Симистор что это: устройство, принцип работы, область применения

Содержание

устройство, принцип работы, область применения

Симистор является полупроводниковым прибором. Его полное название – симметричный триодный тиристор. Его особенность – возможно проводить ток в обе стороны. Данный элемент цепи имеет три вывода: один является управляющим, а два других силовыми. В этой статье мы рассмотрим принцип работы, устройство и назначение симистора в различных схемах электроприборов.

Конструкция и принцип действия

Особенность симистора является двунаправленной проводимости идущего через прибор электрического тока. Конструкция устройства строится на использовании двух встречно-параллельных тиристоров с общим управлением. Такой принцип работы дал название от сокращенного «симметрические тиристоры». Поскольку электроток может протекать в обе стороны, нет смысла обозначать силовые выводы как анод и катод. Дополняет общую картину управляющий электрод.

Условное обозначение на схеме по ГОСТ:

Внешний вид следующий:

В симисторе есть пять переходов, позволяющих организовать две структуры.

Какая из них будет использоваться зависит от места образования (конкретный силовой вывод) отрицательной полярности.

Как работает симистор? Исходно полупроводниковый прибор находится в запертом состоянии и ток по нему не проходит. При подаче тока на управляющий электрод, последний переходит в открытое состояние и симистор начинает пропускать через себя ток. При работе от сети переменного тока полярность на контактах постоянно меняется. Схема, где используется рассматриваемый элемент, при этом будет работать без проблем. Ведь ток пропускается в обоих направлениях. Чтобы симистор выполнял свои функции, на управляющий электрод подают импульс тока, после снятия импульса ток через условные анод и катод продолжает протекать до тех пор, пока цепь не будет разорвана или они не будут находится под напряжением обратной полярности.

При использовании в цепи переменного тока симистор закрывается на обратной полуволне синусоиды, тогда нужно подавать импульс противоположной полярности (той же, под которой находятся «силовые» электроды элемента).

Принцип действия системы управления может корректироваться в зависимости от конкретного случая и применения. После открытия и начала протекания подавать ток на управляющий электрод не нужно. Цепь питания разрываться не будет. При надобности отключить питание следует понизить ток в цепи ниже уровня величины удержания или кратковременно разорвать цепь питания.

Управляющие сигналы

Чтобы добиться желаемого результата с симистором используют не напряжение, а ток. Чтобы прибор открылся, он должен быть на определённом небольшом уровне. Для каждого симистора сила управляющего тока может быть разной, её можно узнать из даташита на конкретный элемент. Например, для симистора КУ208 этот ток должен быть больше 160 мА, а для КУ201 —не менее 70 мА.

Полярность управляющего сигнала должна совпадать с полярностью условного анода. Для управления симистором часто используют выключатель и токоограничительный резистор, если он управляется микроконтроллером – может понадобиться дополнительная установка транзистора, чтобы не сжечь выход МК, или использовать симисторный оптодрайвер, типа MOC3041 и подобных.

Четырёхквадрантные симисторы могут отпираться сигналом с любой полярностью. В этом преимуществе есть и недостаток – может потребоваться увеличенный управляющий ток.

При отсутствии прибор заменяется двумя тиристорами. При этом следует правильно подбирать их параметры и переделывать схему управления. Ведь сигнал будет подаваться на два управляющих вывода.

Достоинства и недостатки

Для чего нужен рассматриваемый полупроводниковый прибор? Самый популярный вариант использования – коммутация в цепях переменного тока. В этом плане симистор очень удобен – используя небольшой элемент можно обеспечить управление высоковольтного питания.

Популярны решения, когда им заменяют обычное электромеханическое реле. Плюс такого решения – отсутствует физический контакт, благодаря чему включение питания становится надежнее, переключение бесшумным, ресурс на порядки больше, быстродействие выше. Еще одно достоинство симистора – относительно невысокая цена, что вместе с высокой надёжностью схемы и временем наработки на отказ выглядит привлекательно.


Полностью избежать минусов разработчикам не удалось. Так, приборы сильно нагреваются под нагрузкой. Приходится обеспечивать отвод тепла. Мощные (или «силовые») симисторы устанавливают на радиаторы. Ещё один недостаток, влияющий на использование, это создание гармонических помех в электросети некоторыми схемами симисторных регуляторов (например, бытовой диммер для регулировки освещенности).

Отметим, что напряжение на нагрузки будет отличаться от синусоиды, что связано с минимальным напряжением и током, при которых возможно включение. Из-за этого подключать следует только нагрузку, не предъявляющую высоких требований к электропитанию. При постановке задачи добиться синусоиды такой способ коммутации не подойдёт. Симисторы сильно подвержены влиянию шумов, переходных процессов и помех. Также не поддерживаются высокие частоты переключения.

Область применения

Характеристики, небольшая стоимость и простота устройства позволяет успешно применять симисторы в промышленности и быту. Их можно найти:

  1. В стиральной машине.
  2. В печи.
  3. В духовках.
  4. В электродвигателе.
  5. В перфораторах и дрелях.
  6. В посудомоечной машине.
  7. В регуляторах освещения.
  8. В пылесосе.

На этом перечень, где используется этот полупроводниковый прибор, не ограничивается. Применение рассматриваемого проводникового прибора осуществляется практически во всех электроприборах, что только есть в доме. На него возложена функция управления вращением приводного двигателя в стиральных машинках, они используются на плате управления для запуска работы всевозможных устройств – легче сказать, где их нет.

Основные характеристики

Рассматриваемый полупроводниковый прибор предназначен для управления схемами. Независимо от того, где в схеме он применяется, важны следующие характеристики симисторов:

  1. Максимальное напряжение. Показатель, который будучи достигнут на силовых электродах не вызовет, в теории, выхода из строя. Фактически является максимально допустимым значением при условии соблюдения диапазона температур. Будьте осторожны – даже кратковременное превышение может обернуться уничтожением данного элемента цепи.
  2. Максимальный кратковременный импульсный ток в открытом состоянии. Пиковое значение и допустимый для него период, указываемый в миллисекундах.
  3. Рабочий диапазон температур.
  4. Отпирающее напряжение управления (соответствует минимальному постоянному отпирающему току).
  5. Время включения.
  6. Минимальный постоянный ток управления, нужный для включения прибора.
  7. Максимальное повторяющееся импульсное напряжение в закрытом состоянии. Этот параметр всегда указывают в сопроводительной документации. Обозначает критическую величину напряжения, предельную для данного прибора.
  8. Максимальное падение уровня напряжения на симисторе в открытом состоянии. Указывает предельное напряжение, которое может устанавливаться между силовыми электродами в открытом состоянии.
  9. Критическая скорость нарастания тока в открытом состоянии и напряжения в закрытом. Указываются соответственно в амперах и вольтах за секунду. Превышение рекомендованных значений может привести к пробою или ошибочному открытию не к месту. Следует обеспечивать рабочие условия для соблюдения рекомендованных норм и исключить помехи, у которых динамика превышает заданный параметр.
  10. Корпус симистора. Важен для проведения тепловых расчетов и влияет на рассеиваемую мощность.

Вот мы и рассмотрели, что такое симистор, за что он отвечает, где применяется и какими характеристиками обладает. Рассмотренные простым языком теоретические азы позволят заложить основу для будущей результативной деятельности. Надеемся, предоставленная информация была для вас полезной и интересной!

Симистор — это… Что такое Симистор?

Обозначение на схемах Эквивалентная схема симистора Фото современных симисторов

Симиcтop (симметричный триодный тиристор) или триак (от англ.  TRIAC — triode for alternating current) — полупроводниковый прибор, являющийся разновидностью тиристоров и используемый для коммутации в цепях переменного тока. В электронике часто рассматривается как управляемый выключатель (ключ). В отличие от тиристора, имеющего катод и анод, основные (силовые) выводы симистора называть катодом или анодом некорректно, так как в силу структуры симистора они являются тем и другим одновременно. Однако по способу включения относительно управляющего электрода основные выводы симистора различаются, причём имеет место их аналогия с катодом и анодом тринистора. На приведённом рисунке верхний по схеме вывод симистора называется выводом 1 или условным катодом, нижний — выводом 2 или условным анодом, вывод справа — управляющим электродом.

Для управления нагрузкой основные электроды симистора включаются в цепь последовательно с нагрузкой. В закрытом состоянии проводимость симистора отсутствует, нагрузка выключена. При подаче на управляющий электрод отпирающего сигнала между основными электродами симистора возникает проводимость, нагрузка оказывается включённой. Характерно, что симистор в открытом состоянии проводит ток в обоих направлениях. Другой особенностью симистора, как и других тиристоров, является то, что для его удержания в открытом состоянии нет необходимости постоянно подавать сигнал на управляющий электрод (в отличие от транзисторa). Симистор остаётся открытым, пока протекающий через основные выводы ток превышает некоторую величину, называемую током удержания. Отсюда следует, что выключение нагрузки происходит вблизи моментов времени, когда напряжение на основных электродах симистора меняет полярность (обычно это совпадает по времени со сменой полярности напряжения в сети).

Симистор был изобретен в г. Саранске на заводе «Электровыпрямитель» в 1962-1963 г. начальником конструкторского бюро Василенко Валентиной Стефановной. Запатентован в СССР с приоритетом от 22 июня 1963 года, на полгода ранее, чем в США[1].

Структура

Симистор имеет пятислойную структуру полупроводника. Упрощённо симистор можно представить в виде эквивалентной схемы (см. рис.) из двух триодных тиристоров (тринисторов), включённых встречно-параллельно. Следует, однако, заметить, что управление симистором отличается от управления двумя встречно-параллельными тринисторами.

Управление

Для отпирания симистора на его управляющий электрод подаётся напряжение относительно условного катода. Полярность управляющего напряжения, как правило, должна быть либо отрицательной, либо должна совпадать с полярностью напряжения на условном аноде. Поэтому часто используется такой метод управления симистором, при котором сигнал на управляющий электрод подаётся с условного анода через токоограничительный резистор и выключатель. Управлять симистором часто удобно, задавая определённую силу тока управляющего электрода, достаточную для отпирания. Некоторые типы симисторов могут отпираться сигналом любой полярности, хотя при этом может потребоваться больший управляющий ток.

Ограничения

При использовании симистора накладываются ограничения, в частности при индуктивной нагрузке. Ограничения касаются скорости изменения напряжения (dU/dt) между основными электродами симистора и скорости изменения рабочего тока di/dt. Превышение скорости изменения напряжения на симисторе (из-за наличия его внутренней ёмкости), а также величины этого напряжения, могут приводить к нежелательному открыванию симистора. Превышение скорости нарастания тока между основными электродами, а также величины этого тока, может привести к повреждению симистора. Существуют и другие параметры, на которые накладываются ограничения в соответствии с предельно-допустимыми режимами эксплуатации. К таким параметрам относятся ток и напряжение управляющего электрода, температура корпуса, рассеиваемая прибором мощность и пр.

Опасность превышения по скорости нарастания тока заключается в следующем. Благодаря глубокой положительной обратной связи переход симистора в открытое состояние происходит лавинообразно, но, несмотря на это, процесс отпирания может длиться до нескольких микросекунд, в течение которых к симистору оказываются приложены одновременно большие значения тока и напряжения. Поэтому, даже несмотря на то, что падение напряжения на полностью открытом симисторе невелико, мгновенная мощность во время открывания симистора может достигнуть большой величины. Это сопровождается выделением тепловой энергии, которая не успевает рассеяться и может привести к перегреву и повреждению кристалла.

Одним из способов защиты симистора от выбросов напряжения при работе с индуктивной нагрузкой является включение варистора параллельно основным выводам симистора. Для защиты симистора от превышения скорости изменения напряжения применяют так называемую снабберную цепочку (RC-цепь), подключаемую аналогично.

Примечания

Ссылки

Литература

  • 1. Э.Кадино «Цветомузыкальные установки» -М.: ДМК Пресс, 2000.
  • 2. Кублановский. Я. С. Тиристорные устройства. — 2-е изд., перераб. и доп. — М.: Радио и связь, 1987. — 112 с.: ил. — (Массовая радиобиблиотека. Вып. 1104).

принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробников


Широкое применение в электронике и радиотехнике получило электронное регулирование параметров питания в различных цепях переменного тока при помощи симистора. Бывают случаи, когда он выходит из строя и возникает необходимость правильной проверки на предмет исправности. Для того чтобы это сделать, необходимо знать его принцип работы, предназначение и способы проверки мультиметром и другими приборами.

Что это за устройство, его обозначение

Симистор — это симметричный тиристор. В англоговорящих странах используется название triak, встречается и у нас транслитерация этого названия — триак. Понять принцип его работы несложно, если знаете как работает тиристор. Если коротко, тиристор пропускает ток только в одном направлении. И в этом он похож на диод, но ток проходит только при появлении сигнала на управляющем выводе. То есть, ток проходит только при определенных условиях. Прекращается его «подача» при снижении силы тока ниже определенного значения или разрывом цепи (даже кратковременным). Так как симистор, по сути, двусторонний тиристор, при появлении управляющего сигнала он пропускает ток в обоих направлениях направления.

В открытом состоянии симистор проводит ток в обоих направлениях.

На схеме он изображается как два включенных навстречу друг на другу тиристора с общим управляющим выводом.

