факторов. Устройство имеет две защиты – электромагнитную и тепловую. Электромагнитная защита отключает сеть за 0,2 секунды при значительной перегрузке.

Следует выбирать автомат, срабатывающий при возможно меньшей силе тока.

Еще один вид устройств отключения – УЗО. Он лишен тепловой и электромагнитной защиты. Указанный номинал служит, чтобы определять ток, который выдержит УЗО без повреждений. Так что логично после УЗО поставить автомат на максимальный ток. Существуют приборы защиты, представляющие симбиоз автомата с УЗО – дифавтоматы.

калькулятор перевода ампер в ватты и наоборот > Флэтора

Виды сетевых кабелей и для чего нужны сетевые провода

Виды сетевого кабеля: от витой пары до оптиволоконных кабелей. Коаксиальный кабель: области и история применения. Витая пара: категории и расшифровки обозначений (маркировок). Оптоволоконные сетевые провода….

25 02 2021 13:11:10

Закон Ома для неоднородного участка цепи

Понятие и классическая формулировка закона Ома для неоднородного участка цепи. Что такое неоднородная цепь. Применение закона для неоднородных участков….

14 02 2021 4:10:12

Диммер для паяльника своими руками

Все кто занимается радиоэлектроникой, сталкивались с перегревом паяльника. Это может быть недорогой недавно купленный паяльник, который вышел из строя….

11 02 2021 18:20:49

Виды промышленных тиристорных преобразователей (инверторов)

Виды преобразовательных агрегатов (инверторов напряжения, преобразователей тока и т.п.) Особенности тиристорного управления. Схемные решения преобразователей на основе тиристоров. Последовательные и параллельные инверторы тока….

30 01 2021 14:24:36

Разветвители для телевизионного кабеля: какие бывают

Какие разветвители для Т В антенны лучше использовать для разделения сигнала на 2, 3 и 4 телевизора. Что такое тройник для телевизионной антенны. Как правильно выбрать краб для антенны для телевизора. Принцип работы сплиттера для спутниковой антенны….

14 01 2021 2:59:11

Светодиодная подсветка: виды профилей для светодиодных лент

Преимущества использования коробов для решений по светодиодной подсветке помещений. Декоративная и целевая подсветка с использованием светодиодных лент в профилях в т.ч. алюминиевых. Классификация профилей по области применения и материалу изготовления. Размеры кабель-канала для светодиодной ленты….

12 01 2021 5:21:40

Указатели напряжений: однополюсные двухполисные, до 1000в и свыше

Назначение и виды указателей напряжений. Низковольтное и высоковольтное напряжение и приборы для их определения. Высоковольтные устройства и особенности их применения. Порядок работы с указателем высокого напряжения У В Н 10. Указатели напряжения для проверки совпадения фаз….

11 01 2021 15:33:39

Определяем прямую и обратную полярности аккумуляторов

Разница между прямой и обратной полярностью. Что будет, если перепутать полярность аккумулятора? Определение полярности А К Б без маркировки. Рекомендации по определению и обслуживанию аккумуляторов в зависимости от полярностей….

07 01 2021 14:39:33

Электромагниты переменного электрического тока и другие мощные магниты

Как работает электромагнит? Изготовление электромагнита 12в. в домашних условиях. Преимущества использования электромагнитов переменного тока. Расчеты изготовления магнитов для переменного и постоянного токов. Находим применения электромагниту в телевизорах, трансформаторах и пусковых устройствах автомобиля….

06 01 2021 18:43:26

Формула для вычисления энергии электрических полей конденсаторов

Определение и формулы напряженности электрополя. Работа и энергия в электростатическом поле. Электрическое поле в конденсаторе. Определение максимальной энергии в конденсаторах. Определение энергии электрического поля через составление формул для работы….

27 12 2020 11:27:17

Примеры магнитной (диамагнитной) левитации, диамагнетизм

Определение магнитной (диамагнитной) левитации. Магнитная левитация: эксперименты в домашних условиях. Как сделать левитирующий магнит своими руками. Применение магнитов в подшипниках. Как используют магнитную левитацию в ветрогенераторах….

16 12 2020 7:38:25

Добро пожаловать!

Сайт Amperof.ru это ваш помощник по электротехнике, электрооборудованию и электроснабжению! Портал для любителей нашей тематики….

06 11 2020 9:31:34

Восстановление аккумулятора: последствия переплюсовки

Конструкция и принцип работы свинцово-кислотного автомобильного аккумулятора. Что такое переполюсовка А К Б. Причины естественной переполюсовки. Чем опасна переполюсовка при прикуривании. Порядок действий при переполюсовке аккумулятора….

27 10 2020 19:27:53

Зарядное устройство для аккумулятора 18650

Аккумуляторная батарея 18650: преимущества и недостатки, маркировка аккумулятора. Определение эффекта памяти аккумуляторных батарей. Порядок заряда А К Б-18650. Схемы зарядных устройств для аккумуляторов типа 18650….

25 10 2020 17:42:38

Схемы светодиодных ламп на 220 вольт: советы по ремонту

Принцип действия светодиодных ламп 220 в. Типы светодиодов использующихся в диодных лампах. Устройство LED-диодов: преимущества и недостатки. Драйвера и источники питания. Самостоятельный ремонт светодиодной лампы….

17 10 2020 12:14:12

Как сделать внешнюю антенну для 4G модема Yota своими руками

В каких случаях необходимо усиление сигнала для LTE модемов Yota. Виды внешних антенн для роутеров Yota и преимущества их использования. Самодельная антенна для Yota: из банки из алюминия, антенна Харченко и спутниковая антенна….

11 10 2020 0:24:52

Блок питания 12в 30 ампер. Мощный блок питания схема. Онлайн калькулятор по расчету ватт в амперы

Рано или поздно у любого радиолюбителя возникнет надобность в мощном блоке питания как для проверки различных электронных узлов и блоков, так и для питания мощных радиолюбительских самоделок.

В схеме применяется обычная микросхема LM7812, но выходной ток может достигать предела в 30A, он усиливается с помощью специальных транзисторов Дарлингтона TIP2955, их еще называют составные. Каждый из них может выдавать на выходе до 5 ампер, а так как их шесть в результате суммарный выходной ток около 30 А. При необходимости вы можете увеличить или уменьшить количество составных транзисторов, чтобы получить нужный вам ток на выходе.

Микросхема LM7812 обеспечивает около 800 мА. Предохранитель применяется для защиты ее от высоких бросков тока. Транзисторы и микросхема необходимо разместить на больших радиаторах. Для тока 30 ампер нам понадобится очень большой радиатор. Сопротивления в эмиттерных цепях применяются для стабильности и выравнивания токов каждого плеча составного транзистора, ведь уровень их усиления будет различным для каждого конкретного экземпляра. Номинал резисторов 100 Ом.

Выпрямительные диоды, должны быть рассчитаны на ток не ниже 60 ампер, а лучше выше. Сетевой трансформатор с током вторичной обмотки 30 ампер является наиболее трудно доставаемой частью конструкции. Входное напряжение стабилизатора должно быть на несколько вольт больше выходного напряжения 12 В.

Внешний вид блока питания вы можете посмотреть на рисунке ниже, чертежа печатной платы к сожалению не сохранилось, но я рекомендую сделать его своими руками в утилите .

Настройка схемы. Сначала лучше не подключать нагрузку, а с помощью мультиметра убедится в наличии 12 Вольт на выходе схемы. Затем подключите нагрузку обычное сопротивление ом на 100 и не менее 3 Вт. Показания мультиметра не должны измениться. Если нет 12 вольт — отсоедините питание и внимательно проверьте всю коммутацию.

В предлагаемом блоке питания установлен мощный полевой транзистор IRLR2905.В открытом состоянии сопротивление канала 0,02 Ома. Мощность, рассеиваемая VT1, более 100 Вт.

Переменное сетевое напряжение следует на выпрямитель и сглаживающий фильтр, и далее уже отфильтрованное поступает на сток полевого транзистора и через сопротивление R1 на затвор, открывая VT1. Часть выходного напряжения через делитель следует на вход микросхемы КР142ЕН19, замыкая цепь отрицательной ОС. Напряжение на выходе стабилизатора увеличивается до тех пор, пока напряжение на входе управления DA1 не достигнет порогового уровня в 2,5 В. В момент достижения микросхема открывается, снижая напряжение на затворе, таким образом, схема БП входит в режим стабилизации. Для плавной регулировку выходного напряжения сопротивление R2 меняют на потенциометр.

Наладка и регулировка: Задаем необходимое выходное напряжение R2. Проверяем стабилизатор на предмет самовозбуждения с помощью осциллографа. Если оно имеет место, то параллельно емкостям C1, С2 и С4 требуется подсоединить керамические конденсаторы номиналом 0,1 мкФ.

Сетевое напряжение следует через предохранитель на первичную обмотку силового трансформатора. С его вторичной обмотки идет уже пониженное напряжение на 20 вольт при силе токе до 25А. При желании этот трансформатор можно сделать своими руками на основе силового трансформатора от старого лампового телевизора.

Использование одного интегрального регулятора напряжения 7812 и нескольких можно собрать достаточно мощный обеспечивающий ток нагрузки до 30 ампер. Ниже приведена схема блока питания.

Описание работы мощного блока питания

Входной схемы мощного блока питания, вероятно, будет самой дорогой частью всего проекта. На регулятор входное напряжение должно поступать на несколько вольт выше, чем выходного напряжения (12 В). При использовании трансформатора, диоды должны выдерживать очень высокий максимальный прямой ток, обычно 100A или более.

Регулятор напряжения 7812 будет забирать только 1 ампер или менее выходного тока, а остальной нагрузочный ток будет проходить через составные транзисторы. для обеспечения достаточной пропускной способности в 30 ампер, шесть транзисторов TIP2955 подключены параллельно.

Рассеиваемая на каждом силовом транзисторе мощность равна одной шестой общей мощности, поэтому дополнительных радиаторов для них не нужно. Необходимо только применить небольшой вентилятор для обдува теплых транзисторов.

В следующей статье приведем описание .

24.06.2015

Представляем мощный стабилизированный блок питания на 12 В. Он построен на микросхеме стабилизатора LM7812 и транзисторах TIP2955, что обеспечивает ток до 30 А. Каждый транзистор может давать ток до 5 А, соответственно 6 транзисторов обеспечат ток до 30 А. Можно изменением количества транзисторов и получить желаемое значение тока. Микросхема выдает ток около 800 мА.