Внешний вид симистора и его обозначение на схемах

Симистор имеет три вывода: два силовых и один управляющий. Через силовые выводы можно пропускать ток высокого напряжение, на управляющий подаются низковольтные сигналы. Пока на управляющем выводе не появится потенциал, ток не будет протекать ни в одном направлении.

Характеристики

Симистор имеет несколько параметров, которые можно расположить по порядку убывания важности (лучше сказать, частоты использования) следующим образом:

  • Напряжение обратного пробоя, Uобр, В;
  • Напряжение закрытого состояния, Uзс, В;
  • Ток открытого состояния средний, Iос, А;
  • Время включения, tвк, мкс;
  • Время выключения, tвык, мкс;
  • Ток открытого состояния импульсный, Iос, А;
  • Ток закрытого состояния, Iзс, мА;
  • Обратный ток, Iобр, мА;
  • Напряжение открытого состояния, Uос, В;
  • Управляющее напряжение, Uупр, В;
  • Ток управления, Iупр, мА;
  • Скорость нарастания напряжения, dU/dt, В/мкс;
  • Скорость нарастания тока, dI/dt, А/мкс.


Вольт-амперная характеристика триака

Обратите внимание! Параметр «напряжение обратного пробоя» означает максимальное напряжение, которое способен выдержать симистор или тринистор без выхода из строя. Напряжение закрытого состояния характеризует только динисторный эффект.

Где используется и как выглядит

Чаще всего симистор используется для коммутации в цепях переменного тока (подачи питания на нагрузку). Это удобно, так как при помощи напряжения малого номинала можно управлять высоковольтным питанием. В некоторых схемах ставят симистор вместо обычного электромеханического реле. Плюс очевиден — нет физического контакта, что делает включение питания более надежным. Второе достоинство — относительно невысокая цена. И это при значительном времени наработки и высокой надежности схемы.

Минусы тоже есть. Приборы могут сильно нагреваться под нагрузкой, поэтому необходимо обеспечить отвод тепла. Мощные симисторы (называют обычно «силовые») монтируются на радиаторы. Еще один минус — напряжение на выходе симистора пилообразное. То есть подключаться может только нагрузка, которая не предъявляет высоких требований к качеству электропитания. Если нужна синусоида, такой способ коммутации не подходит.

Заменить симистор можно двумя тиристорами. Но надо правильно подобрать их по параметрам, да и схему управления придется переделывать — в таком варианте управляющих вывода два

По внешнему виду отличить тиристор и симистор нереально. Даже маркировка может быть похожей — с буквой «К». Но есть и серии, у которых название начинается с «ТС», что означает «тиристор симметричный». Если говорить о цоколевке, то это то, что отличает тиристор от симистора. У тиристора есть анод, катод и управляющий вывод. У симистора названия «анод» и «катод» неприменимы, так как вывод может быть и катодом, и анодом. Так что их обычно называют просто «силовой вывод» и добавляют к нему цифру. Тот который левее — это первый, который правее — второй. Управляющий электрод может называться затвором (от английского слова Gate, которым обозначается этот вывод).

Тестирование

У каждого радиолюбителя есть свои способы проверить симистор. Для этого можно использовать специальные приборы или подручные материалы. Главное – знать, как проверить правильно прибор на основе принципа его работы.

Способ №1

Самый простой способ – это протестировать симистор омметром. Для этого необходимо катод детали соединить с отрицательным контактом омметра, анод с положительным контактом. А затем закоротить анод с управляющим электродом. На самом омметре необходимо выставить единицу (х1). Если при этом стрелка покажет сопротивление прибора в пределах 15-50 Ом, можно считать, что симистор цел и пригоден для установки в любой радиоприбор.

Но тут есть один важный момент. Если в таком положении с анода убрать все контакты, и показания сопротивления при этом не изменятся, то это подтверждает целостность детали. Если стрелка начнет отклоняться к нулю, то выбросите симистор в мусор.

Способ №2

Конечно, можно придумать большое количество различных приборов, с помощью которых провести проверку симистра будет несложно. Но для этого придется прикладывать усилия и тратить свое время на сборку, хотя для многих это будет в удовольствие. Для примера приводим одну из схем такого тестового устройства, вот она на рисунке снизу.

Схема подключения данного прибора к симистру точно такая же, как и в случае с тестированием при помощи омметра. Но в этом устройстве установлен светодиод (HL1). Так вот при подаче напряжения на симистор через кнопку (ключ) световой источник должен загореться. А это говорит об исправности детали.

Обратите внимание на резисторы. Их сопротивления рассчитывается под номинальное напряжение. Практика показала, что сопротивление в диапазоне 9-12 Ом достаточная величина.

Принцип работы симистора

Давайте разберем, как работает симистор на примере простой схемы, в которой переменное напряжение подается на нагрузку через электронный ключ на базе этого элемента. В качестве нагрузки представим лампочку — так удобнее будет объяснять принцип работы.

Схема реле на симисторе (триаке)

В исходном положении прибор находится в запертом состоянии, ток не проходит, лампочка не горит. При замыкании ключа SW1 питание подается на на затвор G. Симистор переходит в открытое состояние, пропускает через себя ток, лампочка загорается. Поскольку схема работает от сети переменного напряжения, полярность на контактах симистора постоянно меняется. Вне зависимости от этого, лампочка горит, так как прибор пропускает ток в обоих направлениях.

При использовании в качестве питания источника переменного напряжения, ключ SW1 должен быть замкнуть все время, пока необходимо чтобы нагрузка была в работе. При размыкании контакта во время очередной смены полярности цепь разрывается, лампочка гаснет. Зажжется она снова только после замыкания ключа.

Если в той же схеме использовать источник постоянного тока, картина изменится. После того как ключ SW1 замкнется, симистор откроется, потечет ток, лампочка загорится. Дальше этот ключ может возвращаться в разомкнутое состояние. При этом цепь питания нагрузки (лампочки) не разрывается, так как симистор остается в открытом состоянии. Чтобы отключить питание, надо либо понизить ток ниже величины удержания (одна из технических характеристик), либо кратковременно разорвать цепь питания.

Электромеханические ключи

Для коммутации в электрических схемах используются ключи различного типа:

  • механические;
  • электромеханические;
  • электронные.

К электромеханической группе относятся реле или контакторы. Замыканием и размыканием контактов управляет электромагнит. На катушку электромагнита подается управляющее напряжение, которое может быть как постоянным, так и переменным. Механические контакты реле могут коммутировать практически любые токи. Сопротивление контактной пары ничтожно, падение напряжения на контактах практически отсутствует. Нет потерь мощности при коммутации нагрузок, хотя есть потери на питание управляющей катушки.

Огромным преимуществом контакторов является то, что цепи нагрузки и управления электрически изолированы.

Недостатков тоже немало:

  • Ограниченно число переключений. Контакты изнашиваются;
  • Возникновение электрической дуги при размыкании — искрение контактов. Приводит к электроэрозии и недопустимо во взрывоопасных средах;
  • Низкое быстродействие.

Там, где применение контакторов невозможно или нецелесообразно, применяют электронные ключи.

Скорее всего, Вам пригодится информация о том, как выбрать стабилизатор напряжения 220 вольт.

Сигналы управления

Управляется симистор не напряжением, а током. Для открытия на затвор надо подать ток определенного уровня. В характеристиках указан минимальный ток открывания — вот это и есть нужная величина. Обычно ток открывания совсем небольшой. Например, для коммутации нагрузки на 25 А, подается управляющий сигнал порядка 2,5 мА. При этом, чем выше напряжение, подаваемое на затвор, тем быстрее открывается переход.

Схема подачи напряжения для управления симистором

Чтобы перевести симистор в открытое состояние, напряжение должно подаваться между затвором и условным катодом. Условным, потому что в разные моменты времени, катодом является то один силовой выход, то другой.

Полярность управляющего напряжения, как правило, должна быть либо отрицательной, либо должна совпадать с полярностью напряжения на условном аноде. Поэтому часто используется такой метод управления симистором, при котором сигнал на управляющий электрод подаётся с условного анода через токоограничительный резистор и выключатель. Управлять симистором часто удобно, задавая определённую силу тока управляющего электрода, достаточную для отпирания. Некоторые типы симисторов (так называемые четырёхквадрантные симисторы) могут отпираться сигналом любой полярности, хотя при этом может потребоваться больший управляющий ток (а именно, больший управляющий ток требуется в четвёртом квадранте, то есть когда напряжение на условном аноде имеет  отрицательную полярность, а на управляющем электроде —  положительную).

Применение

Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока. Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась. Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:

  • зарядные устройства для автомобильных АКБ;
  • бытовое компрессорное оборудования;
  • различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
  • ручные электрические инструменты (шуроповерт, перфоратор и т.д.).

И это далеко не полный перечень.

Одно время были популярны простые электронные устройства, позволяющие плавно регулировать уровень освещения. К сожалению, диммеры на симметричных тринисторах не могут управлять энергосберегающими и светодиодными лампами, поэтому эти приборы сейчас не актуальны.

Как проверить симистор

Привычка проверять все элементы пред пайкой приходит с годами. Проверить симистор можно при помощи мультиметра и при помощи небольшой проверочной схемы с батарейкой и лампочкой. В любом случае надо сначала разобраться, как располагаются выводы на вашем приборе. Сделать это можно по цоколевке каждой конкретной серии. Для этого в поисковик забиваем маркировку, которая есть на корпусе. В некоторых случаях можно добавить «цоколевка». Если есть русскоязычные описания, будет несколько проще. Если на русском информации нет, придется искать в интернете. Заменяем слово «цоколевка» словом «datasheet». Иногда можно ввести русскими буквами «даташит». В переводе это «техническая спецификация». По имеющимся в описании таблицам и рисункам легко понять, где расположены силовые выходы (T1 и T2), а где затвор (G).

Пример цоколевки. Все можно понять и без знания языка

С мультиметром

Проверка мультиметром симистора основана на принципе его работы. Берем обычный мультиметр, ставим его в положение прозвонки. Силовые выходы между собой должны звониться в обоих направлениях. Прикасаемся щупами к выходам Т1 и Т2. На экране должны высвечиваться цифры. Это сопротивление перехода. Если поменять щупы местами, сопротивление может измениться, но ни обрыва, ни короткого быть не должно.

Проверяем мультиметром

Зато между затвором и силовыми выходами должен быть «обрыв» (бесконечно большое сопротивление). То есть, «звониться» они не должны при любом расположении щупов. Проверив сопротивление между разными выводами, можно сделать вод о работоспособности симистора.

С лампочкой и батарейкой

Для проверки симистора без мультиметра придется собрать простенькую проверочную схему с питанием от девятивольтовой батарейки «Крона». Нужны будут три провода длиной около 20 см. Провода желательно гибкие, многожильные. Проще, если они будут разных цветов. Лучше всего красный, синий и любой другой. Пусть будет желтый. Синий разрезаем пополам, припаиваем лампочку накаливания на 9 В (или смотрите по напряжению, которое выдает ваша батарейка). Один кусок провода на резьбу, другой — на центральный вывод с нижней части цоколя. Чтобы работать было удобнее, на каждый провод лучше припаять «крокодилы» — пружинные зажимы.

Как проверить симистор без мультиметра

Собираем схему. Подключаем провода в таком порядке:

  • Красный одним концом на плюс кроны, вторым — на вывод Т1.
  • Синий — на минус кроны и на Т2.
  • Желтый провод одним краем цепляем к затвору G.

После того как собрали схему, лампочка не должна гореть. Если она горит, симистор пробит. Если не горит, проверяем дальше. Свободным концом желтого провода кратковременно прикасаемся к Т2. Лампочка должна загореться. Это значит, что симметричный тиристор открылся. Чтобы его закрыть, надо коснуться проводом вывода Т1. Если все работает, прибор исправен.

Почему тиристор не остался в открытом состоянии?

Ситуация заключается в следующем — мультиметр не вырабатывает достаточное количество тока для того, что бы сработал тиристор. Исходя из этого, провести проверку данного элемента не выйдет. Но сама проверка показала, что остальные детали у нас в рабочем состоянии. Если же поменять полярность — проверка закончится провалом. В данной ситуации мы уверены,что отсутствует обратный пробой.

Так же при помощи аппарата, можно легко проверить чувствительность тиристора. Для этого нужно поставить переключатель в режим омметра. Все измерения проходят так же, как описывалось выше.

Тиристоры которые более чувствительны выдерживают открытое состояние при отключении управляющего тока, все данные мы фиксируем на мультиметре. Затем повышаем предел до 10х. В этой ситуации ток на щупах будет уменьшен.

Если управляющий ток при закрытии, отказывает, нужно постепенно увеличить предел измерения, до тех пор, пока не сработает тиристор.

Если проверка проходит элементов из одной партии или со схожими техническими характеристиками, нужно выбирать те элементы, которые более чувствительны. Такие тиристоры более функциональны и имеют больше возможностей, из этого следует что область применения в разы увеличивается.

Когда вы освоите проверку тиристора, то решение проверки симистора придет само. Главное вникнуть в суть проверки, и четко следовать инструкциям.

Как избежать ложных срабатываний

Так как для срабатывания симистора достаточно небольшого потенциала, возможны ложные срабатывания. В некоторых случаях они не страшны, но могут привести и к поломке. Поэтому лучше заранее принять меры. Есть несколько способов уменьшить вероятность ложных включений:

  • Уменьшить длину линии к затвору, соединять цепь управления — затвор и Т1 — напрямую. Если это невозможно, использовать экранированный кабель или витую пару.
  • Снизить чувствительность затвора. Для этого параллельно ставят сопротивление (до 1 кОм).

    Практически во всех схемах с симисторами в цепи затвора есть резистор, уменьшающий чувствительность прибора

  • Использовать триаки с высокой шумовой устойчивостью. В маркировке у них добавлена буква «Н», от «нечувствительный». Называют их «симисторы ряда «Н». Отличаются они тем, что минимальный ток перехода у них намного выше. Например, симистор BT139-600H имеет ток перехода IGT min =10mA.

Как уже говорили, симистор управляется током. Это дает возможность подключать его напрямую к выходам микросхем. Есть одно ограничение — ток не должен превышать максимально допустимый. Обычно это 25 мА.

Что такое симистор, и чем он отличается от классических тиристоров?

Симистор (или «триак») – особая разновидности триодного симметричного тиристора. Главное преимущество – способность проводить ток на рабочих p-n переходах в обоих направлениях. Это позволяет использовать радиоэлемент в системах с переменным напряжением.

Принцип работы и конструктивное исполнение такое же, как у остальных тиристоров. При подаче управляющего тока p-n переход отпирается, и остается открытым до снижения величины рабочего тока.

Популярное применение симисторов – регуляторы напряжения для систем освещения и бытового электроинструмента.

Работа этих радиокомпонентов напоминает принцип действия транзисторов, однако детали не являются взаимозаменяемыми.

Рассмотрев, что такое тиристор и симистор, мы с вами научимся, как проверять эти детали на работоспособность.

Особенности монтажа

Так же как и тиристоры, симисторы при работе греются, поэтому при сборке необходимо обеспечивать отвод тепла. Если нагрузка маломощная или питание импульсное (кратковременное подключение на промежуток менее 1 сек) допускается монтаж без радиатора. В остальных случаях необходимо обеспечить качественный контакт с охлаждающим устройством.

Есть три способа фиксации симистора на радиаторе: клепка, на винте и на зажиме. Первый вариант при самостоятельном монтаже не рекомендуется, так как существует высокая вероятность повреждения корпуса. Наиболее простой способ монтажа в домашних условиях — винтовой.

Порядок монтажа симистора

Перед тем, как начинают монтаж, осматривают корпус прибора и радиатора (охладителя) на предмет царапин и сколов. Их быть не должно. Затем поверхность протирают от загрязнений чистой ветошью, обезжиривают, накладывают термопасту. После чего вставляют в отверстие с резьбой в радиаторе и зажимают шайбу. Крутящий момент должен быть 0. 55Nm- 0.8Nm. То есть, необходимо обеспечить должный контакт, но перетягивать тоже нельзя, так как есть риск повредить корпус.

Схема регулятора мощности для индуктивной нагрузки на симисторе

Обратите внимание, что монтаж симистора производится до пайки. Это снижает механическую нагрузку на отводы прибора. И еще: при установке следите за тем, чтобы корпус плотно прижимался к охладителю.

Какими свойствами обладает тиристор

Если провести полный анализ структуры тиристора, то можно найти в ней три перехода (электронно-дырочных). Следовательно, можно составить эквивалентную схему на полупроводниковых транзисторах (полярных, биполярных, полевых) и диодах, которая позволит понять, как ведет себя тиристор при отключении питания электрода управления.

В том случае, когда относительно катода анод положительный, диод закрывается, и, следовательно, тиристор тоже ведет себя аналогично. В случае смены полярности оба диода смещаются, тиристор также запирается. Аналогичным образом функционирует и симистор.

Принцип работы на пальцах, конечно, объяснить не очень просто, но мы попробуем сделать это далее.

Предварительная подготовка

Подобный измерительный прибор получил широкое распространение: применяется для определения различной информации. Предварительная подготовка предусматривает расшифровку спецификации, для чего достаточно рассмотреть маркировку на полупроводниковом изделии.

После определения типа изделия и цоколевки можно приступить к тесту пробоя при помощи мультиметра. В большинстве случаев проводится проверка на пробой, для чего изделие можно оставить на плате, поэтому на этом этапе не требуется паяльник.

Способы проверки

При выходе из строя какого-либо устройства необходимо прозвонить элементы и заменить сгоревшие, причем необязательно выпаивать триак из схемы. Проверка симистора мультиметром аналогична проверке тиристора мультиметром в схеме не выпаивая. Сделать это довольно просто, но этот метод не даст точного результата.

Как проверить тиристор ку202н мультиметром: необходимо освободить УЭ. Как проверить симистор мультиметром не выпаивая: необходимо освободить его УЭ (выпаять или выпаять деталь — одним словом, отделить устройство от всей схемы) и произвести измерения мультиметром на предмет пробитого перехода. Для проверки необходимо использовать стрелочный тестер. Этот метод является более точным, так как ток, генерируемый тестером способен открыть переход. Нужно найти информацию о симисторе и приступить к проверке:

  1. Подключить щупы к выводам T1 и T2.
  2. Установить кратность х1.
  3. Только при показании бесконечного сопротивления деталь исправна, а во всех остальных случаях — пробита.
  4. При положительном результате (бесконечное сопротивление) соединить вывод Т2 и управляющий. В результате R падает до 20..90 Ом.
  5. Сменить полярность прибора и повторить 3 и 4.

Этот метод является более точным, чем предыдущий, но не дает полной гарантии определения исправности полупроводникового прибора. Для этих целей существуют специальные схемы, которые можно собрать самостоятельно.

Источник: pochini.guru

Блиц-советы

Рекомендации:

  1. Перед тем как проверять тиристор, следует внимательно ознакомиться с техническими характеристиками данного устройства. Эти знание помогут быстрей и эффективней проверить тиристор.
  2. Обычные, стандартные устройства для измерения (омметр, тестер, мультиметр) хорошо зарекомендовали себя для проверки тиристора, но современные приборы, дадут информацию намного точней. К тому же их гораздо легче использовать.
  3. Во избежание неприятных ситуаций все схемы должны собираться в точности.
  4. В работе с любыми диодными устройствами, включая тиристоры, нужно соблюдать технику безопасности.

Защита тиристора:

Тиристоры действуют на скорость увеличение прямого тока. В тиристорах обратный ток восстановления. Если этот ток упадет до низшего значения, может возникнуть перенапряжение. Чтобы предотвратить перенапряжения используются схемы ЦФТП. Также для защиты используют варисторы, их подключают к местам, где выводы индуктивной нагрузки.

Самодельный пробник

Простейший вариант исполнения представлен сочетанием только лампочки и батарейки, но он неудобен в применении. Более сложная схема позволяет протестировать устройство при подаче постоянного или переменного тока.

Схема самодельного пробника представлена сочетанием следующих элементов:

  1. Лампочка небольшого размера с показателями 0,3 А и 6,3 В.
  2. Трансформатор со вторичной обмоткой 6,3 В. Рекомендуется использовать вариант исполнения ТН2.
  3. Диод выпрямительного типа с обратным напряжением около 10 Вольт и сопротивлением не менее 300 мА. Примером можно назвать вариант исполнения Д226.
  4. В схему также включается конденсатор, емкость которого составляет 1000 мкФ. Устройство должно быть рассчитано на напряжение 16 В.
  5. Создается сопротивление с номиналом 47 Ом.
  6. Предохранитель на 0,5 А. При применении мощного силового трансформатора следует повысить номинал предохранителя.

Самодельная конструкция может иметь компактные размеры. При необходимости все элементы можно собрать в защитном корпусе, за счет чего прибор можно будет использовать постоянно и транспортировать к месту проверки.

Симистор. Фототиристоры и фотосимисторы.

 

 

Симистор. Фототиристоры и фотосимисторы.

Симистор.

Симистор — это симметричный тиристор, который предназначен для коммутации в цепях переменного тока. Он может использоваться для создания реверсивных выпрямителей или регуляторов переменного тока. Структура симметричного тиристора приведена на рис. 1(а), а его схематическое обозначение на рис. 1(б). Полупроводниковая структура симистора содержит пять слоев полупроводников с различным типом проводимостей и имеет более сложную конфигурацию по сравнению с тиристором.

Как следует из вольт-амперной характеристики симистора, прибор включается в любом направлении при подаче на управляющий электрод УЭ положительного импульса управления. Требования к импульсу управления такие же, как и для тиристора. Основные характеристики симистора и система его обозначений такие же, как и для тиристора. Симистор можно заменить двумя встречно-параллельно включенными тиристорами с общим электродом управления. Так, например, симистор КУ208Г может коммутировать переменный ток до 10 А при напряжении до 400 В. Отпирающий ток в цепи управления не превышает 0,2 А, а время включения — не более 10 мкс.

Рис. 1.

Фототиристоры и фотосимисторы

Фототиристоры и фотосимисторы — это тиристоры и симисторы с фотоэлектронным управлением, в которых управляющий электрод заменен инфракрасным светодиодом и фотоприемником со схемой управления. Основным достоинством таких приборов является гальваническая развязка цепи управления от силовой цепи. В качестве примера рассмотрим устройство фотосимистора, выпускаемого фирмой «Сименс» под названием СИТАК. Структурная схема прибора СИТАК приведена на рис. 2(а), а его условное схематическое изображение — на рис. 2(б).

Такой прибор потребляет по входу управления светодиодом ток около 1,5 мА и коммутирует в выходной цепи переменный ток 0,3 А при напряжении до 600 В. Такие приборы находят широкое применение в качестве ключей переменного тока с изолированным управлением. Они также могут использоваться при управлении более мощными тиристорами или симисторами, обеспечивая при этом гальваническую развязку цепей управления. Малое потребление цепи управления позволяет включать СИТАК к выходу микропроцессоров и микроконтроллеров. В качестве примера на рис. 3 приведено подключение прибора СИТАК к микропроцессору для регулирования тока в нагрузке, подключенной к сети переменного напряжения 220 В при максимальной мощности до 66 Вт.  На рис. 4 приведен пример практического использования симистора и фотосимистора в блоке фиксации изображения лазерного принтера.

 

Рис. 2.

Рис. 3.

 

Рис. 4.

Отличия тиристорных стабилизаторов от симисторных


В этой статье мы расскажем вам об основном отличии тиристорных стабилизаторов от симисторных, о деталях и нюансах этих двух типов электронных стабилизаторов напряжения.

Тиристорный и симисторный стабилизатор

 

Все стабилизаторы переменного напряжения моделей Ампер и Герц производства ЧП «НПФ «Элекс» по принципу действия относятся к типу ступенчатых автотрансформаторных стабилизаторов с коммутацией отводов трансформатора с помощью электронных ключей (реализованных на основе высоконадежных мощных полупроводниковых приборов – тиристоров или симисторов), управляемых высокоскоростным микроконтроллером. Во всех однофазных стабилизаторах Ампер и Герц в диапазоне до 40А включительно применены симисторы BTA41-600B производства STMicroelectronics (максимальное напряжение пробоя 600В, постоянный ток нагрузки 40А, ударный не повторяющийся ток в открытом состоянии равен 400А).  

Во всех однофазных стабилизаторах Ампер и Герц в диапазоне от 50А, а также во всех трехфазных стабилизаторах, силовые электронные ключи реализованы на тиристорах производства Ixys Semiconductor GmbH.

Фактически, симистор – это «симметричный тиристор», он проводит ток в двух направлениях, и состоит из двух тиристоров в одном корпусе. 

симистор BTA41-600B
производства STMicroelectronics

Соответственно, для реализации электронного переключающего ключа достаточно всего одного симистора. Поскольку тиристор проводит ток только в одном направлении, то для работы в цепях переменного тока применяется встречно-параллельное соединение двух тиристоров.

Следовательно, один ключ, подключающий часть обмотки трансформатора, будет состоять уже не из одного, а двух тиристоров. Предотвратить возможный выход из строя стабилизатора из-за перегрева полупроводниковых приборов в процессе интенсивной работы и обеспечить качественный отвод тепла с применением системы принудительного охлаждения проще в случае ключа на двух корпусных тиристорах, чем на одном симисторе. Применение тиристоров обеспечивает еще более высокую кратковременную перегрузочную способность по току, что повышает надежность при коммутации таких нагрузок, как асинхронные электродвигатели, которым свойственны большие пусковые токи.

Электронные ключи однофазного стабилизатора Элекс Герц V3.0

Конструктивно все однофазные симисторные стабилизаторы «Элекс» (до 40А включительно) собраны на одной печатной плате, а все однофазные тиристорные (от 50А) – на 3-ёх печатных платах (плата входных ключей, плата выходных ключей и плата управления). Т.е., при более высокой себестоимости полупроводниковых приборов и их большем количестве и, соответственно, большей прайсовой цене тиристорные стабилизаторы обладают более высокой кратковременной перегрузочной способностью по току по сравнению с симисторными стабилизаторами при прочих равных условиях. Каких-либо принципиальных эксплуатационных отличий между симисторными и тиристорными стабилизаторами торговой марки Элекс Engineering нет.