На его выходе установлен предохранитель в 1 А для защиты от больших переходных токов. Нужно обеспечить хороший теплоотвод от транзисторов и микросхемы. Когда ток через нагрузку большой, мощность рассеиваемая каждым транзистором также увеличивается, так что избыточное тепло может привести к пробою транзистора.

В этом случае для охлаждения потребуется очень большой радиатор или вентилятор. Резисторы 100 Ом используются для стабильности и предотвращения насыщения, т.к. коэффициенты усиления имеют некоторый разброс у одного и того же типа транзисторов. Диоды моста рассчитаны не менее, чем на 100 А.

Примечания

Наиболее затратным элементом всей конструкции, пожалуй, является входной трансформатор, Вместо него возможно использование двух последовательно соединенных батарей автомобиля. Напряжение на входе стабилизатора должно быть на несколько вольт выше требуемого на выходе (12В), чтобы он мог поддерживать стабильный выход. Если используется трансформатор, то диоды должны выдерживать достаточно большой пиковый прямой ток, обычно, 100А или более.

Через LM 7812 будет проходить не более 1 А, остальная часть обеспечивается транзисторами.Так как схема рассчитана на нагрузку до 30А, то шесть транзисторов соединены параллельно. Рассеиваемая каждым из них мощность – это 1/6 часть общей нагрузки, но все же необходимо обеспечить достаточный теплоотвод. Максимальный ток нагрузки приведет к максимальному рассеиванию, при этом потребуется крупногабаритный радиатор.

Для эффективного отвода тепла от радиатора, может быть хорошей идеей применение вентилятора или радиатора с водяным охлаждением. Если блок питания нагружен на максимальную нагрузку, а силовые транзисторы вышли из строя, то весь ток пройдет через микросхему, что приведет к катастрофическому результату. Для предотвращения пробоя микросхемы на ее выходе стоит предохранитель в 1 А. Нагрузка 400 МОм только для тестирования и не входит в окончательную схему.

Вычисления

Данная схема отличная демонстрация законов Кирхгофа. Входящая в узел сумма токов, должна быть равна сумме токов выходящих из этого узла, а сумма падений напряжений на всех ветвях, любого замкнутого контура цепи должна быть равна нулю. В нашей схеме, входное напряжение 24 вольт, из них 4В падения на R7 и 20 В на входе LM 7812, т.е 24 -4 -20 = 0. На выходе суммарный ток нагрузки 30А, регулятор поставляет 0.866А и 4.855А каждый из 6 транзисторов: 30 = 6 * 4.855 + 0.866.

Ток базы составляет около 138 мА на транзистор, чтобы получить ток коллектора около 4.86А коэффициент усиления по постоянному току для каждого транзистора должен быть не менее 35.

TIP2955 удовлетворяет этим требованиям. Падение напряжения на R7 = 100 Ом при максимальной нагрузке будет 4В. Рассеиваемая на нем мощность, вычисляется по формуле P= (4 * 4) / 100, т.е 0.16 Вт. Желательно, чтобы этот резистор был мощностью 0.5 Вт.

Входной ток микросхемы поступает через резистор в цепи эмиттера и переход Б-Э транзисторов. Еще раз применим законы Кирхгофа. Входной ток регулятора состоит из тока 871 мА, протекающего по цепи базы, и 40.3мА через R = 100 Ом.
871,18 = 40,3 + 830. 88. Входной ток стабилизатора всегда должен быть больше выходного. Мы видим, что он потребляет только около 5 мА и практически не должен греться.

Тестирование и ошибки

Во время первого испытании, не надо подключать нагрузку. Вначале измеряем вольтметром напряжение на выходе, оно должно быть 12 вольт, или не сильно отличающаяся величина. Затем подключаем сопротивление около100 Ом, 3 Вт в качестве нагрузки.Показания вольтметра не должны измениться. Если вы не видите 12 В, то, предварительно выключив питание, следует проверить корректность монтажа и качество пайки.

Один из читателей, получил на выходе 35 В, вместо стабилизированных 12 В. Это было вызвано коротким замыканием силового транзистора. Если есть КЗ любого из транзисторов, придется отпаять все 6 для проверки мультиметром переходов коллектор-эмиттер.

В продолжение темы блоков питания я заказал еще один БП, но в этот раз мощнее предыдущего.

Обзор будет не очень длинным, но как всегда, осмотрю, разберу, протестирую.

На самом деле данный обзор является лишь промежуточным шагом к тестам более мощных блоков питания, которые уже в пути ко мне. Но я подумал, что данный вариант также нельзя оставлять без внимания, потому и заказал его для обзора.

Буквально несколько слов об упаковке.

Обычная белая коробка, из опознавательных знаков только номер артикула, все.

При сравнении с блоком питания из предыдущего обзора выяснилось, что обозреваемый просто немного длиннее. Обусловлено это тем, что обозреваемый БП имеет активное охлаждение, потому при практически том же объеме корпуса мы имеем мощность в полтора раза больше.

Размеры корпуса составляют — 214х112х50мм.

Все контакты выведены на один клеммник. Назначение контактов выбито штамповкой на корпусе блока питания, такой вариант немного надежнее чем наклейка, но хуже заметен.

Крышка закрывается с заметным усилием и прочно фиксируется в закрытом состоянии. При открывании обеспечивается полный доступ к контактам. Иногда у БП встречается ситуация, когда крышка не открывается полностью, потому теперь я этот момент проверяю обязательно.

1. На корпусе блока питания присутствует наклейка с указанием базовых параметров, мощности, напряжения и тока.

2. Также присутствует переключатель входного напряжения 115/230 Вольт, который в наших сетях является лишним и не всегда безопасным.

3. Блок питания выпущен почти год назад.

4. Около клеммника присутствует светодиод индикации работы и подстроечный резистор для изменения выходного напряжения.

Сверху располагается вентилятор. Как я писал в предыдущем обзоре, мощность 240-300 Ватт является максимальной для блоков питания с пассивным охлаждением. Конечно есть безвентиляторные БП и на большую мощность, но встречаются они гораздо реже и стоят весьма дорого, потому введение активного охлаждения преследует цель сэкономить и сделать блок питания дешевле.

Крышка фиксируется шестью небольшими винтами, но при этом и сама по себе сидит плотно, корпус алюминиевый и также как у других БП выполняет роль радиатора.

В качестве сравнения приведу фото рядом с БП мощностью 240 Ватт. Видно что в основном они одинаковы, и по сути 360 Ватт Бп отличается от своего младшего собрата только наличием вентилятора и некоторыми небольшими коррективами связанными с большей выходной мощностью.

Например силовой трансформатор у них имеет одинаковый размер, а вот выходной дроссель у обозреваемого заметно больше.

Общая черта обоих БП — весьма свободный монтаж и если у БП с пассивным охлаждением это оправданно, то при наличии активного охлаждения размер корпуса можно было смело уменьшить.

Перед дальнейшей разборкой проверка работоспособности.

Исходно на выходе напряжение немного завышено относительно заявленных 12 Вольт, хотя по большому счету это не имеет никакого значения, меня больше интересует диапазон перестройки и он составляет 10-14.6 Вольта.

В конце выставляю 12 Вольт и перехожу к дальнейшему осмотру.

Как ни странно, но емкость входных конденсаторов совпадает с указанной на их корпусе:)

Емкость каждого из конденсаторов 470мкФ, суммарная около 230-235мкФ, что заметно меньше рекомендуемых 350-400 которые необходимы блоку питания мощностью 360 Ватт. По хорошему должны быть конденсаторы с емкостью хотя бы 680мкФ каждый.

Выходные конденсаторы имеют суммарную емкость в 10140мкФ, что также не очень много для заявленных 30 Ампер, но часто такую емкость имеют конденсаторы и у фирменных БП.

Транзисторы и выходные диоды прижаты к корпусу через теплораспределительную пластину, в качестве изоляции выступает только теплопроводящая резина.

Обычно в более дорогих БП применяется колпачок из более толстой резины, который полностью закрывает компонент и если для выходных диодов он особо не нужен, то вот для высоковольтных транзисторов явно не помешал бы. Собственно по этому я советую в целях безопасности заземлять корпус БП.

Теплораспределительные пластины прижаты к алюминиевому корпусу, но термопаста между ними и корпусом отсутствует.

После случая с одним из блоков питания я теперь всегда проверяю качество прижима силовых элементов. Здесь с этим проблем нет, впрочем обычно проблем со сдвоенными элементами и не бывает, чаще сложности когда мощный элемент один и прижат Г-образной скобой.

Вентилятор самый обычный, с подшипниками скольжения, но почему-то на напряжение 14 Вольт.

Размер 60мм.

Плата держится на трех винтах и элементах крепления силовых компонентов. Снизу корпуса присутствует защитная изолирующая пленка.

Фильтр довольно стандартен для подобных БП. Входной диодный мост имеет маркировку KBU808 и рассчитан на ток до 8 Ампер и напряжение до 800 Вольт.

Радиатор отсутствует, хотя при такой мощности уже желателен.

1. На входе установлен термистор диаметром 15мм и сопротивлением 5 Ом.

2. Параллельно сети присутствует помехоподавляющий конденсатор класса Х2.

3. Помехоподавляющие конденсаторы имеющие непосредственную связь с сетью установлены класса Y2

4. Между общим проводом выхода и корпусом БП установлен обычный высоковольтный конденсатор, но в этом месте его достаточно так как при отсутствии заземления он подключен последовательно с конденсаторами класса Y2, показанными выше.

ШИМ контроллер KA7500, аналог классической TL494. Схема более чем стандартна, производители просто штампуют одинаковые БП, которые отличаются только номиналами некоторых компонентов и характеристиками трансформатора и выходного дросселя.

Выходные транзисторы инвертора также классика недорогих БП — MJE13009 .

1. Как я писал выше, входные конденсаторы имеют емкость 470мкФ и что интересно, если конденсаторы имеют изначально непонятное название, то чаще емкость указана реальная, а если подделка, например Rubicong , то чаще занижена. Вот такое вот наблюдение. 🙂

2. Магнитопровод выходного трансформатора имеет размеры 40х45х13мм, обмотка пропитана лаком, правда весьма поверхностно.

3. Рядом с трансформатором присутствует разъем для подключения вентилятора. Обычно в описании подобных БП указывают автоматическую регулировку оборотов, на самом деле ее здесь нет. Хотя вентилятор меняет обороты в небольших пределах в зависимости от выходной мощности, просто это скорее побочный эффект. При включении вентилятор работает очень тихо, а на полную мощность выходит при токе около 2.5 Ампера что составляет меньше 10% от максимальной.

4. На выходе пара диодных сборок MBR30100 по 30 Ампер 100 Вольт каждая.

1. Размеры выходного дросселя заметно больше чем у 240 Ватт версии, намотан в три провода на двух кольцах 35/20/11.

2. Как и ожидалось после предварительной проверки, выходные конденсаторы имеют емкость 3300мкФ, так как они новые, то в сумме показали не 9900, а 10140мкФ, напряжение 25 Вольт. Производитель, известный всем noname.

3. Токовые шунты для схемы защиты от КЗ и перегрузки. Обычно ставят одну такую «проволочку» на 10 Ампер тока, соответственно здесь БП 30 Ампер и три такие проволочки, но мест 7, потому предположу что есть похожий вариант но с током в 60 Ампер и меньшим напряжением.

4. А вот и небольшое отличие, компоненты отвечающие за блокировку при пониженном выходном напряжении перенесли ближе к выходу, хотя при этом сохранили даже позиционные месте согласно схеме. Т.е. R31 в схеме БП 36 Вольт соответствует R31 в схеме БП 12 Вольт, хотя находятся в разных местах на плате.

При беглом взгляде я бы оценил качество пайки на твердую четверку, все чисто, аккуратно.

Пайка довольно качественная, на плате в узких местах сделаны защитные прорезы.

Но «ложка дегтя» все таки нашлась. Некоторые элементы имеют непропай. Место особенно несущественно, важен сам факт.

В данном случае плохая пайка была обнаружена на одном из выводов предохранителя и конденсатора цепи защиты от снижения напряжения на выходе.

Исправить дело нескольких минут, но как говорится — «ложки нашлись, а осадочек остался».

Так как схему подобного БП я уже чертил, то в данном случае просто внес коррективы в уже существующую схему.

Кроме того я выделил цветом элементы, которые изменены.

1. Красным — элементы которые меняются в зависимости от изменения выходного напряжения и тока

2. Синим — изменение номиналов этих элементов при неизменной выходной мощности мне непонятно. И если с входными конденсаторами отчасти понятно, они были указаны как 680мкФ, но реально показывали 470, то зачем увеличили в полтора раза емкость С10?

В схеме ошибка, С10 имеет емкость 3.3мкФ, а не 330нФ.

С осмотром закончили, переходим к тестам, для этого я использовал привычный «тестовый стенд», правда дополненный Ваттметром.

1. Электронная нагрузка 2. Мультиметр 3. Осциллограф 4. Тепловизор 5. Термометр 6. Ваттметр , обзора нет.

7. Ручка и бумажка.

На холостом ходу пульсации практически отсутствуют.

Небольшое уточнение к тесту. На дисплее электронной нагрузки вы увидите значения токов заметно ниже чем я буду писать. Дело в том, что нагрузка аппаратно умеет нагружать большими токами, но программно ограничена на уровне в 16 Ампер. В связи с этим пришлось сделать «финт ушами», т.е. откалибровать нагрузку на двукратный ток, в итоге 5 Ампер на дисплее равны 10 Ампер в реальности.

При токе нагрузки 7.5 и 15 Ампер блок питания вел себя одинаково, полный размах пульсаций в обоих случаях составил около 50мВ.

При токах нагрузки 22.5 и 30 Ампер пульсации заметно выросли, но при этом были на одном уровне. Рост уровня пульсаций был при токе около 20 Ампер.

В итоге полный размах составил 80мВ.

Отмечу очень хорошую стабилизацию выходного напряжения, при изменении тока нагрузки от нуля до 100% напряжение изменилось всего на 50мВ. Причем с ростом нагрузки напряжение растет, а не падает, что может быть полезным. В процессе прогрева напряжение не изменялось, что также является плюсом.

Результаты теста я свел в одну табличку, где показана температура отдельных компонентов.

Каждый этап теста длился 20 минут, тест с полной нагрузкой проводился два раза для термопрогрева.

Крышка с вентилятором вставлялась на место, но не привинчивалась, для измерения температуры я ее снимал не отключая БП и нагрузку.

В качестве дополнения я сделал несколько термограмм.

1. Нагрев проводов к электронной нагрузке при максимальном токе, также через щели в корпусе видно тепловое излучение от внутренних компонентов.

2. Самый большой нагрев имеют диодные сборки, думаю если бы производитель добавил радиатор как это сделано в 240 Ватт версии, то нагрев существенно снизился.

3. Кроме того большой проблемой был отвод тепла от всей этой конструкции, так как суммарная рассеиваемая мощность всей конструкции составила более 400 Ватт.

Кстати насчет отвода тепла. Когда я готовил тест, то больше боялся что нагрузке тяжело будет работать при такой мощности. Вообще я проводил уже тесты на такой мощности, но 360-400 Ватт это предельная мощность которую моя электронная нагрузка может рассеивать длительно. Кратковременно же она без проблем «тянет» и 500 Ватт.

Но проблема вылезла в другом месте. На радиаторах силовых элементов у меня установлены термовыключатели рассчитанные на 90 градусов. Один контакт у них припаян, а второй припаять не получилось и я применил клеммники.

При токе 15 Ампер через каждый выключатель эти контакты начинали довольно сильно нагреваться и срабатывание происходило раньше, пришлось принудительно охлаждать еще и эту конструкцию. А кроме того пришлось частично «разгрузить» нагрузку подключением к БП нескольких мощных резисторов.

Но вообще выключатели рассчитаны максимум на 10 Ампер, потому я и не ожидал от них нормальной работоспособности при токе в 1.5 раза больше их максимума. Теперь думаю как их переделать, видимо придется делать электронную защиту с управлением от этих термовыключателей.

А кроме того теперь у меня появилась еще одна задача. По просьбе некоторых читателей я заказал для обзора блоки питания мощностью 480 и 600 Ватт. Теперь думаю чем их лучше нагружать, так как такую мощность (не говоря о токах до 60 Ампер), моя нагрузка точно не выдержит.

Как и в прошлый раз я измерил КПД блока питания, этот тест я планирую проводить и в дальнейших обзорах. Проверка проходила при мощности 0/33/66 и 100%

Вход — Выход — КПД.

147,1 — 120,3 — 81,7%

289 — 241 — 83,4%

437,1 — 362 — 82,8%

Что можно сказать в итоге.

Блок питания прошел все тесты и показал довольно неплохие результаты. В плане нагрева есть даже заметный запас, но выше 100% я бы не советовал его нагружать. Порадовала весьма высокая стабильность выходного напряжения и отсутствие зависимости от температуры.

К тому что не очень понравилось я отнесу безымянные входные и выходные конденсаторы, огрехи пайки некоторых компонентов и посредственную изоляцию между высоковольтными транзисторами и радиатором.

В остальном блок питания самый обычный, работает, напряжение держит, сильно не греется.

Электрические системы часто требуют сложного анализа при проектировании, ведь нужно оперировать множеством различных величин, ватты, вольты, амперы и т.д. При этом точно необходимо высчитать их соотношение при определенной нагрузке на механизм. В некоторых системах напряжение фиксированное, например, в домашней сети, а вот мощность и сила тока обозначают разные понятия, хоть и являются взаимозаменяемыми величинами.

Онлайн калькулятор по расчету ватт в амперы

Для получения результата обязательно указывать напряжение и потребляемую мощность.

В таких случая очень важно иметь помощника, дабы точно перевести ваты в амперы при постоянном значении напряжения.

Нам поможет перевести амперы в ватты калькулятор онлайн. Перед тем как воспользоваться интернет-программой по расчету величин, нужно иметь представление о значении необходимых данных.

  1. Мощность – это скорость потребления энергии. Например, лампочка в 100 Вт использует энергию – 100 джоулей за секунду.
  2. Ампер – величина измерения силы электрического тока, определяется в кулонах и показывает число электронов, которые прошли через определенное сечение проводника за указанное время.
  3. В вольтах измеряется напряжение протекания электрического тока.

Чтобы перевод ватт в амперы калькулятор используется очень просто, пользователь должен ввести в указанные графы показатель напряжения (В), далее потребляемую мощность агрегата (Вт) и нажать кнопку рассчитать. Через несколько секунд программа покажет точный результат силы тока в амперах. Формула сколько ватт в ампере

Внимание: если показатель величины имеет дробное число, значит его нужно вписывать в систему через точку, а не запятую. Таким образом, перевести ватты в амперы калькулятором мощности позволяет за считанное время, Вам не нужно расписывать сложные формулы и думать над их ре

шением. Все просто и доступно!