Однофазный стабилизатор напряжения Элекс Ампер 16-1/25А в разобранном виде

Пульсар Лимитед – Энергия для Лучшей Жизни!

 

 


принцип действия, применение, устройство и управление ими

Из статьи вы узнаете о том, что такое симистор, принцип работы этого прибора, а также особенности его применения. Но для начала стоит упомянуть о том, что симистор – это то же, что и тиристор (только симметричный). Следовательно, не обойтись в статье без описания принципа функционирования тиристоров и их особенностей. Без знания основ не получится спроектировать и построить даже простейшую схему управления.

Тиристоры

Тиристор является переключающим полупроводниковым прибором, который способен пропускать ток только в одном направлении. Его нередко называют вентилем и проводят аналогии между ним и управляемым диодом. У тиристоров имеется три вывода, причем один – это электрод управления. Это, если выразиться грубо, кнопка, при помощи которой происходит переключение элемента в проводящий режим. В статье будет рассмотрен частный случай тиристора – симистор — устройство и работа его в различных цепях.

Тиристор – это еще выпрямитель, выключатель и даже усилитель сигнала. Нередко его используют в качестве регулятора (но только в том случае, когда вся электросхема запитывается от источника переменного напряжения). У всех тиристоров имеются некоторые особенности, о которых нужно поговорить более подробно.

Свойства тиристоров

Среди огромного множества характеристик этого полупроводникового элемента можно выделить самые существенные:

  1. Тиристоры, подобно диодам, способны проводить электрический ток только в одном направлении. В этом случае они работают в схеме, как выпрямительный диод.
  2. Из отключенного во включенное состояние тиристор можно перевести, подав на управляющий электрод сигнал с определенной формой. Отсюда вывод – у тиристора как у выключателя имеется два состояния (причем оба устойчивые). Таким же образом может функционировать и симистор. Принцип работы ключа электронного типа на его основе достаточно прост. Но для того чтобы произвести возврат в исходное разомкнутое состояние, необходимо, чтобы выполнялись определенные условия.
  3. Ток сигнала управления, который необходим для перехода кристалла тиристора из запертого режима в открытый, намного меньше, нежели рабочий (буквально измеряется в миллиамперах). Это значит, что у тиристора есть свойства усилителя тока.
  4. Существует возможность точной регулировки среднего тока, протекающего через подключенную нагрузку, при условии, что нагрузка включена с тиристором последовательно. Точность регулировки напрямую зависит от того, какая длительность сигнала на электроде управления. В этом случае тиристор выступает в качестве регулятора мощности.

Тиристор и его структура

Тиристор – это полупроводниковый элемент, который имеет функции управления. Кристалл состоит из четырех слоев р и п типа, которые чередуются. Так же точно построен и симистор. Принцип работы, применение, структура этого элемента и ограничения в использовании рассмотрены детально в статье.

Описанную структуру еще называют четырехслойной. Крайнюю область р-структуры с подключенным к ней положительной полярности выводом источника питания, называют анодом. Следовательно, вторая область п (тоже крайняя) – это катод. К ней приложено отрицательное напряжение источника питания.

Какими свойствами обладает тиристор

Если провести полный анализ структуры тиристора, то можно найти в ней три перехода (электронно-дырочных). Следовательно, можно составить эквивалентную схему на полупроводниковых транзисторах (полярных, биполярных, полевых) и диодах, которая позволит понять, как ведет себя тиристор при отключении питания электрода управления.

В том случае, когда относительно катода анод положительный, диод закрывается, и, следовательно, тиристор тоже ведет себя аналогично. В случае смены полярности оба диода смещаются, тиристор также запирается. Аналогичным образом функционирует и симистор.

Принцип работы на пальцах, конечно, объяснить не очень просто, но мы попробуем сделать это далее.

Как работает отпирание тиристора

Для понимания принципа работы тиристора нужно обратить внимание на эквивалентную схему. Она может быть составлена из двух полупроводниковых триодов (транзисторов). Вот на ней и удобно рассмотреть процесс отпирания тиристоров. Задается некоторый ток, который протекает через электрод управления тиристора. При этом ток имеет смещение прямой направленности. Этот ток считается базовым для транзистора со структурой п-р-п.

Поэтому в коллекторе ток у него будет больше в несколько раз (необходимо значение тока управления умножить на коэффициент усиления транзистора). Далее можно видеть, что это значение тока базовое для второго транзистора со структурой проводимости р-п-р, и он отпирается. При этом коллекторный ток второго транзистора будет равен произведению коэффициентов усиления обоих транзисторов и первоначально заданного тока управления. Симисторы (принцип работы и управление ими рассмотрены в статье) обладают аналогичными свойствами.

Далее этот ток необходимо суммировать с ранее заданным током цепи управления. И получится именно то значение, которое необходимо, чтобы поддерживать первый транзистор в отпертом состоянии. В том случае, когда ток управления очень большой, два транзистора одновременно насыщаются. Внутренняя ОС продолжает сохранять свою проводимость даже тогда, когда исчезает первоначальный ток на управляющем электроде. Одновременно с этим на аноде тиристора обнаруживается довольно высокое значение тока.

Как отключить тиристор

Переход в запертое состояние тиристора возможен в том случае, если к электроду управления открытого элемента не прикладывается сигнал. При этом ток спадает до определенной величины, которая называется гипостатическим током (или током удержания).

Тиристор отключится и в том случае, если произойдет размыкание в цепи нагрузки. Либо когда напряжение, которое прикладывается к цепи (внешней), меняет свою полярность. Это происходит под конец каждого полупериода в случае, когда питается схема от источника переменного тока.

Когда тиристор работает в цепи постоянного тока, запирание можно осуществить при помощи простого выключателя или кнопки механического типа. Он соединяется с нагрузкой последовательно и применяется для обесточивания цепи. Аналогичен и принцип работы регулятора мощности на симисторе, правда, имеются в схеме некоторые особенности.

Способы отключения тиристоров

Но можно выключатель соединить параллельно, тогда с его помощью происходит шунтирование тока анода, и тиристор переводится в запертое состояние. Некоторые виды тиристоров могут включаться повторно, если разомкнуть контакты выключателя. Объяснить это можно тем, что во время размыкания контактов паразитные емкости переходов тиристора накапливают заряд, создавая тем самым помехи.

Поэтому желательно располагать выключатель так, чтобы он находился между катодом и электродом управления. Это позволит гарантировать, что тиристор отключится нормально, а удерживающий ток отсечется. Иногда для удобства и повышения быстродействия и надежности применяют вместо механического ключа вспомогательный тиристор. Стоит отметить, что работа симистора во многом схожа с функционированием тиристоров.

Симисторы

А теперь ближе к теме статьи – нужно рассмотреть частный случай тиристора – симистор. Принцип работы его схож с тем, что был рассмотрен ранее. Но имеются некоторые отличия и характерные особенности. Поэтому нужно поговорить о нем более подробно. Симистор представляет собой прибор, в основе которого находится кристалл полупроводника. Очень часто используется в системах, которые работают на переменном токе.

Самое простое определение этого прибора – выключатель, но управляемый. В запертом состоянии он работает точно так же, как и выключатель с разомкнутыми контактами. При подаче сигнала на электрод управления симистора происходит переход прибора в открытое состояние (режим проводимости). При работе в таком режиме можно провести параллель с выключателем, у которого контакты замкнуты.

Когда сигнал в цепи управления отсутствует, в любой из полупериодов (при работе в цепях переменного тока) происходит переход симистора из режима открытого в закрытый. Симисторы широко используются в режиме релейном (например, в конструкциях светочувствительных выключателей или термостатов). Но они же нередко применяются и в системах регулирования, которые функционируют по принципам фазового управления напряжения на нагрузке (являются плавными регуляторами).

Структура и принцип работы симистора

Симистор – это не что иное, как симметричный тиристор. Следовательно, исходя из названия, можно сделать вывод – его легко заменить двумя тиристорами, которые включаются встречно-параллельно. В любом направлении он способен пропустить ток. У симистора имеется три основных вывода – управляющий, для подачи сигналов, и основные (анод, катод), чтобы он мог пропускать рабочие токи.

Симистор (принцип работы для «чайников» этого полупроводникового элемента предоставлен вашему вниманию) открывается, когда на управляющий вывод подается минимальное необходимое значение тока. Или в том случае, когда между двумя другими электродами разность потенциалов выше предельно допустимого значения.

В большинстве случаев превышение напряжения приводит к тому, что симистор самопроизвольно срабатывает при максимальной амплитуде питающего напряжения. Переход в запертое состояние происходит в случае смены полярности или при уменьшении рабочего тока до уровня ниже, чем ток удержания.

Как отпирается симистор

При питании от сети переменного тока происходит смена режимов работы за счет изменения полярности у напряжения на рабочих электродах. По этой причине в зависимости от того, какая полярность у тока управления, можно выделить 4 типа проведения этой процедуры.

Допустим, между рабочими электродами приложено напряжение. А на электроде управления напряжение по знаку противоположно тому, которое приложено к цепи анода. В этом случае сместится по квадранту симистор — принцип работы, как можно увидеть, довольно простой.

Существует 4 квадранта, и для каждого из них определен ток отпирания, удерживающий, включения. Отпирающий ток необходимо сохранять до той поры, покуда не превысит в несколько раз (в 2-3) он значение удерживающего тока. Именно это и есть ток включения симистора – минимально необходимый ток отпирания. Если же избавиться от тока в цепи управления, симистор будет находиться в проводящем состоянии. Причем он в таком режиме будет работать до той поры, покуда ток в цепи анода будет больше тока удержания.

Какие накладываются ограничения при использовании симисторов

Его сложно использовать, когда нагрузка индуктивного типа. Скорость изменения напряжения и тока ограничивается. Когда симистор переходит из запертого режима в открытый, во внешней цепи возникает значительный ток. Напряжение не падает мгновенно на силовых выводах симистора. А мощность будет мгновенно развиваться и достигает довольно больших величин. Та энергия, которая рассеивается, за счет малого пространства резко повышает температуру полупроводника.

В случае превышения критического значения происходит разрушение кристалла, ввиду чрезмерно быстрого нарастания силы тока. Если к симистору, который находится в запертом состоянии, приложить некоторое напряжение и резко его увеличить, то произойдет открытие канала (при отсутствии сигнала в цепи управления). Такое явление можно наблюдать по причине того, что происходит накапливание заряда внутренней паразитной емкостью полупроводника. Причем ток заряда имеет достаточное значение, чтобы отпереть симистор.

Что такое симистор (триак). Как работает симистор. | Лёха Герыч

Симистор – электронная деталь, основанная на принципах полупроводимости. В американской терминологии электроники они называются триаками. Главной особенностью этих радиодеталей является способность проводить ток в оба направления. Симистор выполняет роль ключа-регулятора, который используется для создания цепей и является двунаправленным транзистором. Состоят они из силовых электродов. Один из находится на стороне электрода управления, а другого в его основе.

Свой термин они получили при использовании двух параллельных тиристоров и управляющего электрода.  

Как он работает и для чего нужен.

Симистор является полупроводниковым прибором. Его полное название – симметричный триодный тиристор. Его особенность – возможность проводить ток в обе стороны. Данный элемент цепи имеет три вывода: один является управляющим, а два других силовыми.

Конструкция и принцип действия.

Особенность симистора является двунаправленной проводимости идущего через прибор электрического тока. Конструкция устройства строится на использовании двух встречно-параллельных тиристоров с общим управлением. Такой принцип работы дал название от сокращенного «симметрические тиристоры». Поскольку электроток может протекать в обе стороны, нет смысла обозначать силовые выводы как анод и катод. Дополняет общую картину управляющий электрод. В симисторе есть пять переходов, позволяющих организовать две структуры. Какая из них будет использоваться зависит от места образования (конкретный силовой вывод) отрицательной полярности.

Как работает устройство

Исходно полупроводниковый прибор находится в запертом состоянии и ток по нему не проходит. При подаче тока на управляющий электрод, последний переходит в открытое состояние и симистор начинает пропускать через себя ток. При работе от сети переменного тока полярность на контактах постоянно меняется. Чтобы симистор выполнял свои функции, на управляющий электрод подают импульс тока, после снятия импульса ток через условные анод и катод продолжает протекать до тех пор, пока цепь не будет разорвана или они не будут находится под напряжением обратной полярности.

Это один из видов тиристоров, отличающийся от базового типа большим числом p-n переходов, и как следствие этого, принципом работы (он будет описан ниже). Характерно, что в элементной базе некоторых стран данный тип считается самостоятельным полупроводниковым устройством.

При использовании в цепи переменного тока симистор закрывается на обратной полуволне синусоиды, тогда нужно подавать импульс противоположной полярности (той же, под которой находятся «силовые» электроды элемента).

Управляющие сигналы.

Чтобы добиться желаемого результата с симистором используют не напряжение, а ток. Чтобы прибор открылся, он должен быть на определённом небольшом уровне. Для каждого симистора сила управляющего тока может быть разной, её можно узнать из даташита на конкретный элемент. Например, для симистора КУ208 этот ток должен быть больше 160 мА, а для КУ201 —не менее 70 мА.