Таблица расчета Ампер и нагрузки в Ватт

вольт в ватты

Obwohl dieser Перевести вольт в ватты. Преобразуйте амперы в ватты с помощью нашего калькулятора электрического преобразования, а также изучите формулы для цепей постоянного, однофазного и трехфазного переменного тока. В таблице ниже представлена ​​диаграмма для преобразования между дБмВт, ваттами и напряжением от пика к пику в системе 50 Ом. Калькулятор ватт в вольт Формула вычисления постоянного напряжения в ватт.Ватт = Вольт * Ампер * пФ. В случае садового шланга это будет количество протекающей воды. Однофазный двигатель потребляет 25 А при 230 вольт и работает с коэффициентом мощности 0,95. Заполните поля Volts и Amps, чтобы найти ватты. Мощность (Вт) = 12 В × 2 А, однофазное напряжение переменного тока по формуле расчета киловатт. Это происходит из уравнения P = I * V. Где P — мощность в ваттах, I — ток в амперах, а V — напряжение в вольтах. Мощность (Вт) = 1,620 Вт. коэффициент мощности PF, умноженный на фазный ток I в амперах (A), умноженный на действующее значение напряжения V в вольтах (V): мощность P в ваттах (Вт) равна квадратному корню из трехкратного преобразования. понять связь между двумя измерениями и то, как они влияют на вашу повседневную жизнь.Надеюсь, эта статья помогла вам лучше понять ватты, вольты и ампер-часы, поскольку они влияют на скорость, мощность и запас хода электрического велосипеда. Мощность P в киловаттах (кВт) равна напряжению V в вольтах (В), умноженному на ток I в амперах (А), деленному на 1000 :. Уравнение Ватта для электрической цепи учитывает напряжение в цепи V, измеренное в вольтах, и ток I, измеренный в амперах, проходящий через нее. В механике определение мощности — это скорость выполнения работы W.Он определяется как W / t, где t — время, необходимое для завершения работы. Соглашение об использовании ватт, ампер и вольт. Unser Team и Produkttestern hat eine riesige Auswahl an Hersteller ausführlich getestet und wir präsentieren Ihnen als Interessierte hier all Ergebnisse des Tests. Учитывая это, чтобы найти токи при заданной мощности и напряжении, используйте следующую формулу: I (A) = P (W) V (V) Используйте наши калькуляторы электрического преобразования для расчета электрических свойств при других известных значениях. Im 9 вольт в ватты Vergleich schaffte es der Testsieger in fast allen Eigenarten das Feld für sich entscheiden.1 ватт определяется как расход энергии один джоуль в секунду. Кроме того, используя кнопку сброса, вы … Ватты: Ампер и вольт объединяются, чтобы создать ватты, измерение количества выделяемой энергии. Мощность (Вт) = 120 В × 15 А × 0,9 Преобразуя вольт в ватты, вы можете понять взаимосвязь между двумя измерениями и то, как они влияют на вашу повседневную жизнь. Вы можете рассчитать ватты из вольт и ампер, но вы не можете преобразовать вольты в ватты, поскольку единицы измерения ватт и вольт не измеряют одно и то же количество.Но если вы хотите узнать больше, вот несколько специально подобранных ресурсов ватт, вольт и ампер-час. Мощность P в ваттах (Вт) равна напряжению V в вольтах (В), умноженному на ток I в амперах (А): мощность P в ваттах (Вт) равна квадрату напряжения V в вольтах (В), разделенному сопротивлением R в омах (Ом): Пример 1. Мощность измеряется в ваттах, а напряжение измеряется в вольтах. 9 вольт в ватты — Der Favorit. Закон Ватта гласит, что ток равен мощности, деленной на напряжение. Кроме того, изучите инструменты для преобразования ватт или вольт-ампер в другие блоки питания или узнайте больше о преобразовании мощности.Калькулятор преобразования электричества из вольт в ватты, калькулятор преобразования заряда в ватт, калькулятор преобразования электричества из джоулей в вольт, калькулятор преобразования электричества из вольт в джоули, калькулятор преобразования электрических свойств, калькулятор преобразования электрического тока в киловатты (кВт). Раньше я не мог определить разницу между вольтами и ваттами. Всегда проверяйте результаты; Возможны ошибки округления. P (W) = V (V) × I (A) x pf. Hier findest du eine Selektion and Convert вольт в ватт, полученный и в дем Zuge умереть соответствующую информацию о zusammengefasst.Заполните любое из двух полей, чтобы найти значение третьего. Заполните поля Volts и Amps, чтобы найти ватты. Таким образом, ток в амперах равен произведению 746 лошадиных сил на напряжение, умноженное на КПД η, умноженное на коэффициент мощности. Преобразование ватт в амперы может быть выполнено с использованием формулы мощности, которая гласит, что I = P ÷ E, где P — мощность, измеренная в ваттах, I — ток, измеренный в амперах, а E — напряжение, измеренное в вольтах. Калькулятор вольт, ампер, ватт и омов. Примените формулу выше, P (W) = 230 × 25 x 0.95. 9 ватт вольт — Der Gewinner unter allen Produkten. Также указаны таблица преобразования ватт [Вт] в вольт-ампер [В * А] и шаги преобразования. Unsere Mitarbeiter Begrüßen Sie zuhause auf unserem Portal. Вольт в ватты (Вольт → Ватты), с помощью этого калькулятора вы будете знать, как рассчитать из вольт в ватты с некоторыми наглядными примерами, формулами для преобразования однофазного, двухфазного и трехфазного напряжения в ватты и таблицей с основные преобразования. Unsere Redakteure haben uns der Aufgabe angenommen, Produkte unterschiedlichster Variante unter die Lupe zu nehmen, Damit Kunden schnell und unkompliziert den 9 вольт на ватт gönnen können, den Sie zuhause haben wollen.Политика конфиденциальности | Auf der Seite recherchierst du jene bedeutenden Infos und die Redaktion hat eine Auswahl, от 9 вольт до постоянного напряжения. Например, если ваш светодиод имеет напряжение 3,6 и ток 20 миллиампер, он будет потреблять 72 милливатта мощности. В общих чертах, используя аналогию с гидравликой, вольты аналогичны давлению, а ватты аналогичны скорости. Также указаны таблица преобразования мегаватт [MW] в вольт-ампер [V * A] и шаги преобразования. Пример 1. Рассчитайте электрический заряд в цепи, используя емкость и напряжение.Ватты: токи и вольты вместе образуют ватты — измерение количества выделяемой энергии. Реальная мощность используется для обозначения мощности конкретного оборудования. Используя уравнение I = P / V, мы можем рассчитать, какой ток в амперах потребуется, чтобы получить 100 Вт от этой 6-вольтовой лампочки. Единицей измерения напряжения в системе СИ является вольт, единицей силы тока является ампер (обычно сокращается до ампер), а единицей измерения мощности является ватт. (A), умноженное на линейное среднеквадратичное напряжение VL-L в вольтах (В): мощность P в ваттах (Вт) равна 3-кратному коэффициенту мощности PF, умноженному на фазный ток I в амперах. Планируете ли вы улучшение дома? Проект? Вот несколько полезных электрических терминов, относящихся к вычислению вольт в ватт, ватт в ампер и из вольт в амперы.Это заставляет меня понять, как работают вольт и ватт. Перед нажатием кнопки «Рассчитать» введите соответственно напряжение в вольтах и ​​ток в амперах. Вы знаете, что P = 100 Вт, а V = 6 В. 1 вольт-ампер = 1 Вт. Um Ihnen zuhause die Produktauswahl wenigstens etwas abzunehmen, haben wir schließlich das Top-Produkt dieser Kategorie gekürt, welches zweifelsfrei von all den Convert вольт в ватты абсолютного auffälligke — insbesondere перед темой верховенства. Однофазный вакуум имеет переменное напряжение 127 вольт (LN), 4.3 ампера и коэффициент мощности 0,92, сколько ватт у вакуума? Амперы = Ватты ÷ Вольт. Получите беспрепятственную оценку от местных специалистов по ремонту дома и узнайте, сколько будет стоить ваш проект. Мощность (Вт) = 48 Вт. Введите напряжение в вольтах, вольтах, амперах, ваттах и ​​омах. Это сокращение от дБ относительно 1 мВт, а «м» в дБм означает милливатт. Мгновенный бесплатный онлайн-инструмент для преобразования ватт в вольт-ампер или наоборот. Wir als Seitenbetreiber haben es uns gemacht, Produktpaletten jeder Art ausführlichst zu checken, dass Sie als Kunde schnell den 9 Volts to Watts ausfindig machen können, den Sie zu Hause für perfect befinden.Ватты = Амперы x Вольт. Говоря о фундаментальном законе Ома, мы рассматриваем несколько физических величин: сопротивление R, напряжение V и силу тока I. Электрический ток также может быть источником мощности P, так что он может выделять или передавать некоторую энергию. В случае садового шланга это будет количество протекающей воды. Преобразование дБм, вольт, ватт дБм определяется как отношение мощности в децибелах (дБ) к одному милливатту (мВт). Обычно электронные продукты отображают одно или оба этих значения, чтобы предоставить информацию о количестве энергии, которое они будут потреблять, или о величине тока, которую они будут потреблять.Как преобразовать электрическое напряжение в вольтах (В) в электрическую мощность в ваттах (Вт). Добавление 3 к мощности в дБм — это то же самое, что умножение мощности в ваттах на два (на самом деле 1,995, но этого достаточно для большинства практических целей) +10 × 10: добавление 10 мощности в дБм в точности совпадает с умножением мощности. в ваттах на 10 Например, если у вас есть ток 2 А и напряжение 5 В, мощность будет 2 А * 5 В = 10 Вт. Natürlich ist jeder Перевести вольт в ватты на Amazon.de auf Lager und direkt lieferbar.Unser Team имеет eine riesige Auswahl и Marken ausführlich verglichen und wir zeigen Ihnen hier all Ergebnisse des Tests. Если вы хотите выполнить электрические расчеты, включающие напряжение, ток, сопротивление или мощность, обратитесь к кругу формул ниже. Аналогия скорости хода Понимание базовой концепции скорости является ключом к пониманию ватт и вольт. Ватты не могут существовать без вольт, поскольку они являются продуктом комбинации вольт и ампер. RapidTables.com | Условия использования | Вольт-ампер (ВА) — это единица измерения полной мощности в электрической цепи.В цепях переменного тока мощность в ваттах равна среднеквадратичному напряжению, умноженному на ток в амперах, умноженному на коэффициент мощности. Формула вычисления постоянного напряжения в ватты Мощность P в ваттах равна напряжению V в вольтах, умноженному на ток I в амперах: Калькулятор преобразования из вольт в ватты: введите напряжение (В), ток (А) и значение коэффициента мощности в столбце ниже соответственно. Вольт и ватты — это единицы измерения, которые вы можете использовать, чтобы определить, сколько электроэнергии потребляет прибор. Для преобразования напряжения в мощность в электрических цепях переменного тока используется та же формула с небольшими изменениями.Как преобразовать миллиамперы в ватты на вольт (мА в Вт / В)? Просмотрите наши компьютерные продукты, электронные компоненты, электронные комплекты… Определения терминов «электрические». Преобразование дБм, вольт, ватт. Например, давайте преобразуем 12 вольт в ватты для цепи постоянного тока с током 2 ампера. (1M) USB C Power Delivery Kabel: UGREEN USB C auf USB C Kabel unterstützt… Хотя уровни напряжения вряд ли вырастут до значительного уровня, который может вызвать повреждение для уровней мощности, измеряемых в дБмВт, часто используются напряжения… 9 ватт — Unser Testsieger.Пользователь должен заполнить одно из двух полей, и преобразование произойдет автоматически. Выберите тип тока: DCAC — ОднофазныйAC — Трехфазный Напряжение (в вольтах): V ток (в амперах): A […] Natürlich ist jeder 3000 ватт на вольты jederzeit im Netz im Lager verfügbar und somit gleich lieferbar. Начните с выбора типа тока, который может быть либо постоянным (DC), либо переменным (AC), однофазным / трехфазным. Es ist jeder 9 вольт на ватт dauerhaft im Netz zu haben und direkt lieferbar.Калькулятор кВт в вольт Формула расчета постоянного напряжения в киловатт. Ватты можно преобразовать в вольты, используя ток и формулу закона Ватта, согласно которой ток равен мощности, деленной на напряжение. Преобразуйте вольт в ватты. Преобразовать напряжение в мощность, измеренную в ваттах, легко с помощью простой формулы закона Ватта. Wir vergleichen viele Eigenarten und verleihen dem Testobjekt am Ende eine entscheidene Punktzahl. Wir haben unterschiedlichste Hersteller & Marken analysist und wir präsentieren Ihnen als Interessierte hier unsere Ergebnisse des Vergleichs.Если вы хотите узнать потребляемую мощность в ваттах для прибора с током 3 А и напряжением 110, ваш расчет будет следующим: Ампер ⨯ вольт = Вт 3 ⨯ 110 = 330 Вт 2. дБм определяется как коэффициент мощности в децибел (дБ) относительно одного милливатта (мВт). 9 вольт в ватт — тестер Der TOP-Favorit unserer. Ватты можно преобразовать в вольты, используя ток и формулу закона Ватта, которая гласит, что… P (W) = V (V) × I (A). Воспользуйтесь этим онлайн-инструментом для вычисления вольт (В) и ватт (Вт). Введите напряжение в вольтах, ток в амперах и нажмите кнопку «Рассчитать», чтобы рассчитать мощность в ваттах.вы также можете выбрать текущий тип из раскрывающегося списка. Вольт-амперы полезны только в контексте цепей переменного тока (AC). ток в амперах и нажмите кнопку «Рассчитать», чтобы получить мощность в ваттах: мощность P в ваттах (Вт) равна напряжению V в вольтах (В), умноженному на ток I в амперах (A): мощность P в ваттах (W) равно Selbstverständlich ist jeder 9 ватт на Amazon im Lager verfügbar und kann somit sofort bestellt werden. P (кВт) = V (В) × I (A) / 1000. Щелкните Рассчитать.Например, давайте преобразуем 120 вольт в ватты для электрической цепи переменного тока с током 15 ампер и коэффициентом мощности 0,9. Wir als Seitenbetreibergrüßen Sie zu Hause auf unserem Testportal. UGREEN USB-кабель с USB-кабелем C, 60 Вт, подача питания, USB-кабель, USB-кабель, совместимый с iPad Pro 2020, MacBook Air 2020, Dell XPS 15, Surface Go 2, Samsung S20, Google Pixel 3 usw. Электрический велосипед: ресурсы ватт, вольт и ампер-час. 1 x 0,001 Вт / В = 0,001 Вт на вольт. Мощность (Вт) = 576 ÷ 12 Напряжение V в вольтах (В) равно квадратному корню из мощности P в ваттах (Вт), умноженной на сопротивление R в омах (Ом): расчет ватт.коэффициент мощности PF, умноженный на фазный ток I в амперах. Один вольт — это величина давления, необходимая для протекания тока в один ампер против одного ома сопротивления. Введите мощность в ваттах и ​​напряжение в вольтах, прежде чем нажимать кнопку «Рассчитать», которая выполняет преобразование. Пример. Worauf Sie als Kunde bei der Wahl Ihres Ватты и вольт в усилители Aufmerksamkeit richten sollten. Вот ответ на вопрос: 5/8 в процентах или как преобразовать 5/8 в проценты. 1 мА = 0,001 Вт / В. Чем выше мощность, которая, как мы теперь знаем, представляет собой комбинацию электрического потенциала и потока, тем больше мощности и выходной мощности мы увидим.Например, давайте преобразуем 24 В в ватты для цепи постоянного тока с сопротивлением 12 Ом. Этот инструмент преобразует вольт-ампер в ватты (va в w) и наоборот. Бытовая техника в США обычно использует напряжение от 110 до 120 вольт, но их мощность варьируется в более широких пределах. Управление файлами cookie. После нажатия кнопки «Расчет» в столбце результатов отображается реальная мощность (Вт) в ваттах. Например, мы можем рассчитать мощность в ваттах, обратившись к желтой области в круге. Мощность P в ваттах (Вт) равна напряжению V в вольтах (В), умноженному на ток I в амперах (A) :.Herzlich Willkommen hier. Также указаны таблица преобразования ватт [Вт] в вольт-ампер [В * А] и шаги преобразования. Посмотрите на это, реальная мощность прямо пропорциональна току, напряжению и коэффициенту мощности. Текущий результат в амперах отображается под двумя переключателями, и вы всегда можете выполнить различные вычисления после сброса калькулятора. Пример 2. О компании | Ватты и вольты в усилители — Die hochwertigsten Ватты и вольты в усилители для генома Lupe! P (кВт) = V (В) × I (A) / 1000.Мгновенный бесплатный онлайн-инструмент для преобразования ватт в вольт-ампер или наоборот. Используя небольшую алгебру, мы можем немного изменить эту формулу, чтобы также утверждать, что мощность равна напряжению, умноженному на ток. Вот полезный онлайн-калькулятор из ампера в ватт, который поможет вам преобразовать электрическую единицу из ампера (А) в ватт (Вт) (из силы тока в мощность). Es ist jeder 9 Volts to Watts rund um die Uhr auf Amazon.de zu haben und somit gleich lieferbar. Калькулятор преобразования электроэнергии в амперы в ватты, Калькулятор преобразования электрической емкости в заряд.Кроме того, изучите инструменты для преобразования мегаватт или вольт-ампер в другие блоки питания или узнайте больше о преобразовании мощности. Выберите тип тока: DCAC — ОднофазныйAC — Трехфазный Напряжение (в вольтах): В… Ватты также известны как вольт-амперы и обычно используются в сочетании с силовыми цепями переменного тока. Чем выше мощность, которая, как мы теперь знаем, представляет собой комбинацию электрического потенциала и потока, тем больше мощности и выходной мощности мы увидим. Узнайте больше о электрических формулах закона Ома и узнайте больше о преобразованиях на нашем калькуляторе закона Ома.Он используется для преобразования напряжения в вольтах (В) в мощность в ваттах (Вт) с использованием тока в амперах (A). Преобразование вольт в ватты с помощью сопротивления. Также можно преобразовать вольты в ватты, если вы … Было из трех тысяч ватт в ватты без всякой пользы! Мощность P в киловаттах (кВт) равна напряжению V в вольтах (В), умноженному на ток I в амперах (А), деленному на 1000 :.

Насколько высок Роган О’Коннор, Значение Ша на иврите, Идиомы в разбойнике, Искатель школьной зоны, Ограничения Манитобы Covid, Аксбридж U18 Twitter, Google Chrome сразу открывает и закрывает Windows 10, Пришло время отпраздновать тексты песен, Atlassian Careers New Grad, Обучение в колледже Канисиуса, Фильмы Миши Бартон, Цитаты из фильма Гордость 2007,

Вт в Ампер бесплатный онлайн калькулятор

Электрическая мощность в ваттах (Вт) до Калькулятор электрического тока в амперах (А).

Калькулятор ампер в ватт »

* Используйте e для экспоненциального обозначения. Например: 5e3, 4e-8, 1.45e12

Расчет мощности постоянного тока

Ток I в амперах (A) равен мощности P в ваттах (Вт), деленной на напряжение В, в вольтах (В):

I (A) = P (W) / V (V)

Расчет мощности в амперах однофазного переменного тока

Фазный ток I в амперах (A) равен мощности P в ватт (Вт), разделенный на коэффициент мощности PF , умноженный на действующее значение напряжения В в вольтах (В):

I (A) = P (W) / ( PF × V (V) )

Коэффициент мощности резистивно-импедансной нагрузки равен 1.

Расчет трехфазной мощности переменного тока в амперах

Расчет при межфазном напряжении

Фазный ток I в амперах (A) равен мощности P в ватт (Вт), разделенный на квадратный корень из 3-кратного коэффициента мощности PF , умноженного на линейное среднеквадратичное напряжение В L-L в вольтах (В):

I (A) = P (Вт) / ( 3 × PF × V L-L (В) )

Коэффициент мощности резистивно-импедансной нагрузки равен 1.

Расчет с линейным напряжением

Фазный ток I в амперах (A) равен мощности P в ватт (Вт), деленное на 3-кратный коэффициент мощности PF , умноженное на среднеквадратичное напряжение между фазой и нейтралью В L-N в вольтах (В):

I (A) = P (W) / (3 × PF × В L-N (В) )

Коэффициент мощности резистивно-импедансной нагрузки равен 1.

Типовые значения коэффициента мощности

Не используйте типичные значения коэффициента мощности для точных расчетов.

Устройство Типовой коэффициент мощности
Резистивная нагрузка 1
Люминесцентная лампа 0,95
Лампа накаливания 1
Асинхронный двигатель с полной нагрузкой 0.85
Асинхронный двигатель без нагрузки 0,35
Терморезистивная печь 1
Синхронный двигатель 0,9

Калькулятор ампер в ватт »


В настоящее время у нас есть около 929 калькуляторов и таблиц преобразования, которые помогут вам быстро «вычислить» в таких областях, как:

И мы все еще разрабатываем другие.Наша цель — стать универсальным сайтом для людей, которым нужно быстро производить расчеты или которым нужно быстро найти ответ на базовые конверсии.

Кроме того, мы считаем, что Интернет должен быть источником бесплатной информации. Таким образом, все наши инструменты и услуги полностью бесплатны и не требуют регистрации. Мы кодировали и разрабатывали каждый калькулятор индивидуально и подвергали каждый строгому всестороннему тестированию. Однако, пожалуйста, сообщите нам, если вы заметите даже малейшую ошибку — ваш вклад очень важен для нас.Хотя большинство калькуляторов на Justfreetools.com предназначены для универсального использования во всем мире, некоторые из них предназначены только для определенных стран.

Нашли ошибку? Дайте нам знать !

Мы получили ваше сообщение, мы свяжемся с вами в ближайшее время.

Ой! Что-то пошло не так, обновите страницу и попробуйте еще раз.

Закон Ома и Закон Уоттса

Калькулятор закона Ома и закона Ватта с примерами

Как пользоваться калькулятором:
Введите любые два известных значения и нажмите Вычислить , чтобы найти остальные.
Всегда нажимайте Сброс перед каждым новым вычислением.