Полярность управляющего сигнала должна совпадать с полярностью условного анода. Для управления симистором часто используют выключатель и токоограничительный резистор, если он управляется микроконтроллером – может понадобиться дополнительная установка транзистора, чтобы не сжечь выход МК, или использовать симисторный оптодрайвер, типа MOC3041 и подобных. Четырёхквадрантные симисторы могут отпираться сигналом с любой полярностью. В этом преимуществе есть и недостаток – может потребоваться увеличенный управляющий ток. При отсутствии прибор заменяется двумя тиристорами. При этом следует правильно подбирать их параметры и переделывать схему управления. Ведь сигнал будет подаваться на два управляющих вывода.

Для чего нужен рассматриваемый полупроводниковый прибор? Самый популярный вариант использования – коммутация в цепях переменного тока. В этом плане симистор очень удобен – используя небольшой элемент можно обеспечить управление высоковольтного питания. Популярны решения, когда им заменяют обычное электромеханическое реле. Плюс такого решения – отсутствует физический контакт, благодаря чему включение питания становится надежнее, переключение бесшумным, ресурс на порядки больше, быстродействие выше. Еще одно достоинство симистора – относительно невысокая цена, что вместе с высокой надёжностью схемы и временем наработки на отказ выглядит привлекательно.

Полностью избежать минусов разработчикам не удалось. Так, приборы сильно нагреваются под нагрузкой. Приходится обеспечивать отвод тепла. Мощные (или «силовые») симисторы устанавливают на радиаторы. Ещё один недостаток, влияющий на использование, это создание гармонических помех в электросети некоторыми схемами симисторных регуляторов (например, бытовой диммер для регулировки освещенности).

Область применения

Характеристики, небольшая стоимость и простота устройства позволяет успешно применять симисторы в промышленности и быту. Их можно найти:

  • В стиральной машине.
  • В печи.
  • В духовках.
  • В электродвигателе.
  • В перфораторах и дрелях.
  • В посудомоечной машине.
  • В регуляторах освещения.
  • В пылесосе.

На этом перечень, где используется этот полупроводниковый прибор, не ограничивается. Применение рассматриваемого проводникового прибора осуществляется практически во всех электроприборах, что только есть в доме. На него возложена функция управления вращением приводного двигателя в стиральных машинках, они используются на плате управления для запуска работы всевозможных устройств – легче сказать, где их нет.

Основные характеристики

Рассматриваемый полупроводниковый прибор предназначен для управления схемами. Независимо от того, где в схеме он применяется, важны следующие характеристики симисторов:

  1. Максимальное напряжение. Показатель, который будучи достигнут на силовых электродах не вызовет, в теории, выхода из строя. Фактически является максимально допустимым значением при условии соблюдения диапазона температур. Будьте осторожны – даже кратковременное превышение может обернуться уничтожением данного элемента цепи.
  2. Максимальный кратковременный импульсный ток в открытом состоянии. Пиковое значение и допустимый для него период, указываемый в миллисекундах.
  3. Рабочий диапазон температур.
  4. Отпирающее напряжение управления (соответствует минимальному постоянному отпирающему току).
  5. Время включения.
  6. Минимальный постоянный ток управления, нужный для включения прибора.
  7. Максимальное повторяющееся импульсное напряжение в закрытом состоянии. Этот параметр всегда указывают в сопроводительной документации. Обозначает критическую величину напряжения, предельную для данного прибора.
  8. Максимальное падение уровня напряжения на симисторе в открытом состоянии. Указывает предельное напряжение, которое может устанавливаться между силовыми электродами в открытом состоянии.
  9. Критическая скорость нарастания тока в открытом состоянии и напряжения в закрытом. Указываются соответственно в амперах и вольтах за секунду. Превышение рекомендованных значений может привести к пробою или ошибочному открытию не к месту. Следует обеспечивать рабочие условия для соблюдения рекомендованных норм и исключить помехи, у которых динамика превышает заданный параметр.
  10. Корпус симистора. Важен для проведения тепловых расчетов и влияет на рассеиваемую мощность.

Вот мы и рассмотрели, что такое симистор, за что он отвечает, где применяется и какими характеристиками обладает. Рассмотренные простым языком теоретические азы позволят заложить основу для будущей результативной деятельности. Надеемся, предоставленная информация была для вас полезной и интересной!

Использование симистора

Симистор представляется настолько гибким и универсальным устройством, что благодаря его свойству переключения в проводящее состояние запускаемым импульсом с положительным или отрицательным знаком, который не зависит от источника  проявляющего свойства мгновенной полярности. По сути названия анод и катод для прибора не имеют большой актуальности.

  • Одно из популярных и простейших сфер использования симистора может считаться его применение в качестветвердотельного реле. Для него характерно малое значение пускового тока достаточного для нагрузки с большими токами. Функцию ключа в таком устройстве может играть геркон, или обладающее большой чувствительностью термореле и прочие контактные пары с током до 50мА, при этом величина тока нагрузки может ограничиваться исключительно показателями, на которые рассчитан симистор.
  • 2Не менее широко использование симистора в качестве регулятора интенсивности освещения и управления скоростью вращения электромотора. Схема построена на спользовании запускающих элементов, которые устанавливаются RC-фазовращателем, такой элемент, как потенциометр регулирует интенсивность освещения, а резистор служит для ограничения тока нагрузки. Формирование импульсов выполняется с помощью динистора. После пробоя в динисторе, который происходит в результате разности потенциалов на конденсаторе, импульс разряда конденсатора, возникающий мгновенно включает симистор.
  • Управление мощностью в нагрузке с использованием в схеме добавочной RC-цепочки, что дает большой фазовый сдвиг, который облегчает задачу по управлению мощности.

Преимущества использования симисторов

  • Увеличение разрешенной критической величины напряжения коммутации, что разрешает управления большими реактивными нагрузками без существенных сбоев в коммутации. Это позволяет уменьшить число компонентов, размеры печатной платы, снизить цену и убрать потери на рассеивание энергии демпфером.
  • Повышение критической величины изменения тока коммутации, что повышает качество работы на высокой частоте для несинусоидального напряжения.
  • Большая чувствительность к высокой температуре рабочего процесса.
  • Высокое значение допустимого напряжения снижает стремление к самовключению из состояния отсутствия проводимости при большой температуре, что разрешает их использование для резистивных нагрузок по управлению бытовой и нагревательной техникой.
  • Долговечность симистора, обусловленная рабочими температурными перепадами, отличается практически неограниченным ресурсом.
  • Отсутствие искрообразования и возможность управления в момент нулевого тока в сети, что снижает электромагнитные помехи.

Основные достоинства симистора:

  1. большая частота срабатывания для высокой точности управления;
  2. высокий ресурс по сравнению с релейными электромеханическими устройствами;
  3. возможность добиться небольших размеров приборов;
  4. отсутствие шума при включении и отключении электроцепей.

Силовая электроника, с использованием  симисторов, разработанная отечественными производителями благодаря своим качественным показателям может составить западным фирмам высокую конкуренцию.

Друзья, не забывайте подписываться на обновления блога, ведь чем больше читателей подписано на обновления тем больше я понимаю что  делаю что-то важное и полезное и это чертовски мотивирует на новые статьи и материалы.

ТРИАК: Что это? (Определение, работа и применение)

Что такое симистор?

Симистор определяется как трехконтактный переключатель переменного тока, который отличается от других кремниевых выпрямителей в том смысле, что он может проводить в обоих направлениях, независимо от того, будет ли подаваемый сигнал затвора положительным или отрицательным. Таким образом, это устройство может использоваться для систем переменного тока в качестве выключателя.

Это трехконтактное четырехслойное двунаправленное полупроводниковое устройство, контролирующее мощность переменного тока. На рынке доступен симистор максимальной мощностью 16 кВт.


На рисунке показан символ симистора, который имеет два основных вывода MT 1 и MT 2 , соединенных в обратном порядке, и вывод затвора.

Конструкция симистора

Два тиристора подключены обратно параллельно клемме затвора как общие. Клеммы затвора подключены как к областям N, так и к P, благодаря чему сигнал затвора может подаваться независимо от полярности сигнала.Здесь у нас нет анода и катода, поскольку он работает для обеих полярностей, что означает, что устройство двустороннее. Он состоит из трех клемм, а именно: основной клеммы 1 (MT 1 ), основной клеммы 2 (MT 2 ) и клеммы затвора G.


На рисунке показана конструкция симистора. Есть два основных терминала, а именно MT 1 и MT 2 , а оставшийся терминал — это терминал ворот.

Работа симистора

Симистор можно включить, приложив напряжение затвора выше, чем напряжение отключения. Однако, не создавая высокого напряжения, его можно включить, применив стробирующий импульс длительностью 35 микросекунд. Когда приложенное напряжение меньше напряжения отключения, мы используем метод запуска затвора, чтобы включить его.
Существует четыре различных режима работы:

  1. Когда MT 2 и затвор положительный по отношению к MT 1
    Когда это происходит, ток течет по пути P 1 -N 1 2 2 .Здесь P 1 -N 1 и P 2 -N 2 смещены в прямом направлении, но N 1 -P 2 смещены в обратном направлении. Говорят, что симистор работает в положительно смещенной области. Положительный затвор по отношению к MT 1 смещается вперед P 2 -N 2 и происходит пробой.
  2. Когда MT 2 положительный, но затвор отрицательный относительно MT 1
    Ток течет по пути P 1 -N 1 -P 2 -N 2 . Но P 2 -N 3 имеет прямое смещение, и носители тока вводятся в P 2 на симисторе.
  3. Когда MT 2 и Gate отрицательны по отношению к MT 1
    Ток течет по пути P 2 -N 1 -P 1 -N 4 . Два перехода P 2 -N 1 и P 1 -N 4 смещены в прямом направлении, а переход N1-P1 смещен в обратном направлении. Считается, что симистор находится в отрицательно смещенной области.
  4. Когда MT 2 отрицательный, но затвор положительный относительно MT 1
    P 2 -N 2 в этом состоянии смещен вперед. Вводятся носители тока, поэтому симистор включается. Этот режим работы имеет недостаток, заключающийся в том, что его не следует использовать для цепей с высоким (di / dt). Чувствительность запуска в режимах 2 и 3 высока, и если требуется предельная способность запуска, следует использовать отрицательные импульсы затвора. Срабатывание в режиме 1 более чувствительно, чем в режиме 2 и режиме 3.

Характеристики симистора

Характеристики симистора аналогичны характеристикам тиристора, но применимы как для положительного, так и для отрицательного напряжения симистора. Операцию можно резюмировать следующим образом:

Работа симистора в первом квадранте

Напряжение на выводе MT 2 положительно по отношению к выводу MT 1 , а напряжение затвора также положительно относительно первого вывода.

Работа симистора во втором квадранте

Напряжение на клемме 2 положительно по отношению к клемме 1, а напряжение затвора отрицательно по отношению к клемме 1.

Работа симистора в третьем квадранте

Напряжение клеммы 1 положительное по отношению к клемме 2, а напряжение затвора отрицательное.

Работа симистора в четвертом квадранте

Напряжение клеммы 2 отрицательное по отношению к клемме 1, а напряжение затвора положительное.

Когда устройство включается, через него проходит сильный ток, который может повредить устройство, поэтому для ограничения тока к нему должен быть подключен резистор ограничения тока.Путем подачи соответствующего стробирующего сигнала можно контролировать угол включения устройства. Для правильного срабатывания затвора следует использовать схемы срабатывания затвора. Мы можем использовать diac для запуска стробирующего импульса. Для срабатывания устройства с правильным углом стрельбы можно применять стробирующий импульс длительностью до 35 микросекунд.

Преимущества симистора

  1. Может срабатывать с положительной или отрицательной полярностью импульсов затвора.
  2. Требуется только один радиатор немного большего размера, тогда как для SCR требуется два радиатора меньшего размера.
  3. Требуется один предохранитель для защиты.
  4. Безопасный пробой в любом направлении возможен, но для защиты SCR следует использовать параллельный диод.

Недостатки симистора

  1. Они не очень надежны по сравнению с тиристором.
  2. Он имеет рейтинг (dv / dt) ниже, чем SCR.
  3. Доступны более низкие значения по сравнению с SCR.
  4. Нам нужно быть осторожными со схемой запуска, так как она может срабатывать в любом направлении.

Использование симистора

  1. Они используются в цепях управления.
  2. Используется в переключении ламп высокой мощности.
  3. Используется в управлении мощностью переменного тока.

Введение в основы TRIAC

Тиристор — это общий термин, обозначающий широкий спектр полупроводниковых компонентов, используемых в качестве электронного переключателя. Подобно механическому переключателю, тиристоры имеют только два состояния: включено (токопроводящее) и выключенное (непроводящее). Их также можно использовать, помимо переключения, для регулировки мощности, подаваемой на нагрузку.

Тиристоры используются в основном с высокими напряжениями и токами.Триод для переменного тока (TRIAC) и кремниевый управляемый выпрямитель (SCR) являются наиболее часто используемыми тиристорными устройствами. В этой статье исследуются конструкция, характеристики и применение триаковых схем.

Что такое ТРИАК?

TRIAC — это двунаправленный трехэлектродный переключатель переменного тока, который позволяет электронам течь в любом направлении. Это эквивалент двух тиристоров, соединенных обратно-параллельно с затворами, соединенными друг с другом.