Закон Ома:
Устанавливает взаимосвязь между током (амперы), сопротивлением (Ом) и напряжением.
Вольт = Ампер x Ом
Ампер = Вольт / Ом
Ом = Вольт / Ампер

Закон Ватта:
Устанавливает взаимосвязь между мощностью (ватты), током (амперы) и напряжением.
Ватт = Вольт x Ампер
Вольт = Ватт / Ампер
Ампер = Ватт / Вольт

Пример закона Ома: рассчитать сопротивление по напряжению и току
— Рейтинг роторов по сопротивлению

У вас есть коробка с роторами 27SI, и вам нужно определить, какие из них — 12 вольт, а какие — 24 вольт.

Вы хотите использовать омметр для проверки каждого ротора, но вы не знаете значение сопротивления (Ом) для каждого типа катушки ротора. Компания Delco-Remy опубликовала только значения тока возбуждения (амперы), но не сопротивления (Ом).

Процедура:
Используйте диаграмму Delco-Remy 1G-188, чтобы узнать напряжение и потребляемую мощность катушек ротора 27SI. Из диаграммы вы обнаружите, что:
  • Роторы на 12 В потребляют приблизительно 4,60 А при 12 В
  • 24-вольтовые роторы потребляют примерно 2 штуки.15 ампер при 24 вольт
Введите в калькулятор 12 вольт и 4,60 ампер, и он покажет сопротивление катушки как 2,61 Ом.

Введите в калькулятор 24 В и 2,15 А, и он покажет сопротивление катушки как 11,16 Ом.

Теперь, когда вы знаете значение сопротивления каждого типа катушки, вы можете быстро оценить каждый ротор. (Не забудьте отметить их!).

Полезные ссылки:
Руководство по тестированию генератора переменного тока Delco-Remy 1G-188 Пример закона Ватта: вычисление ампер по ваттам и напряжению
— Добавление аксессуара

Вы устанавливаете грузовик со снегоочистителем и хотите добавить фонари для плуга.
Вы выбрали лампы мощностью 65 Вт.

Вам нужно определить две вещи:
  • Какое реле максимальной силы тока использовать.
  • Какого размера проводить провод от реле к фарам.
Это известные значения:
  • Максимальное рабочее напряжение фар: 14,5 В
  • Мощность каждой лампы: 65 Вт (поскольку есть две лампы, удвойте мощность)
Введите 14.5 вольт и 130 ватт в калькулятор. Он покажет силу тока как 8,97 ампер.

Теперь вы знаете, что потребляемая мощность усилителя находится в пределах диапазона мини-реле Bosch на 40 А.

Используйте таблицу размеров проводки ERA, чтобы определить длину проводов от реле к фарам. Например, если длина провода составляет 8 футов, а сила тока составляет 10 ампер или меньше, используйте провод 14 AWG.

Полезные ссылки: Таблица размеров электропроводки
ERA
Руководство ERA по использованию мини-реле (см. Исправление №4)

Вт в Вольт — Онлайн-калькулятор, некоторые примеры, таблица и формула

С помощью этого инструмента вы можете легко и бесплатно рассчитать и преобразовать ватты в вольты за 1 шаг.

Вы также найдете формулу, используемую для преобразования ватт в вольты, как преобразовывать ватты в вольты, некоторые иллюстрированные примеры и таблицу с основными преобразованиями из ватт в вольты, с наиболее распространенными значениями коэффициента мощности для различных конструкций, устройств и моторы.

  • Формула для преобразования, расчета и преобразования из ватт в вольты, однофазное, двухфазное и трехфазное:
  • Как преобразовать из ватт в вольты за 1 шаг:
  • Примеры преобразования из ватт в вольты :
  • Ватты в вольты, таблица, эквивалент, преобразование (Амперы = 10 Ампер, Fp = 0.8, AC, 3F):
  • Типовой коэффициент мощности для двигателей, конструкций и устройств.
  • Типичный неулучшенный коэффициент мощности по отрасли:
  • Типичный коэффициент мощности обычной бытовой электроники:
  • Типичный коэффициент мощности двигателя:
  • Как использовать калькулятор ватт-вольт:

Формула для преобразования, расчета и преобразование из ватт в вольт, однофазное, двухфазное и трехфазное:

  • Вт постоянного тока = Вт постоянного тока.
  • Вт = Ватт 1 однофазный.
  • Вт 2 Ø = 2 Вт, двухфазный.
  • Вт 3 Ø = 3 Вт, трехфазный.
  • В L-N = Вольт фаза-нейтраль.
  • В L-L = Линия-линия вольт.
  • I AC1 Ø = ток / однофазный ампер.
  • I AC2Ø = ток / двухфазный ампер.
  • I AC3Ø = ток / трех- фазных ампер.
  • FP = Коэффициент мощности.

Как преобразовать ватты в вольты за 1 шаг:

Шаг 1:

Для выполнения этого преобразования у вас должны быть следующие переменные: ток, коэффициент мощности и ватты. Легко разделить ватты между умножением тока, коэффициента мощности и корнем из трех, это для случая трехфазной мощности. Например: кофемашина имеет мощность 3400 Вт, силу тока 11,15 ампер и коэффициент мощности 0.8, который вы должны сделать, разделив 3400 Вт между умножением √3 × 11,15 × 0,8. По следующей формуле: 3400 / (√3 × 11,15 × 0,8), результат будет: 220 Вольт.

Примеры преобразования из ватт в вольты:

Пример 1:

Звуковое оборудование monofasico имеет мощность 400 Вт, с коэффициентом мощности 0,93, силой тока 3,58 ампер, единственное, что вы должны сделать разделите ватты, умножив остальные переменные следующим образом: 400 / (3.58 × 0,93) = 120 В.

Пример 2:

Двухфазный потолочный вентилятор имеет мощность 830 Вт, с коэффициентом мощности 0,91 и силой тока 3,8 А, чтобы найти напряжение, необходимо разделить 830 на умножение 2 × 0,91 × 3,8 , что даст: 120Вольт.

Пример 3:

Трехфазная промышленная стиральная машина имеет мощность 2450 Вт, коэффициент мощности 0,78 и силу тока 8,24 А, чтобы узнать напряжение, вам нужно разделить 2450 / (√3 × 8.24 × 0,78) = 220 вольт.

Вт в вольт, таблица, эквивалентность, преобразование (амперы = 10 ампер, Fp = 0,8, переменный ток, 3F):

9015 Ватт 577,35 В 9015 Ватт 5051,81 Вольт
Сколько ватт: Эквивалентность в вольт
100 Вт Эквивалентно 7,22 В
200 Вт 14,43 В
300 Вт 21,65 В
400158 28158.87 В
500 Вт 36,08 Вольт
600 Вт 43,30 Вольт
700 Вт 50,52 Вольт
800 Вт
800 Ватт 64,95 В
1000 Вт 72,17 В
2000 Вт 144,34 В
3000 Вт 216.51 Вольт
4000 Вт 288,68 Вольт
5000 Вт 360,84 Вольт
6000 Вт 433,01 Ватт
9000 Вт 649,52 В
10000 Вт 721,69 Вольт
20000 Вт 1443.38 Вольт
30000 Вт 2165,06 Ватт
40000 Вт 2886,75 Вольт
50000 Вт 3608,44 Ватт
80000 Вт 5773,50 Вольт

Вт

6495,19 Вольт

Примечание: Предыдущие преобразования учитывали коэффициент мощности 0.8, силой тока 10 ампер и трехфазным переменным током. Для разных переменных следует использовать калькулятор, который появляется в начале.

Типовой коэффициент мощности для двигателей, конструкций и оборудования.

Типичный неулучшенный коэффициент мощности по отраслям: 75-0,80
Промышленность Коэффициент мощности
Автозапчасти 0,75-0,80
Цемент 0,80-0,85
Химическая промышленность 0,65-0,75
Угольная шахта 0,65-0,80
0,65-0,70
Литейное производство 0,75-0,80
Ковка 0,70-0,80
Госпиталь 0,75-0,80
Машинное производство60-0,65
Металлообработка 0,65-0,70
Офисное здание 0,80-0,90
Нефтяное месторождение Насосное 0,40-0,60
Производство красок Пластик 0,75-0,80
Штамповка 0,60-0,70
Металлургический завод 0,65-0,80
Инструмент, штампы, штампы 0.65-0,75

Типичный коэффициент мощности бытовой электроники: 9014 52 ″ Проекционный телевизор , 96 901 57 1 9198
Электронное устройство Коэффициент мощности
Magnavox Projection TV — standby
Samsung 70 ″ 3D Bluray 0,48
Цифровая фоторамка 0,52
Монитор ViewSonic 0,5
Монитор Dell 0,55 Magnavox Projection TV 0,58
Цифровая фоторамка 0,6
Цифровая фоторамка 0,62
Цифровая фоторамка 0,65
0,65
Wii 0,7
Цифровая фоторамка 0,73
Xbox Kinect 0,75
Xbox 360 0,78
Микроволновая печь 0,9
Sharp 9015 3D TV
PS3 Move 0,98
Playstation 3 0,99
Element 41 ″ плазменный телевизор 0,99
Современный большой телевизор с плоским экраном
Кондиционер для установки на Windows 0,9
Цветной телевизор на базе ЭЛТ 0,7
Плоский компьютерный монитор Legacy 0,64
В то время как -Светодиодный светильник 0,61
Старый адаптер питания ноутбука 0,55
Лазерный принтер 0,5
Лампы накаливания
Люминесцентные лампы (без компенсации) 0,5
Люминесцентные лампы (с компенсацией) 0,93
Газоразрядные лампы 0,4-0,6

Типичный коэффициент мощности двигателя:
Мощность Скорость Коэффициент мощности
(л.с.)
  • нагрузка
  • 3/4 нагрузки полная нагрузка
    0-5 1800 0.72 0,82 0,84
    5 — 20 1800 0,74 0,84 0,86
    20 — 100 1800 9015 907 0,89 8 1800 0,79 8 — 300 1800 0,81 0,88 0,91

    Ссылка // Коэффициент мощности в управлении электроэнергией-A. Bhatia, B.E.-2012
    Требования к коэффициенту мощности для электронных нагрузок в Калифорнии — Брайан Фортенбери, 2014
    http: // www.engineeringtoolbox.com

    Как использовать калькулятор ватт-вольт:

    Изначально у вас должны быть ватты, которые вы хотите преобразовать, а также амперы и коэффициент мощности, имея это в виду, вы должны перейти к исходной таблице и выберите тип тока, который вы хотите переменного или постоянного тока, и количество фаз в случае выбора переменного тока, затем вы должны ввести данные, показанные в левой части инструмента, важно проверить то, что запрашивается в таблице, потому что в соответствии с Требование вы должны ввести ватты 1F, 2F, 3F, затем вы должны ввести коэффициент мощности и, наконец, силу тока.

    Калькулятор рейтинга из ватт в вольты: [kkstarratings]

    ⚡ Калькулятор 【из ватт в амперы】 с формулами и примерами 2019

    С помощью этого инструмента вы можете конвертировать из ваттов в амперы , вы также найдете формула и объяснение , как выполнить преобразование .

    Некоторые примеров , наиболее распространенные коэффициенты мощности, основные определения и, наконец, таблица эквивалентов от ватт до ампер .

    С помощью следующих формул вы можете преобразовать Вт в Ампер вручную , если вы хотите преобразовать автоматически, вы можете использовать начальный калькулятор Вт в Ампер .

    Формула ватт в ампер (перем. Ток):

    Ватт в ампер (постоянный ток) Формула:

    Где :

    • Ватт = Это реальная мощность электрооборудования, и обычно ассоциируется с резистивные (постоянный ток) и индуктивные (переменного тока) системы — это полезная мощность, и большая часть оборудования рассчитана на эту мощность, сам по себе этот блок не имеет большого значения Потому что для того, чтобы иметь реальное значение, требуется время, с преобразованием времени кВтч в — это мера энергии, потребляемой оборудованием, несмотря на вышесказанное, вы почти всегда найдете Ватт, а не кВтч на паспортной табличке любого электрического оборудования.

    Значение Ватт индивидуально для каждой команды. и чем больше значение, тем больше будет потребление энергии.

    • В LN = Линейное напряжение — это характеристика электрических систем , и очень важно внимательно относиться к ней каждый раз, когда она используется в формуле для однофазной или двухфазной Системы переменного тока. Напряжение переменного тока обычно используется в домашнем или промышленном оборудовании. для питания конечного оборудования.

    Если у вас есть линейное напряжение и вы хотите преобразовать его в нейтраль, вы можете использовать инструмент преобразования В LN в В LL

    • В LL = Линейное напряжение, обычно используется в трехфазных системах переменного тока и представляет собой данные, которые вы можете найти на характеристических пластинах каждого блока , эти данные требуются только при использовании трехфазного Формула ватт-ампер.

    Если у вас есть только однофазное напряжение, вы можете преобразовать его в трехфазное с помощью этого преобразователя В LL на В LN

    • В DC = Это напряжение применяется только к системам постоянного тока (системы постоянного тока), и когда оно у вас есть, вам просто нужно ввести его в формулу для оборудования постоянного тока.

    Обычно устройства с таким напряжением — это светодиодные светильники , двигатели постоянного тока, электроника, такая как сотовые телефоны, телевизоры, компьютеры и т. Д., Эти устройства всегда должны преобразовывать переменный / постоянный ток через трансформатор, чтобы иметь возможность подключать их к сети переменного тока, что является обычным явлением в домах.

    • I AC1Ø = Это значение, которое вы хотите найти в случае однофазной нагрузки .
    • I AC2Ø = Значение, которое необходимо найти при нагрузке Bifasica.
    • I AC3Ø = Значение, которое необходимо найти для трехфазных систем.
    • FP = Коэффициент мощности очень важный термин в электроэнергетическом секторе, то есть генерация, передача, распределение и использование, при работе с переменным током (переменным током) это значение является тем, что отличает постоянный ток DC от переменного переменного тока и обозначает, насколько эффективно устройство потребляет энергию , другими словами, он показывает, сколько реальной энергии в ваттах потребляет устройство.

    Теперь, , чем ближе коэффициент мощности к устройству, тем большую активную мощность P он потребляет. Следовательно, коэффициент мощности влияет на выходную мощность устройства.

    Перед преобразованием из ватт в амперы вы должны уяснить формулу из ватт в амперы. В этой статье мы покажем, как выполнить преобразование.

    Чтобы преобразовать ватты в амперы, вы должны знать три переменные : ватты, тип напряжения (переменного или постоянного тока), количество фаз для электрических систем переменного тока (трехфазные, однофазные или двухфазные. ) и коэффициент мощности.

    Обычно Вт и напряжение указываются на характеристических пластинах электрооборудования (см. Рисунок 1), однако явным образом количество фаз и коэффициент мощности не указываются, поэтому эти последние значения часто должны быть выведены в конкретном случае. количества фаз или оценку на основе типовых таблиц коэффициента мощности.

    Рисунок 1

    Для предыдущего случая мы можем сделать вывод, что количество фаз оборудования равно 2 (двухфазное) , это определяется типом подключения и напряжением (см. Рисунок 2), фактически зная количество фаз в этом случае во многом зависит от опыта (напряжения в мире)

    Рисунок 2

    С другой стороны, есть коэффициент мощности , который типичен для каждого оборудования и указан на паспортной табличке, если вы не Имея этот коэффициент, вы можете увидеть таблицы типичных силовых актеров.

    Преобразование может выполняться вручную с использованием формулы ватт в ампер или автоматически с помощью калькулятора ватт в амперы. Шаги для расчета ватт в амперы следующие:

    Шаги для расчета или преобразования из ватт в трехфазный ток:

    Шаг 1:

    Вы должны определить формулу, которая служит вам (AC, DC, трехфазный, однофазный, двухфазный), то только для замены каждой переменной, в случае трехфазных систем , вы должны только умножить корень 3 на линейное напряжение и коэффициент мощности , например, если у вас электродвигатель мощностью 2000 Вт, с напряжением 480 В и коэффициентом мощности 0.83, вы должны умножить множители следующим образом: √3x480x0,83 = 690.

    Шаг 2:

    Наконец, ватт делятся на , разделенные между шагом 1, получается следующее уравнение: 2000 / (√3x480x0 .83), и результат будет: 2,89 ампер.

    Примечание: если вы не знаете коэффициент мощности, вы можете получить типичные значения для многих устройств здесь

    🔥Примеры ватт в амперах:

    Чтобы помочь вам понять преобразование ватт в амперы, мы представляем множество примеры и упражнения от ватт до ампер.

    Пример 1, преобразование ватт антенны Wi-Fi в усилители:

    В летнем доме есть антенна Wi-Fi на 800 Вт (переменный ток), антенна подключена к нейтральной линии с напряжением 127В и согласно паспортной табличке оборудования они имеют коэффициент мощности , равный 0,98. , сколько силы тока будет иметь антенна Wi-Fi? .

    Rta: // Самый простой способ — выполнить расчет автоматически с помощью инструмента преобразования ватт в амперы.

    Другая форма преобразования — выполнить расчет вручную, первое, что вы должны сделать, это определить формулу ватт-ампер, которая лучше всего подходит для вас, в данном случае это будет формула для однофазных систем переменного тока. , то вы должны ввести переменные в том виде, в котором они указаны в формуле, только вкратце однофазное напряжение должно быть , умноженное на коэффициент мощности (127Vx0.98) , затем ватты должны быть разделены на результат предыдущего уравнения следующим образом: 800 / (127 × 0.98) = 6,43 А.


    Пример 2, как преобразовать ватты из вилочного погрузчика в амперы:

    На складе имеется трехфазный вилочный погрузчик (переменного тока), который потребляет 5000 Вт , с линейным напряжением 240В и коэффициент мощности 0,82 , какая сила тока будет у погрузчика?

    Rta: // Это просто, вам просто нужно умножить напряжение на корень из 3 и на коэффициент мощности (√3x240x0,82) , в результате получится 340.9, то вы должны разделить ватты на результат: 5000 / 340,9 = 14,7 ампер . Этот результат был достигнут по формуле ватт на трехфазных усилителях.


    Пример 3, преобразование из ватт в амперы для металлогалогенной лампы:

    Винодельня имеет металлогалогенную лампу мощностью 400 Вт bifasica (AC) , линейное напряжение 208 В и напряжение нейтральной линии 120 В , с коэффициентом мощности 0,93 , какая сила тока у лампы? .

    Rta: // Чтобы получить результат, необходимо разделить ватты между умножением напряжения нейтральной линии, коэффициента мощности и числа 2 следующим образом: 400 / (2x120x0,93) , что приведет к: 1, 79A.

    Это таблицы из ватт в амперы для наиболее распространенного оборудования , в них вы увидите, что преобразование ватт в амперы отличается из-за таких переменных, как напряжение, коэффициент мощности и даже внутреннее функционирование оборудования.

    Таблица ватт-ампер для бытовых приборов:

    В этой таблице вы можете увидеть эквивалент ватт-ампер для наиболее часто используемых бытовых приборов.

    Стиральная машина 10 9015 Вт7 9,0
    Переносная бытовая техника (Бытовая техника) Ватт Ампер
    Ноутбук 65-100 <0,5 9015 Мобильный телефон 9015 Зарядное устройство для мобильного телефона <0,5
    Чайник 3000 13
    Бокс спутникового телевидения 30 <0.5
    Принтер пятьдесят <0,5
    Радио 40 <0,5
    Радиатор 2000 8,5
    DVD-плеер
    Фен 2200 10,0
    Зарядное устройство для беспроводного телефона 10 <0,5
    Компьютерный монитор 100 <0.5
    Настольный компьютер 700 3,0
    Телевизор 42 “HD 120 0,5
    Игровая приставка <200 0,8614 0,86
    Тостер 2000 9,0
    Сушильная машина 2500 11,0
    Посудомоечная машина 2200 10.0
    Утюг 2800 12,5
    Микроволновая печь 1000 4,5
    Пылесос 2000 при Вт при Вт В этой таблице вы можете увидеть соотношение ватт к амперам для напряжения 120 В и коэффициента мощности 0,8.

    7257 7257 72575
    Ватт мощность Ампер Ток
    75 0.78
    125 1,30
    175 1,82
    225 2,34
    275 2,86 325 9015 2,86 325
    425 4,43
    475 4,95
    525 5,47
    625 6,51
    825 8,59
    925 9,64
    1025 10,68
    1125 11,72 11,72
    1425 14,84
    1525 15,89
    1625 16,93
    1725 17.97

    Таблица из ватт в амперы при 12 В:

    В этой таблице вы можете найти преобразование в постоянный ток для оборудования на 12 В.