TRIAC запускается в проводимость в обоих направлениях стробирующим сигналом, подобным сигналу SCR.TRIAC были разработаны, чтобы предоставить средства для разработки улучшенных средств управления мощностью переменного тока.

TRIAC доступны в различных упаковках. Они могут работать в широком диапазоне тока и напряжения. TRIAC обычно имеют относительно слабые возможности по сравнению с SCR — они обычно ограничены до 50 А и не могут заменить SCR в сильноточных приложениях.

Симисторы

считаются универсальными из-за их способности работать с положительным или отрицательным напряжением на своих выводах.Поскольку тиристоры имеют недостаток в том, что они проводят ток только в одном направлении, управление малой мощностью в цепи переменного тока лучше выполнять с помощью тиристоров.

TRIAC Construction

Хотя TRIAC и SCR похожи, их схематические символы не похожи. Клеммы TRIAC — это затвор, клемма 1 (T1) и клемма 2 (T2). См. Рисунок 1.

Рис. 1. Клеммы TRIAC включают затвор, клемму 1 (T1) и клемму 2 (T2).

Обозначения анода и катода нет. Ток может течь в любом направлении через клеммы главного переключателя, T1 и T2. Клемма 1 является опорной клеммой для всех напряжений. Клемма 2 — это корпус или металлический язычок, к которому можно прикрепить радиатор.

Триггерная схема TRIAC и ее преимущества

TRIAC блокируют ток в любом направлении между T1 и T2. TRIAC может быть запущен в проводимость в любом направлении мгновенным положительным или отрицательным импульсом, подаваемым на затвор.

Если соответствующий сигнал подается на затвор TRIAC, он проводит электричество. TRIAC остается выключенным до тех пор, пока в точке A не сработает вентиль. См. Рисунок 2.

Рисунок 2. TRIAC остается выключенным, пока не сработает его вентиль.

В точке A схема триггера подает импульс на затвор, и TRIAC включается, позволяя току течь.

В точке B прямой ток уменьшается до нуля, и TRIAC выключается.

Цепь триггера может быть спроектирована так, чтобы генерировать импульс, который изменяется в положительном или отрицательном полупериоде в любой точке. Следовательно, средний ток, подаваемый на нагрузку, может варьироваться.

Одним из преимуществ TRIAC является то, что практически не происходит потери энергии на преобразование в тепло. Тепло выделяется, когда току препятствуют, а не когда ток отключен. TRIAC либо полностью ВКЛЮЧЕН, либо полностью ВЫКЛЮЧЕН. Он никогда не ограничивает частично ток.

Еще одной важной особенностью TRIAC является отсутствие условий обратного пробоя при высоких напряжениях и больших токах, например, в диодах и SCR.

Если напряжение на TRIAC становится слишком высоким, TRIAC включается. После включения TRIAC может проводить достаточно высокий ток.

Характеристическая кривая TRIAC

Характеристики TRIAC основаны на T1 как опорной точке напряжения. Полярности, показанные для напряжения и тока, являются полярностями T2 по отношению к T1.

Полярность, показанная для затвора, также относится к T1. См. Рисунок 3.

Рисунок 3. Характеристическая кривая TRIAC показывает характеристики TRIAC при срабатывании проводимости.

Опять же, TRIAC может запускаться в проводимость в любом направлении током затвора (IG) любой полярности.

Приложения TRIAC

TRIAC часто используются вместо механических переключателей из-за их универсальности. Кроме того, при низкой силе тока тиристоры тиристоров более экономичны, чем тиристоры, соединенные спина к спине.

Пускатели однофазных двигателей

Часто конденсаторный двигатель или двигатель с расщепленной фазой должен работать там, где искрение механического выключателя пуска нежелательно или даже опасно. В таких случаях механический выключатель пуска может быть заменен на TRIAC. См. Рисунок 4.

Рис. 4. Пусковой выключатель с механическим отключением может быть заменен на TRIAC.

TRIAC может работать в таких опасных средах, потому что он не создает дуги. Сигналы затвора и отключения подаются на симистор через трансформатор тока.

По мере увеличения скорости двигателя ток в трансформаторе тока уменьшается, и трансформатор больше не запускает TRIAC.При выключенном TRIAC пусковые обмотки удаляются из схемы.

Процедуры тестирования TRIAC

TRIAC

следует тестировать в рабочих условиях с помощью осциллографа. Цифровой мультиметр можно использовать для грубой проверки TRIAC вне цепи. См. Рисунок 5.

Рис. 5. Цифровой мультиметр можно использовать для грубой проверки симистора TRIAC, находящегося вне цепи.

Для проверки TRIAC с помощью цифрового мультиметра применяется следующая процедура:

  1. Установите цифровой мультиметр по шкале Ω.
  2. Подключите отрицательный провод к главной клемме 1.
  3. Подсоедините положительный провод к главной клемме 2. Цифровой мультиметр должен показывать бесконечность.
  4. Замкните накоротко затвор на главный вывод 2 с помощью проволочной перемычки. Цифровой мультиметр должен показывать почти 0 Ом. Нулевое показание должно оставаться при удалении провода.
  5. Поменяйте местами выводы цифрового мультиметра так, чтобы положительный вывод находился на главной клемме 1, а отрицательный — на главной клемме 2. Цифровой мультиметр должен показывать бесконечность.
  6. Замкните накоротко затвор TRIAC на главный вывод 2 с помощью проволочной перемычки.Цифровой мультиметр должен показывать почти 0 Ом. Нулевое показание должно остаться после удаления провода.

Что такое ТРИАК? Определение, конструкция, работа и применение TRIAC

Определение : TRIAC — это, по сути, 3-контактный переключатель переменного тока , который показывает проводимость в обоих направлениях . Они запускаются в проводимость с помощью низкоэнергетического стробирующего сигнала. TRIAC является сокращением TRI для A альтернативной C текущей.Это двунаправленное устройство , которое принадлежит к семейству тиристоров и в основном представляет собой диаконтакт с выводом затвора, который используется для управления условиями включения устройства.

Более конкретно, мы можем сказать, что в TRIAC Tri обозначает 3 клеммы устройства, а ac обозначает устройство, которое используется для управления переменным током . Симистор мощностью 16 кВт легко доступен. Для управления приложениями они широко используются в области силовой электроники.

Давайте посмотрим на схематический символ TRIAC:

Строительство TRIAC

На схеме ниже показана базовая структура симистора:

Как мы уже обсуждали, это 3-х клеммный и 4-х уровневый , он состоит из 2-х тиристоров в обратном параллельном соединении, имеющих терминал затвора. Он имеет 6 легированных областей, а омический контакт создается затвором как с N-, так и с P-областями. Из-за этого любая полярность триггерного импульса может запустить проводимость в устройстве.

Давайте посмотрим на электрический эквивалент базовой структуры симистора.

Поскольку это двунаправленное устройство, анод и катод не имеют никакого значения. Таким образом, терминалы представлены как MT 1 и MT 2 вместе с оконечным устройством G .

Работа TRIAC

Симистор — это устройство, которое проводит ток независимо от полярности напряжения на клеммах. В результате существует 4 различных возможности операций.

Давайте теперь обсудим случаи отдельно:

1. Когда затвор и MT 2 имеют положительный потенциал по отношению к MT 1 :

При приложении положительного потенциала на MT 2 относительно MT 1 , два соединения P 1 -N 1 и P 2 -N 2 смещаются вперед. Следовательно, ток протекает через P 1 -N 1 -P 2 -N 2 . Таким образом, симистор в таком состоянии считается смещенным положительно.

2. Когда MT 2 имеет положительный потенциал, а затвор имеет отрицательный потенциал по отношению к MT 1 :

Как и в предыдущем случае, здесь также ток протекает через P 1 -N 1 -P 2 -N 2 . Но здесь разветвление P 2 -N 3 смещается вперед, и симистор заводится за счет впрыска носителей в P 2 .

3. Когда затвор и MT 2 имеют отрицательный потенциал по отношению к MT 1 :

В таком состоянии теперь ток течет через P 2 -N 1 -P 1 -N 4 .Переход P 2 -N 1 и P 1 -N 4 смещен в прямом направлении, и в то же время N 1 -P 2 заблокирован, поэтому говорят, что он смещен отрицательно. Приложенный отрицательный потенциал затвора смещает в прямом направлении переход P 2 -N 3 , таким образом, инициирует проводимость в устройстве.

4. Когда MT 2 имеет отрицательный потенциал, но затвор находится под положительным потенциалом по отношению к MT 1 :

Здесь, как и в предыдущем случае, ток протекает через P 2 -N 1 -P 1 -N 4 .Соединение P 2 -N 1 и P 1 -N 4 смещено вперед, что приводит к впрыску носителя, что приводит к включению устройства.

Характеристики TRIAC

Характеристическая кривая симистора в основном поддерживает следующие 4 режима:

Режим 1 : Это операция в первом квадранте, где В MT21 и В G1 оба имеют положительное значение .

Режим 2 : Это операция второго квадранта, где В MT21 положительное значение и В G1 отрицательное .

Режим 3 : Это операция в третьем квадранте, где V MT21 и V G1 оба имеют отрицательное значение .

Режим 4 : Это операция четвертого квадранта, где В MT21 отрицательное значение и В G1 положительное значение .

Здесь В MT21 представляют напряжение на выводе MT 2 относительно вывода MT 1 , а V G1 представляет напряжение затвора относительно вывода MT 1 .

Когда устройство начинает проводить, через него проходит очень большой ток. Однако такой большой ток может повредить устройство. Таким образом, для ограничения избыточного тока используется внешнее сопротивление. Здесь управляющий вывод — это затвор, и правильно приложенный потенциал затвора регулирует угол включения устройства.

Значения напряжения и тока для типичного симистора приведены ниже:

  1. Ток в открытом состоянии: — 25 А
  2. Напряжение в открытом состоянии: — 1.5 В
  3. Средний ток срабатывания: — 5 мА
  4. Удерживающий ток: — 75 мА

Цепь управления TRIAC

Давайте посмотрим на схему управления симистором, показанную ниже:

Во время положительной половины и отрицательной половины входного цикла мощность переменного тока регулируется для нагрузки путем переключения между включением и выключением. Положительная половина прямого смещения D1 и обратного смещения D2, и затвор положительный по отношению к A 1 .

Однако во время отрицательного полупериода D 2 теперь смещается в прямом направлении, а D 1 смещается в обратном направлении, и затвор является положительным по отношению к выводу A 2 . Используемый в схеме резистор R 2 контролирует точку начала проводимости.

Преимущества TRIAC

  • Его конструкция проста, так как для защиты требуется один предохранитель.
  • Напряжение как положительной, так и отрицательной полярности может срабатывать симистор.

Недостатки TRIAC

  • Наличие номинала у симистора ниже, чем у тиристора.
  • Они менее надежны.
  • Нет симметрии во время срабатывания на обеих половинах формы волны.
  • Несимметричное переключение делает его более уязвимым.

Приложения TRIAC

  • Используется в управлении переменным током.
  • Используется для управления освещением.
  • Симистор находит свое применение в электродвигателях.

Эффективные результаты получаются при управлении мощностью переменного тока с помощью симистора. Поскольку симисторы подключаются непосредственно к источникам переменного тока, необходимо обеспечить надлежащую безопасность при тестировании цепи.

Что такое ТРИАК? Символ, конструкция, работа и применение

TRIAC — Строительство, работа, преимущества, недостатки и применение

Тиристоры — широко используемые полупроводниковые устройства для регулирования мощности.Однако они могут проводить только в одном направлении, как диод, что делает их пригодными для регулирования мощности постоянного тока. Принимая во внимание, что TRIAC, который принадлежит к семейству тиристоров, может работать в обоих направлениях, а также обеспечивать полный контроль над подаваемой мощностью. Поэтому они используются для регулирования мощности переменного тока.

Что такое ТРИАК?

TRIAC — это аббревиатура, обозначающая для « Tri ode для A альтернативных C текущих». Триод означает трехконтактное устройство , в то время как переменный ток означает, что он используется для переключения переменного тока. Это трехконтактный двунаправленный переключатель, работающий в обоих направлениях. Он состоит из комбинации двух антипараллельных SCR с соединенными вместе воротами.

Три терминала — это Gate, A1 или MT1 и A2 или MT2. У него нет анода и катода, как у тиристора, потому что он может проводить в обоих направлениях, и не имеет значения, поменяны ли контакты местами.

TRIAC может запускаться в проводимость как положительным, так и отрицательным током затвора в обоих направлениях. Пока он отключается, когда основной ток падает ниже предела тока удержания.

Символ TRIAC

Обозначение TRIAC представляет два тиристора, соединенных встречно параллельно, имеющих общий затвор. Его эквивалентная двухтиристорная структура также дана для лучшего понимания.

Как и тиристор, у него три вывода, но их названия разные, кроме затвора.Это связано с тем, что каждая клемма состоит из соединения анода и катода SCR вместе. Поэтому оба терминала называются либо анодным, либо основным терминалом MT.

Строительство TRIAC

TRAIC — это четырехуровневое устройство, состоящее из комбинации двух антипараллельных SCR, имеющих три терминала Gate, MT1 и MT2.