    9015 9015 9015 9015 9015 9015 9015 9015 9015 9015 9015 9019 9015 9015 9015 9015 9015 9015 9015 9015 9019 9015 :

    Эквивалент 1 Вт в амперах:

    Существует несколько вариантов этого преобразования в зависимости от типа переменного или постоянного тока, коэффициента мощности и т. Д., Однако самый простой ответ — 0.01 А, для переменного напряжения, коэффициента мощности, равного 1, и напряжения 120 В.

    Сколько ампер в 1000 Вт:

    Самый простой ответ будет 8,33 А при переменном напряжении, коэффициенте мощности 1 и напряжении 120 В.

    1500 Вт, сколько ампер:

    Как и предыдущий , преобразователь 1500 Вт, , — 12,5 ампер, с напряжением переменного тока, fp = 1, однофазным напряжением 120 В.

    600 Вт эквивалентно количеству ампер:

    Это 5 однофазных усилителей переменного тока с напряжением 120 В и коэффициентом мощности 1.

    2000 Вт эквивалентно количеству ампер:

    Эквивалентно 16,67 однофазных ампер 120 В переменного тока, коэффициент мощности 1.


    🎯Определение ватт, ампер и вольт:

    ампер:

    А — это поток электроэнергии , который измеряется как электрический ток . Вы можете видеть усилители как поток воды по трубе. Чем больше воды проходит по трубе, тем сильнее течение.

    Вольт:

    Вольт используются для определения силы , необходимой для протекания электрического тока .Согласно предыдущему примеру, вы можете представить вольты как давление, оказываемое на воду в трубе, которое заставляет воду течь.

    Вт (Вт):

    Ампер, умноженный на вольты, — это ватты, которые являются мерой , используемой для определения количества энергии, потребляемой электрическим оборудованием. Чем выше мощность, тем больше мощность в ваттах. В случае с водой, ватты относятся к количеству выпущенной воды.


    💡Как пользоваться калькулятором:

    Сначала необходимо ввести Вт, которые вы хотите преобразовать, эту информацию можно найти на паспортной табличке каждого оборудования, затем выберите тип системы и количество фаз из нескольких вариантов (однофазный -1F-AC, однофазный трехфазный-2L -AC, двухфазный -2F-AC, трехфазный -3F-AC или DC), разница между монофазным трифиларом-2L-2F и Двухфазная система заключается в том, что напряжение источника отличается от , для случая, когда источник 2L является однофазным, в то время как для 2F источник является трехфазным, как указано выше, хотя эти системы могут иметь одинаковое напряжение.

    Затем вы должны выбрать коэффициент мощности , это значение специфично для каждого устройства, однако здесь мы показываем некоторые значения, которые могут быть полезны, после выбора коэффициента мощности вы должны выбрать напряжение , напряжения делятся в LL (Линия-Линия), LN (Линия-Нейтраль) или Напряжение постоянного тока, вы должны выбрать напряжение, к которому вы будете подключать оборудование, , , наконец, , нажмите «Расчет», чтобы завершить, или перезапустите , чтобы ввести новые значения.

    Как рассчитать мощность (Вт)

    Часто говорят, что потребляемая мощность прибора в ваттах равна току, умноженному на напряжение.

    К сожалению, не все так просто.

    Это общепринятое мнение или «практическое правило» заставит вас рассчитывать кажущуюся мощность, а не реальную мощность (за что вам выставляют счет).

    Полная мощность (ВА)

    Ампер (А) x Вольт (В) = Вольт-Ампер (ВА)

    Приведенную выше формулу можно использовать для расчета полной потребляемой мощности в вольт-амперах (ВА). Это уравнение даст вам приблизительное представление об использовании мощности в ваттах, но это не совсем правильно.Для этого нужно учесть коэффициент мощности .

    Реальная мощность (Вт)

    Амперы (А) x Вольт (В) x Коэффициент мощности = Ватты (Вт)

    Эта формула учитывает коэффициент мощности и, следовательно, показывает точное энергопотребление (за которое выставлен счет).

    Запутались? Воспользуйтесь нашим бесплатным онлайн-калькулятором стоимости электроэнергии.

    Что такое коэффициент мощности?

    Коэффициент мощности

    — это мера эффективности, с которой электрическое устройство преобразует вольтамперы в ватты.Коэффициент мощности представлен в виде безразмерного числа от 0 до 1.

    Чем ближе число к единице, тем «лучше» коэффициент мощности. Чем выше коэффициент мощности, тем эффективнее используется электроэнергия. Резистивные нагрузки, такие как большинство электрических нагревателей, будут иметь коэффициент мощности 1, поскольку они преобразуют всю подаваемую электрическую мощность в тепло. Оборудование с моторами, такие холодильники и кондиционеры, будет иметь меньший коэффициент мощности.

    Почему важен коэффициент мощности?

    Коэффициент мощности важен, если вы хотите узнать реальную потребляемую мощность устройства (фактическая мощность — это то, за что вам выставлен счет).См. Ниже демонстрацию того, как коэффициент мощности используется с нашим измерителем мощности для расчета реального энергопотребления моего телевизора.

    Для крупных предприятий особенно важно иметь коэффициент мощности, близкий к «единице» (1), поскольку с них может взиматься плата, если они имеют низкий коэффициент мощности. Это связано с тем, что коммунальное предприятие должно подавать на объект больше тока (в амперах), чем фактически требуется. При этом они несут больше потерь при передаче. Хорошая новость заключается в том, что предприятия могут предпринять шаги для увеличения коэффициента мощности.

    Пример — расчет фактической мощности телевизора

    На этикетке соответствия моего телевизора указана потребляемая мощность 130 Вт .

    Проблема в том, что на этикетках соответствия часто указывается максимальная мощность , а не фактическая мощность. Единственный способ узнать фактическую мощность — измерить ее с помощью подключаемого измерителя мощности. В течение двухчасового периода измеритель мощности показал потребляемую мощность от 70 до 110 Вт — существенно меньше, чем указано на этикетке.

    В какой-то момент измеритель мощности показал, что телевизор использует 243 вольта и 0,421 ампер. Если мы будем следовать общепринятому мнению и просто умножим Вольт и Ампер без коэффициента мощности, мы получим полную потребляемую мощность следующим образом: —

    • Ампер (А) X Вольт (В) = ВА
    • 243 В x 0,421 A = 102,3 ВА

    … затем ложно представить его как 102,3 Вт

    Когда мы добавляем в расчет коэффициент мощности, мы получаем совсем другую цифру. Поскольку измеритель мощности показал коэффициент мощности 0.65, расчет будет:

    • Амперы (А) x Вольт (В) x Коэффициент мощности = Ватты (Вт)
    • 234 В x 0,421 А x 0,65 = 66,5 Вт

    Надеюсь, вы понимаете, почему так важно делать правильный расчет.

    К счастью, наши подключаемые измерители мощности сделают эти расчеты за вас. Имейте в виду, что некоторые дешевые измерители мощности не выполняют эти измерения точно и не всегда отображают реальную мощность.

    Наши измерители мощности отображают реальную мощность (ватты), а также амперы (A), вольт (В) и коэффициент мощности, поэтому вы можете проверить расчет, если вам нужно.

    Подключаемый измеритель мощности Reduction Revolution — наш самый дешевый и самый популярный вариант. Power Mate Lite — это высокоточная модель, которую используют профессиональные энергоаудиторы.

    См. Также: наш бесплатный онлайн-калькулятор эксплуатационных расходов.

    — Холли Ловелл-Смит

    Ом, Ампер, Вольт и Ватт

    Электричество — это жизненная сила систем, которые мы запускаем, поэтому базовое понимание этого может быть очень полезным для разработки и эксплуатации надежных систем.Более того, это может быть важно при их устранении, когда что-то идет не так.

    Хотя существует множество электрических терминов, четыре фундаментально важных из них — это омы, вольты, амперы и ватты. Все это единицы измерения, и они связаны между собой электрическими отношениями, известными как закон Ома и закон Уоттса.

    Закон

    Ом говорит нам, что Ом равняется вольт, разделенному на амперы, а закон Ватта говорит нам, что ватты равны вольтам x амперам. Используя эти две основные формулы, мы можем вычислить, чтобы найти 2 неизвестных значения, если мы знаем любые другие 2.

    Названный в честь Георга Симона Ома, Ом — это единица измерения сопротивления в электрической цепи. Устройство с большим сопротивлением будет иметь более высокое значение в оме. Часто мы видим значения сопротивления громкоговорителей. Хотя это коррелирует с импедансом, который аналогичен сопротивлению, но принципиально отличается от него, для целей этой статьи мы будем рассматривать их как одно и то же. Следовательно, громкоговоритель на 8 Ом оказывает большее сопротивление усилителю, чем громкоговоритель на 4 Ом.

    В честь работы Алесандро Вольта у нас есть Volt. Напряжение — это электрический потенциал цепи. Он присутствует независимо от того, течет электричество или нет. Хороший пример — аккумулятор или розетка. В розетке в стене доступно около 120 вольт, вне зависимости от того, подключено ли к ней устройство. Подумайте об этом как о давлении воды. Он присутствует, даже когда кран выключен.

    Ампер, сокращенно от Ампер, названный в честь Андре Мари Ампера, измеряет ток или электрический поток в цепи.Это также типичное значение для автоматических выключателей и предохранителей. Чем больше ток электричества, тем больше значение в амперах. Из-за закона Ватта мы знаем, что для выработки 1000 Вт от розетки на 120 вольт нам потребуется 8,33 ампер тока.

    Ватт, названный в честь Джеймса Ватта, измеряет электрическую мощность. Часто мы видим, что ватты указаны в качестве единицы измерения для громкоговорителя. Хотя они измеряют, сколько электромонтажных работ выполняется, они не могут точно сказать, насколько громко или эффективно это работает.

    Вам может понравится

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    Вт А
    пятнадцать 1,25
    двадцать 1,67
    2,92
    40 3.33
    Четыре. Пять 3,75
    пятьдесят 4,17
    55 4,58
    55 4,58
    65 5,42 5,42 5,42 5,42 7,08
    95 7,92
    105 8,75
    115 9,58
    125 10.42
    135 11,25
    145 12,08
    155 12,92
    165 13,75