Электроды обоих основных выводов (MT1 и MT2) подключены к областям P и N обоих SCR. Так что он может проводить ток в обоих направлениях.Металлический электрод затвора также соединен с областями P и N. Это позволяет запускать TRIAC как положительными, так и отрицательными токами затвора.

TRIAC — двунаправленный переключатель, он может работать в обоих направлениях, но не является симметричным. Его асимметричная структура является причиной того, что TRAIC имеет асимметричное переключение.

Работа TRAIC

Работа TRAIC напоминает тиристор. Когда напряжение приложено, оно не будет проводиться, если напряжение не превысит напряжение отключения V BO или не будет приложен импульс затвора.

Как мы знаем, TRAIC может проводить при обеих полярностях приложенного напряжения, и он может запускаться при обеих полярностях напряжения затвора для любого направления. Таким образом, TRAIC может работать в 4-х режимах.

Следующие напряжения взяты по отношению к клемме MT2, например, напряжение MT1 по отношению к MT2 и напряжение затвора по отношению к MT2.

Режим 1: MT1 = + ve, Gate = + ve

В этом режиме приложенное напряжение на MT1 положительно по отношению к MT2.При подаче положительного импульса затвора TRAIC срабатывает в с прямой проводимостью , и ток будет течь от MT1 к MT2.

Режим 2: MT1 = + ve, Gate = -ve

В этом режиме подаваемое напряжение такое же, т.е. MT1 положительно по отношению к MT2. Но импульс на затворе отрицательный. Поскольку затвор соединен с N-областью TRIAC, он будет запускать его в с прямой проводимостью , в то время как направление тока останется прежним.

Режим 3: MT1 = -ve, Gate = + ve

В этом режиме полярности приложенного напряжения меняются местами i.е. MT1 отрицательно по отношению к MT2. Но импульс затвора положительный. Импульс затвора запустит TRAIC в обратную проводимость от MT2 к MT1.

Режим 4: MT1 = -ve, Gate = -ve

В этом режиме как приложенное напряжение, так и напряжение затвора отрицательны. Отрицательный импульс затвора запускает TRAIC в обратную проводимость

Режим 1 и режим 2 представляют работу в квадранте 1 st , где ток и напряжение положительны, в то время как режим 3 и режим 4 представляют работу в квадранте 3 rd , где и напряжение, и ток отрицательны.

Хотя импульс затвора может запускать TRAIC в любом направлении, лучше всего использовать положительный импульс затвора для работы в квадранте 1 st и отрицательный импульс затвора для работы в квадранте 3 rd из-за их повышенной чувствительности. Режимы 2 и 3 требуют большего тока затвора, чем режимы 1 и 4, для срабатывания TRIAC.

Характеристики V-I TRIAC

Следующая характеристическая кривая показывает соотношение между приложенным напряжением и током, протекающим через симистор. Он работает только в квадрантах 1 и 3 . Его работа такая же, как и у SCR, но он также может работать в квадранте 3 rd .

Ток I увеличивается, когда либо напряжение V превышает напряжение отключения V BO , либо если применяется стробирующий импульс. Как только устройство переходит в состояние ВКЛ, напряжение снижается до напряжения ВКЛ, а ток превышает. Он будет оставаться во включенном состоянии до тех пор, пока ток не упадет ниже значения тока удержания I H .

TRAIC представляет собой комбинацию двух тиристоров в одном корпусе, поэтому он также имеет те же электрические характеристики, что и отдельные тиристоры в каждом направлении, например, напряжение пробоя, напряжение срабатывания, ток удержания.

Преимущества и недостатки TRIAC

Преимущества

Преимущества TRIAC приведены ниже:

  • Он может проводить и регулировать обе половины формы волны переменного тока.
  • Он компактен и требует меньшего радиатора, чем использование двух тиристоров.
  • Для защиты требуется только один предохранитель.
  • Как положительный, так и отрицательный стробирующий импульс можно использовать для запуска TRAIC.
  • Не требует параллельного включения диода для обратной защиты, как в SCR.

Недостатки

  • Его переключение асимметрично для обеих половин переменного тока.
  • Асимметричное переключение создает гармоники в системе, вызывая множество проблем.
  • Его номинальная мощность ниже, чем у SCR.
  • Менее надежен, чем SCR.
  • Имеет более низкую скорость переключения.
  • Требуется осторожность при срабатывании, так как он может срабатывать в любом направлении.
  • Его рейтинг du / dt ниже, чем SCR.

Приложения TRIAC

TRIAC используется для регулирования мощности переменного тока от низкого до среднего. Из-за их асимметричного переключения, DIAC используется последовательно со своим выводом затвора для обеспечения симметричного запуска. Доступна комбинация DIAC и TRIAC в одном пакете, который известен как QUADRAC .

Они используются для управления скоростью двигателей, вентиляторов и регуляторов света, а также для регулирования температуры.

Похожие сообщения:

ТРИАК | Тиристоры | Учебник по электронике

Тиристоры

представляют собой однонаправленные (односторонние) устройства тока, что делает их полезными только для управления постоянным током. Если два тиристора соединены последовательно параллельно друг другу, как два диода Шокли были соединены вместе, чтобы сформировать DIAC, у нас есть новое устройство, известное как TRIAC: (рисунок ниже)

Эквивалент TRIAC SCR и условное обозначение TRIAC.

Поскольку отдельные тиристоры более гибкие для использования в усовершенствованных системах управления, они чаще встречаются в схемах, таких как моторные приводы; TRIAC обычно используются в простых устройствах с низким энергопотреблением, например, в бытовых диммерных переключателях. На рисунке ниже показана простая схема регулятора яркости лампы вместе с цепью фазосдвигающего резистора-конденсатора, необходимой для срабатывания послепикового пика.

TRIAC фазорегулятор мощности

TRIAC известны тем, что не стреляют симметрично.Это означает, что они обычно не срабатывают при точно таком же уровне напряжения затвора для одной полярности, что и для другой. Вообще говоря, это нежелательно, потому что асимметричное срабатывание приводит к форме волны тока с большим разнообразием гармонических частот. Формы сигналов, симметричные выше и ниже их средних осевых линий, состоят только из гармоник с нечетными номерами. С другой стороны, асимметричные сигналы содержат гармоники с четными номерами (которые также могут сопровождаться или не сопровождаться гармониками с нечетными номерами).

В интересах снижения общего содержания гармоник в энергосистемах, чем меньше и менее разнообразны гармоники, тем лучше — это еще одна причина, по которой отдельные тиристоры предпочитают триАК для сложных мощных схем управления. Один из способов сделать форму сигнала тока TRIAC более симметричным — это использовать устройство, внешнее по отношению к TRIAC, для синхронизации запускающего импульса. DIAC, размещенный последовательно с воротами, отлично справляется с этой задачей: (Рисунок ниже)

DIAC улучшает симметрию управления

Напряжение переключения

DIAC имеет тенденцию быть гораздо более симметричным (одинаковым в одной полярности, чем в другой), чем пороговые значения напряжения срабатывания TRIAC.Поскольку DIAC предотвращает любой ток затвора до тех пор, пока напряжение запуска не достигнет определенного повторяемого уровня в любом направлении, точка срабатывания TRIAC от одного полупериода к следующему имеет тенденцию быть более согласованной, а форма волны более симметричной сверху и снизу. его осевая линия.

Практически все характеристики и рейтинги SCR одинаково применимы к TRIAC, за исключением того, что TRIAC, конечно, двунаправленные (могут обрабатывать ток в обоих направлениях). Больше нечего сказать об этом устройстве, за исключением важной оговорки, касающейся обозначений клемм.

Судя по эквивалентной схеме, показанной ранее, можно подумать, что главные клеммы 1 и 2 взаимозаменяемы. Это не так! Хотя полезно представить TRIAC как состоящий из двух SCR, соединенных вместе, на самом деле он построен из единого куска полупроводникового материала, должным образом легированного и многослойного. Фактические рабочие характеристики могут незначительно отличаться от аналогичной модели.

Это становится наиболее очевидным при сравнении двух простых схемотехнических решений, одна из которых работает, а другая — нет.Следующие две схемы представляют собой разновидность схемы регулятора яркости лампы, показанной ранее, из них для простоты удалены фазовращающий конденсатор и DIAC. Хотя полученной схеме не хватает возможности точного управления более сложной версией (с конденсатором и DIAC), она работает: (рисунок ниже)

Эта схема с логическим элементом MT2 действительно работает.

Предположим, мы должны были поменять местами два основных терминала TRIAC. Согласно эквивалентной схеме, показанной ранее в этом разделе, замена не должна иметь никакого значения.Схема должна работать: (рисунок ниже)

Если вентиль переключен на MT1, эта схема не работает.

Однако, если эта схема будет построена, обнаружится, что она не работает! Нагрузка не получит питания, симистор вообще не сработает, независимо от того, насколько низкое или высокое значение сопротивления установлено на управляющем резисторе. Ключ к успешному запуску TRIAC — убедиться, что затвор получает ток срабатывания со стороны основного вывода 2 схемы (основной вывод на противоположной стороне символа TRIAC от вывода затвора).Идентификация терминалов MT1 и MT2 должна производиться по артикулу TRIAC со ссылкой на технический паспорт или книгу.

ОБЗОР:

  • TRIAC действует так же, как два SCR, подключенных спина к спине для двунаправленной работы (AC).
  • Элементы управления
  • TRIAC чаще встречаются в простых схемах с низким энергопотреблением, чем в сложных схемах большой мощности. В схемах управления большой мощностью, как правило, предпочтение отдается нескольким тиристорам.
  • При использовании для управления мощностью переменного тока нагрузки, симисторы часто сопровождаются дискретными входами, подключенными последовательно к их клеммам затвора.DIAC помогает TRIAC стрелять более симметрично (более последовательно от одной полярности к другой).
  • Основные клеммы 1 и 2 на TRIAC не взаимозаменяемы.
  • Для успешного запуска TRIAC ток затвора должен поступать со стороны главной клеммы 2 (MT2) схемы!

СВЯЗАННЫЙ РАБОЧИЙ ЛИСТ:

Разница между тиристором и TRIAC

Основное различие между тиристором и TRIAC заключается в том, что тиристор является однонаправленным устройством, а в TRIAC — двунаправленным устройством.Теперь давайте проверим информацию о разнице между тиристором и TRIAC, чтобы узнать больше о нем.
  • Тиристор, также называемый SCR, означает кремниевый выпрямитель, а TRIAC означает триод для переменного тока.
  • Тиристор имеет четыре терминальных полупроводниковых прибора, а TRIAC — трехконтактный полупроводниковый прибор.
  • Основное различие между SCR и TRIAC состоит в том, что SCR — это однонаправленное устройство, а TRIAC — двунаправленное устройство.
  • Тиристор более надежен, а TRIAC менее надежен.
  • Для тиристора требуется два радиатора, тогда как для TRIAC требуется только один радиатор.
  • Тиристор доступен с большим номиналом, а в TRIAC доступен с меньшим номиналом.
  • Однопереходный транзистор используется для запуска в SCR, но в TRIAC для запуска используется DIAC.
  • Тиристор управляет мощностью постоянного тока, тогда как TRIAC управляет мощностью постоянного и переменного тока.
  • У тиристора возможен только один режим работы, в то время как у тиристора возможно четыре различных режима работы.
  • Тиристор может работать только в одном квадранте V-I характеристик, в то время как TRIAC может работать только в двух квадрантах V-I характеристик.
  • Тиристор может срабатывать только положительным напряжением затвора, тиристор может запускаться либо положительным, либо отрицательным напряжением затвора.
  • Основным недостатком TRIAC по сравнению с тиристором является то, что он имеет более низкие токи.

Дополнительная информация:

Основное различие между тиристором и TRIAC заключается в том, что тиристор является однонаправленным устройством, а в TRIAC — двунаправленным устройством.Теперь давайте проверим информацию о разнице между тиристором и TRIAC, чтобы узнать больше о нем.
  • Тиристор, также называемый SCR, означает кремниевый выпрямитель, а TRIAC означает триод для переменного тока.
  • Тиристор имеет четыре терминальных полупроводниковых прибора, а TRIAC — трехконтактный полупроводниковый прибор.
  • Основное различие между SCR и TRIAC состоит в том, что SCR — это однонаправленное устройство, а TRIAC — двунаправленное устройство.
  • Тиристор более надежен, а TRIAC менее надежен.
  • Для тиристора требуется два радиатора, тогда как для TRIAC требуется только один радиатор.
  • Тиристор доступен с большим номиналом, а в TRIAC доступен с меньшим номиналом.
  • Однопереходный транзистор используется для запуска в SCR, но в TRIAC для запуска используется DIAC.
  • Тиристор управляет мощностью постоянного тока, тогда как TRIAC управляет мощностью постоянного и переменного тока.
  • У тиристора возможен только один режим работы, в то время как у тиристора возможно четыре различных режима работы.
  • Тиристор может работать только в одном квадранте V-I характеристик, в то время как TRIAC может работать только в двух квадрантах V-I характеристик.
  • Тиристор может срабатывать только положительным напряжением затвора, тиристор может запускаться либо положительным, либо отрицательным напряжением затвора.
  • Основным недостатком TRIAC по сравнению с тиристором является то, что он имеет более низкие токи.

Дополнительная информация:

Симисторных цепей

  • Изучив этот раздел, вы должны уметь:
  • Распознать типичные пакеты симисторов:
  • Изучите типичную диаграмму характеристик симистора.
  • Понимание функции квадрантов при срабатывании симисторов:
  • Понимать основные принципы работы опто-симисторов.
  • Разберитесь в работе диак.
  • Ознакомьтесь с методами и ограничениями при испытании тиристоров вне схемы.
  • Меры безопасности при использовании устройств среднего и высокого напряжения.

Симистор

Фиг.6.3.1 Пакеты симисторов

На рис. 6.3.1 показаны некоторые типичные корпуса симистора вместе с условным обозначением схемы для симистора. Симистор представляет собой двунаправленный тиристор, аналогичный по работе двум тиристорам, соединенным в обратную параллель, но использующим общее соединение затвора. Следовательно, симистор может проводить и управлять как во время положительных, так и на отрицательных полупериодов сигнала сети. Однако вместо положительных анодных и отрицательных катодных соединений основные токоведущие соединения симистора обычно обозначаются как MT1 и MT2, обозначающие главные выводы 1 и 2 (хотя могут использоваться и другие буквы), поскольку любой вывод может быть положительным или отрицательным.Симистор может быть приведен в действие током, подаваемым на клемму затвора (G). После срабатывания симистор будет продолжать проводить до тех пор, пока основной ток не упадет ниже порога удержания тока, близкого к нулю.

Рис. 6.3.2 Характеристики симистора

  • На рис. 6.3.2 показаны основные характеристики симистора.
  • В BO — максимальное прямое или обратное напряжение, которое симистор может выдержать, прежде чем он перейдет в неконтролируемую проводимость.
  • В DRM — это максимальное повторяющееся пиковое напряжение (обычно максимальное пиковое напряжение приложенной волны переменного тока), которое может надежно выдерживаться.
  • В GT — это диапазон напряжений затвора, при которых запускается проводимость.
  • I L — это минимальный ток, который заставит симистор запираться и продолжать проводить после снятия напряжения срабатывания затвора.
  • I H — это минимальный ток удержания, ниже которого проводящий симистор перестанет проводить.

Рис. 6.3.3 Квадранты симистора

Квадранты симистора

Поскольку стробирующий ток или импульс, используемые для запуска симистора, могут применяться, пока вывод MT2 является положительным или отрицательным, а стробирующий ток или импульс также могут быть положительными или отрицательными, существует четыре различных способа запуска симистора. Обычно их называют «Квадранты», как показано на Рис. 6.3.3

Большинство симисторов могут срабатывать в любом из четырех квадрантов, и два из четырех возможных квадрантов необходимы для запуска проводимости во время двух (положительного и отрицательного) полупериодов переменного тока.Квадранты I и III или квадранты II и III являются предпочтительными методами запуска, поскольку квадрант IV гораздо менее чувствителен к запуску из-за способа построения диака. Таким образом, если квадрант IV используется с любым из трех других квадрантов, для положительных и отрицательных полупериодов потребуются разные значения триггерного тока, что создает ненужные сложности. Также, если симистор срабатывает в квадранте IV, его способность обрабатывать любые быстрые изменения тока (δI / δt) снижается, что делает симистор более восприимчивым к повреждениям в результате таких событий, как случайные сильные всплески тока и неизбежные высокие пусковые токи при использовании ламп накаливания. включены.

Важной целью многих современных разработок является борьба с потенциально опасными скачками напряжения и снижение склонности симистора к повторному срабатыванию во время выключенной части цикла. Это происходит во время каждого цикла переменного тока между моментом, когда ток падает ниже тока удержания тиристора, и до следующего импульса запуска. Хотя обычно это не проблема, когда симистор управляет резистивной нагрузкой, такой как лампа накаливания, при использовании с индуктивными нагрузками, такими как двигатели, напряжение нагрузки и ток нагрузки, скорее всего, не будут «синфазны» друг с другом, поэтому напряжение может фактически быть около своего пикового значения, когда ток падает до нуля (как описано здесь), вызывая большое и быстрое изменение напряжения на симисторе, которое может вызвать немедленное повторное срабатывание симистора и, таким образом, повторное включение, что приведет к потере управления.

Стандартные симисторы

использовались для управления переменным током в течение многих лет, но за это время диапазон различных конструкций симисторов значительно увеличился. Современные конструкции симисторов, такие как симисторы 3Q HIGH-COM (3 квадранта, высокая коммутация) от NXP / WeEn и симисторы Snubberless TM от ST Microelectronics, имеют множество преимуществ, таких как улучшенная производительность, меньшее количество ложных срабатываний, удобство использования как с резистивными, так и с индуктивными нагрузками и улучшенные возможности выключения без необходимости использования дополнительных схем, таких как демпферы.Дополнительное согласование входов также является особенностью некоторых конструкций, включая согласование стробирующих импульсов, таких как детекторы перехода через ноль, входы логического уровня и т. Д.

Поскольку многие функции управления теперь выполняются с помощью микропроцессоров и / или логических схем, существует также много симисторов, которые принимают логические сигналы для запуска, а не полагаются исключительно на традиционные методы управления фазой. Одним из таких симисторов является симистор 6073A Sensitive Gate от ON Semiconductor, который используется в демонстрационной схеме низкого напряжения в модуле тиристоров 6. 4.

Рис. 6.3.4. Опто-симистор

Опто-симистор

Материалы, используемые при производстве симисторов и тиристоров, как и любого полупроводникового прибора, светочувствительны. Их проводимость изменяется при наличии света; поэтому они обычно упаковываются в маленькие куски черного пластика. Однако, если в комплект входит светодиод, он может включать выход высоковольтного устройства в ответ на очень небольшой входной ток через светодиод. Это принцип, используемый в опто-симисторах и опто-тиристорах, которые легко доступны в форме интегральных схем (ИС) и не нуждаются в очень сложных схемах, чтобы заставить их работать.Просто подайте небольшой импульс в нужное время, чтобы загорелся встроенный светодиод, и питание будет включено. Основным преимуществом этих оптически активируемых устройств является превосходная изоляция (обычно несколько тысяч вольт) между цепями малой и высокой мощности. Это обеспечивает безопасную изоляцию между цепью управления низкого напряжения и высоковольтным выходом высокого тока. Хотя выходной ток опто-симисторов обычно ограничен десятками миллиампер, они обеспечивают полезный интерфейс, когда выход используется для запуска симистора высокой мощности от опто-симистора низкого напряжения.

Диак

Рис. 6.3.5 DB3 Diac & Обозначение цепи

Диак — это двунаправленный триггерный диод (см. Рис. 6.3.5), который в течение многих лет использовался в качестве основного триггерного компонента для стандартных симисторов. Он блокирует прохождение тока, когда приложенное к нему напряжение меньше его потенциала разрыва V BO (см. Рис. 6.3.6), но проводит сильную проводимость, когда приложенное напряжение равно V BO . Однако, в отличие от других диодов, которые проводят только в одном направлении, диак имеет одинаковое разрывное напряжение как в положительном, так и в отрицательном направлении.Когда напряжение переменного тока, приложенное к диакритическому контроллеру, достигает значения + V BO или -V BO , генерируется положительный или отрицательный импульс тока. Потенциал отключения для диак обычно составляет от 30 до 40 вольт. Это действие делает диаки особенно полезными при срабатывании симисторов в цепях управления переменным током из-за их способности запускать симистор во время либо положительного, либо отрицательного полупериода сигнала сети (линии). Его схемное обозначение (показанное на рис. 6.3.5) аналогично символу симистора, но без клеммы затвора.

Рис. 6.3.6 Типичные характеристики диафрагмы.

Характеристики Diac, показанные на рис. 6.3.6, показывают, что при напряжениях ниже V BO диак имеет высокое сопротивление (характеристическая кривая почти горизонтальна, что указывает на то, что протекает только небольшой ток утечки в несколько мкА, но как только достигается + V BO или -V BO , диак показывает отрицательное сопротивление. Обычно закон Ома гласит, что увеличение тока через компонент с фиксированным значением сопротивления вызывает увеличение напряжения на этом компоненте. ; однако здесь происходит обратный эффект, диак показывает отрицательное сопротивление при размыкании, где ток резко возрастает, хотя на самом деле напряжение снижается.Режим отрицательного сопротивления длится около 2 мкс, за это время прямое напряжение упадет примерно до 5 В и диак будет пропускать ток 10 мА. Это действие достаточно (хотя и не совсем) симметрично в положительной (+ V) или отрицательной областях характеристик.

Рис. 6.3.7. Симистор с внутренним запуском (Quadrac)

Симистор с внутренним запуском (Quadrac)

Поставщики компонентов предлагают гораздо меньше типов диаков, чем симисторов.Также легче выбрать идеальный диак для срабатывания конкретного симистора, когда он уже встроен в комплект. Так обстоит дело с «квадрактом» или симистором с внутренним запуском, показанным на рис. 6.3.7. Эти устройства также уменьшают количество компонентов и пространство на печатной плате.

Чувствительные затворные симисторы

Симисторы

, для запуска которых требуется диак, имеют недостаток для многих современных низковольтных приложений. Напряжение, необходимое диакритическому устройству для генерации импульса запуска, должно быть не менее или равно его потенциалу отключения (В BO ), и оно составляет около 30 В или более.Однако доступны симисторы — чувствительные затворные симисторы, которые могут срабатывать гораздо более низкими напряжениями в диапазоне устройств TTL, HTL, CMOS и OP AMP, а также микропроцессорных выходов.

Демонстрационная схема управления чувствительным затворным симистором показана в тиристорном модуле 6.4.

Проверка тиристоров, симисторов и диодов.

В Интернете есть множество страниц, на которых предлагаются методы тестирования тиристоров и симисторов с помощью мультиметра. В основном они включают в себя проверку сопротивления тестируемого устройства, чтобы убедиться, есть ли в нем разомкнутая цепь.Измерение сопротивления между анодом и катодом SCR или между двумя главными выводами симистора должно указывать на очень высокое сопротивление при измерении в любом направлении путем перестановки щупов измерителя.

В обоих тестах измеритель должен регистрировать сопротивления вне диапазона (обычно обозначаемые дисплеем, показывающим «1» или «OL»), также называемое бесконечным или бесконечным сопротивлением. Подобные испытания сопротивления могут быть выполнены путем измерения сопротивления, опять же в обоих направлениях, между затвором тринистора и его катодом или затвором и MT1 на симисторе, и они должны указывать на гораздо более низкое сопротивление, но не на нулевое сопротивление.

Если какой-либо из этих четырех тестов дает показание 0 Ом, можно предположить, что компонент неисправен; однако, если результаты не показывают неисправностей, это ТОЛЬКО ВЕРОЯТНО означает, что с компонентом все в порядке. Испытания сопротивления этих высоковольтных компонентов имеют ограниченное применение, и на них можно положиться только как на простое руководство; они не показывают, что устройство будет запускаться при правильном напряжении или что ток удержания правильный. SCR и симисторы обычно работают при сетевом (линейном) напряжении, и когда они выходят из строя, результаты могут быть драматичными. По крайней мере, резкое сгорание предохранителя будет обычным результатом короткого замыкания тиристора или симистора. Однако вполне возможно, что эти устройства неисправны и не показывают никаких признаков неисправности при проверке омметром. Они могут казаться нормальными при низком напряжении, используемом в тестовых счетчиках, но все равно выходят из строя в условиях сетевого напряжения. Компоненты высокого напряжения, такие как тиристоры и симисторы, также могут быть повреждены из-за невидимых скачков напряжения или перегрузки по току.

Обычным методом тестирования оборудования, использующего тиристоры или симисторы, является проверка напряжений и форм сигналов, если цепь работает, или замена подозрительной части при повреждении (например,г. перегоревшие предохранители). Во многих случаях компоненты в источниках питания или схемах управления высоким напряжением производимого оборудования будут обозначаться как «критически важные для безопасности компоненты» и должны заменяться только с использованием методов и компонентов, рекомендованных производителем. Производители обычно указывают полные «комплекты для обслуживания» нескольких полупроводниковых устройств и, возможно, других связанных компонентов, все из которых должны быть заменены, поскольку отказ одного устройства управления мощностью может легко повредить другие компоненты, что не всегда очевидно. на момент ремонта.

ЛЮБЫЕ РАБОТЫ НА СЕТЕВЫХ ЦЕПЯХ ДОЛЖНЫ ВЫПОЛНЯТЬСЯ ПРИ ПОЛНОСТЬЮ ОТКЛЮЧЕНИИ ЭЛЕКТРОПИТАНИЯ. ТАКЖЕ ЛЮБЫЕ КОМПОНЕНТЫ ДЛЯ ХРАНЕНИЯ ЗАРЯДА (например, КОНДЕНСАТОРЫ) ДОЛЖНЫ БЫТЬ РАЗРЯЖЕНЫ, ЕСЛИ ЭТО АБСОЛЮТНО НЕИЗБЕЖНО.

Если вы не прошли обучение безопасным методам работы, которые необходимы для работы с этими типами цепей, НЕ ДЕЛАЙТЕ ЭТО! Эти схемы могут убить!

.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *