Калькулятор расчета сечения кабеля по мощности и длине
Параметры кабелей рассчитываются при проектировании электрической линии. Основательный подход инженеров гарантирует качественную и безопасную проводку, рассчитанную с запасом на одновременную работу всех электроприборов. Если проигнорировать точность на этом этапе и неправильно подобрать электрический кабель, все может завершиться пожаром.
Чтобы предотвратить аварийные ситуации, которые могут повлечь значительные финансовые расходы, рекомендуется предварительно рассчитать сечение кабеля в зависимости от длины и мощности. Сделать это можно несколькими способами:
- с помощью онлайн-калькуляторов – программных сервисов, работающих на основе утвержденных формул;
- по таблицам зависимости сечения жилы провода от мощности и длины линии;
- по формулам.
Калькулятор расчета сечения по мощности и длине
Чтобы задача вычисления параметров проводки не казалась новичкам нерешаемой, разработан калькулятор расчета сечения кабеля по мощности и длине.
Перевод Ватт в Ампер | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Расчет максимальной длины кабельной линии | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
добавить | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Примечания: | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
С его помощью легко определить значение тока потребления электрических установок, зная максимальную мощность, которую они потребляют. Этот параметр обычно указывается производителем прямо на приборе или в паспорте к нему. Напряжение питания можно узнать там же.
Максимально допустимая длина линии вычисляется для конкретного типа кабеля, который выбирается из выпадающего списка. Также в расчете участвуют значения тока потребления, напряжения источника питания и минимального напряжения, при котором устройство способно функционировать.
Онлайн-калькулятор существенно упрощает работу проектировщиков, сокращая время на ручные расчеты.
Выбор по таблице
Когда нужно определить примерные параметры проводки, располагая отдельными значениями, придется кстати таблица выбора сечения кабеля по мощности и длине.
Мощность (Вт) | Ток (А) | 1,5кв.мм | 2,5кв.мм | 4кв. мм | 6кв.мм | 10кв.мм | 16кв.мм | 25кв.мм | 35кв.мм | 50кв.мм | 70кв.мм | 95кв.мм |
500 | 2,3 | 100 м | 165 м | 265 м | 395 м | |||||||
1 000 | 4,6 | 30м | 84м | 135 м | 200м | 335 м | 530 м | |||||
1 500 | 6,8 | 33 м | 57 м | 90м | 130м | 225 м | 355 м | 565м | ||||
2 000 | 9 | 25м | 43 м | 68м | 100 м | 170м | 265 м | 430 м | 595 м | |||
2 500 | 11,5 | 20м | 34м | 54м | 80м | 135 м | 210 м | 340м | 470 м | 630 м | ||
3 000 | 13,5 | 17 м | 29м | 45 м | 66м | 110 м | 180 м | 285 м | 395 м | 520 м | ||
3 500 | 16 | 14 м | 24 м | 39м | 56м | 96м | 155м | 245 м | 335 м | 450 м | ||
4 000 | 18 | 21м | 34м | 49 м | 84м | 135 м | 210 м | 295 м | 395 м | 580м | ||
4 500 | 20 | 19 м | 30м | 44м | 75м | 120 м | 190 м | 260м | 350 м | 515 м | ||
5 000 | 23 | 27м | 39 м | 68м | 105 м | 170м | 235 м | 315 м | 460м | 630 м | ||
6 000 | 27 | 23 м | 32 м | 56м | 90м | 140 м | 195 м | 260 м | 385м | 530 м | ||
7 000 | 32 | 28м | 48м | 76м | 120м | 170 м | 225 м | 330 м | 460 м | |||
8 000 | 36 | 42 м | 67 м | 105 м | 145 м | 195 м | 290м | 400м | ||||
9 000 | 41 | 38м | 60м | 94м | 130м | 175 м | 255 м | 355 м | ||||
10 000 | 45 | 34м | 54м | 84м | 120 м | 155 м | 230 м | 320 м | ||||
12 000 | 55 | 45 м | 70м | 92 м | 130м | 190 м | 265 м | |||||
14 000 | 64 | 38м | 60м | 84м | 110 м | 165 м | 230 м | |||||
16 000 | 73 | 53 м | 74 м | 99м | 145 м | 200м | ||||||
18 000 | 82 | 47 м | 65м | 88м | 125м | 175 м | ||||||
20 000 | 91 | 160м | 160м | 160м | 160м |
Зная суммарную мощность электроприборов и ориентировочную длину линии, по таблице можно определить минимально допустимое сечение провода. Округлять значения необходимо в большую сторону.
Пример. Общая мощность электрических устройств равна 4,3 кВт, длина линии – 40 м. Округляя эти значения в сторону больших табличных, можно определить, что сечение провода при таких условиях должно составить 6 мм2.
Формула расчета
Формула расчета сечения кабеля по мощности позволяет определить нужное значение более точно, чем с помощью таблицы. Такой вариант вычисления рекомендуется выбирать в спорных ситуациях, а также в тех случаях, когда важна точность расчета.
При большой протяженности линии сечение провода напрямую зависит от его длины. Это связано с потерями по мощности вследствие присутствия сопротивления у металла. По мере удлинения кабеля растет сопротивление и падает мощность. Чтобы компенсировать потери, необходимо правильно подобрать сечение провода. Оно
L – протяженность проводки, м;
I – ток нагрузки электроприборов, А;
Uнач – напряжение питания, В;
Uкон – рабочее напряжение электроприборов, В;
ρ – удельное сопротивление меди или алюминия, Ом×мм2/м.
Зная мощность электроприборов, можно рассчитать силу тока по формуле:
Р – мощность потребления электрических установок, Вт;
U – напряжение питания, В.
Примеры
Пример 1. Рассчитать площадь поперечного сечения медного провода длиной 160 м для подключения сети напряжением 220 В электроприборов мощностью 3,5 кВт. Рабочее напряжение устройств – 207 В.
По мощности необходимо определить ток потребления устройств. Сделать это можно с помощью онлайн-калькулятора или по формуле:
Теперь, зная удельное сопротивление меди (0,0175 Ом×мм2/м), можно рассчитать площадь сечения жилы провода:
Таким образом, для электрической линии длиной 160 м при заданных условиях понадобится медный провод с площадью сечения минимум 6,85 мм2.
Пример 2. Вычислить сечение алюминиевой проводки длиной 120 м. Мощность электроприборов – 4,1 кВт. Напряжение сети – 220 В. Рабочее напряжение устройств – 207 В.
Ток потребления можно рассчитать в онлайн-сервисе или по формуле:
По исходным значениям можно вычислить площадь сечения жилы провода:
Так, минимальная площадь сечения алюминиевого провода для заданных условий – 9,6 мм2.
Калькулятор расчета сечения кабеля по мощности и току
Онлайн калькулятор считает сечение провода по току и мощности, так же по длине. Считает как алюминиевую проводку, так и силовые медные проводники. Делает подбор сечения (диаметра жилы) в зависимости от нагрузки. Не считает для 12в. Чтобы рассчитать, заполните все поля и сделайте выбор нужных параметров во всех выпадающих списках. Важно! Обращаем ваше внимание — расчеты данной программы по подбору кабелей, не являются прямым руководством к применению электрических проводников, с рассчитанной тут величиной площади сечения. Они являются лишь предварительным ориентиром к выбору сечения. Окончательный точный расчет по подбору сечения должен делать квалифицированный специалист, который сделает правильный выбор в каждом конкретном случае. Помните, при правильных расчетах вы получите результат для минимального сечения силовых кабелей. Превышать этот результат для расчетной электрической проводки, допускается.
ПУЭ таблица расчета сечения кабеля по мощности и току
Позволяет выбрать сечение по максимальному току и максимальной нагрузке.
для медных проводов:
для алюминиевых проводов:
Формула расчета сечения кабеля по мощности
Позволяет подобрать сечение по потребляемой мощности и напряжению.
Для однофазных электрических сетей (220 В):
I = (P × K и ) / (U × cos(φ) )
где:
- cos(φ) — для бытовых приборов, равняется 1
- U — фазовое напряжение, может колебаться в пределах от 210 V до 240 V
- I — сила тока
- P — суммарная мощность всех электрических приборов
- K и — коэффициент одновременности, для расчетов принимается значение 0,75
Для 380 в трехфазных сетях:
I = P / (√3 × U × cos(φ))
Где:
- Cos φ — угол сдвига фаз
- P — сумма мощности всех электроприборов
- I — сила тока, по которой выбирается площадь сечения провода
- U — фазное напряжение, 220V
Расчет автомата по мощности и току
В таблице ниже указаны токи автомата по способу подключения в зависимости от напряжения.
Расчет кабеля по мощности: калькулятор онлайн
Неправильно выполненные электромонтажные работы при строительстве или ремонте дома часто сопровождаются авариями, пожаром или получением электрических травм. Поэтому сразу на стадии их планирования необходимо использовать проводку, отвечающую требованиям безопасности.
В статье показываю, как выполнить расчет сечения кабеля по мощности: калькулятор и таблицы прилагаются. Информацию для новичков дополняю картинками и схемами, поясняющими основные электрические процессы.
Опытный электрик может не читать пояснения, а сразу через раздел содержания открыть онлайн калькулятор и сделать в нем нужные вычисления.
Содержание статьи
Чем опасна неправильно смонтированная электропроводка: как проявляются скрытые риски
С начала дачного сезона привел ко мне новый сосед своего знакомого Андрея. У того просьба: помочь решить вопрос с пониженным напряжением на его участке. Особенно его беспокоит низкий уровень в гараже, где он разместил свою мастерскую с электрическими станками.
Поехали смотреть и проверять. Напряжение подается на вводной щит частного дома. Мой карманный мультиметр показал 203 вольта, что в принципе приемлемо для сельской местности.
А вот дальше начались чудеса. На его большой территории размещено несколько хозяйственных построек. Они подключены последовательной цепочкой: одно к другому. Гараж находится в самом конце.
Общая длина магистрали превышает сотню метров. Подключение выполнено тем, что было под рукой: медный провод 1,5 мм кв, а отдельные участки между строениями запитаны даже скрутками из алюминия 2,5 квадрата.
Этот участок обладает повышенным сопротивлением. Оно создает падение напряжения на входе в гараж до 185 вольт. А этого уже недостаточно для нормальной работы электродвигателей различных станков.
У Андрея на участке от дома до мастерской потери составили 18 вольт. Он собирался приобрести стабилизатор напряжения для гаража, а я ему объяснил, что так делать нельзя по следующим причинам:
- стабилизатор поднимет уровень напряжения на своем выходе и мощность потребления станками еще больше возрастет;
- от этого дополнительно увеличится нагрузка на проводку.
В этой ситуации возникнет дополнительная просадка напряжения на входе в стабилизатор, что повлечет:
- его отключение от защит;
- или возникновение аварийной ситуации в проводке из-за ее перегруза и перегрева.
Ненужные потери напряжения можно устранить только правильным подбором сечения кабеля питания с учетом транслируемой мощности и его надежным монтажом.
Принципы выбора кабеля по току: какие процессы учитываются
Провода и кабели для домашней проводки выпускаются большим ассортиментом с разным сечением жил из меди или алюминия. Их поперечное сечение вычисляется по формуле площади круга через диаметр, который легко определить измерительными инструментами, например, микрометром.
Поскольку они предназначены для работы в разных условиях эксплуатации, то обладают различной конструкцией, каждая из которых имеет свое название, например, NYM, ПУНП, ПУНГП, ВВГ, ВВГнг, ПВС и другие обозначения.
Внутренняя конструкция любого из них состоит из металлических жил и изоляции. В качестве примера показываю картинкой кабель ВВГнг.
Любая жила обладает электрическим сопротивлением. При прохождении тока по ней выделяется тепло, описываемое законом Джоуля-Ленца. Оно зависит от величины нагрузки, времени ее протекания и сопротивления проводника.
При этом происходит нагрев:
- металла жилы;
- слоя изоляции;
- окружающей кабель среды.
С третьим вопросом предлагаю разобраться поподробнее.
Как влияют условия эксплуатации на работу проводки: особенности открытой и закрытой прокладки
Обратите внимание на то, что окружающая кабель среда может отводить тепло, снижая нагрев, либо повышать его температуру за счет локализации места прокладки расположенными в непосредственной близости теплоизолирующими материалами.
Поэтому расположенная на открытом воздухе проводка, благодаря естественной вентиляции (перемещения тепла вверх, а охлажденных масс вниз), охлаждается лучше, чем спрятанная в трубах или внутри строительных конструкций.
Изоляционные материалы хорошо работают при нагреве до допустимой температуры, а после достижения ею критических значений усыхают, теряя свои диэлектрические свойства. Тогда через них создаются токи утечек, приводящие к авариям или пожарам.
Поэтому для каждого типа провода уже выбраны температуры допустимого нагрева с учетом прохождения по ним длительных нагрузок. Поскольку сопротивление по закону Ома уже влияет на величину тока, то по нему и проводится весь расчет.
При пользовании этой методикой необходимо суммировать все нагрузки, которые могут проходить по жиле. Например, розетки, подключенные шлейфом, могут питать одновременно несколько бытовых приборов. Этот момент следует учитывать при выборе сечения питающего их кабеля.
Чтобы не усложнять этот процесс формулами на практике используются уже готовые таблицы. Привожу выдержку из них, необходимую для домашнего мастера.
Способ выбора сечения кабеля по току является базовым. Он:- основан на многочисленных научных экспериментах;
- заложен в ПУЭ для обеспечения надежной и безопасной работы электрооборудования;
- позволяет оптимально выбрать сечение проводки по цене.
Для обеспечения повышенной безопасности при эксплуатации допустимо создавать запас по площади, используя кабель с более толстыми жилами. А монтировать его с уменьшенным сечением опасно.
Как рассчитать кабель по мощности нагрузки простыми словами
У большинства современных бытовых приборов в сопроводительной документации указывается информация не о токе нагрузки, а о величине мощности потребления. Эти параметры электрической сети взаимосвязаны.
Их легко пересчитать по известным формулам, содержащихся в шпаргалке электрика.
Однако есть более простой и доступный путь: уже готовая табличная форма. Она избавляет человека от математических вычислений.
Здесь действует то же правило сложения мощностей всех подключенных приборов, как и ранее для тока нагрузки.
Разберем пример. В розеточную группу из трех последовательно подключенных розеток может быть одновременно вставлено три потребителя с нагрузкой 2, 1,5 и 1,0 кВт. Складываем их и получаем 4,5 киловатта.
Смотрим таблицу. Для проводки 220 вольт, проложенной открытым способом, достаточно использовать медь сечением полтора квадрата или алюминий — 2,5. При выборе закрытого способа монтажа потребуется увеличить медный провод до 2,5 мм кв, а алюминиевый — до 4,0.
К слову: на любые розеточные группы общепринято выполнять монтаж проводов с сечением от 2,5 миллиметров квадратных. Здесь действуют дополнительные требования к их механической прочности, требующей запаса по толщине.
Особенно актуально это
требование к алюминиевой проводке, обладающей пониженной механической прочностью. В этом не раз убедились многочисленные владельцы квартир в старых многоэтажных зданиях.
Создание небольшого запаса сечения кабеля в будущем может избавить владельца от непредвиденных проблем при приобретении и подключении нового, более мощного электрооборудования.
Выбор сечения кабеля по мощности и току: таблица справочных данных
Этот способ вобрал в себя две вышеприведенные методики расчета. Они просто сведены в общую таблицу.
Ей удобно пользоваться, имея любую информацию: по току нагрузки или потребляемой мощности, что позволяет не заниматься переводом одной величины в другую.
Однако во всех этих таблицах скрыт один параметр, а именно: очень длинная электрическая цепь. Она косвенно влияет на результаты расчета. Но об этом читайте в следующем подразделе.
Почему необходимо учитывать длину протяженной электрической магистрали в частном доме
Во всех приведенных таблицах учитывается итоговое действие электрического тока на нагрев металлической жилы. Его величина практически не меняется внутри пределов квартиры, где от вводного щитка до конечного потребителя расстояние редко превышает 15 метров.
Однако мы знаем, что электрическое сопротивление провода влияет на ток, а оно с увеличением расстояния всегда возрастает прямо пропорционально отношению удельного сопротивления к площади поперечного сечения.
На длинных участках дополнительно возникают потери напряжения, а все это необходимо учитывать в точных расчетах, что и применяется на практике в онлайн калькуляторе, приведенном в следующем разделе.
В качестве пояснения приведу пример такого влияния, применённого при монтаже точных измерительных цепей напряжения ТН на своей подстанции 330 кВ, где потери должны быть минимальными. С ними борются всеми доступными способами.
Эти ТН расположены на ОРУ-330 кВ. Они удалены от релейных панелей на дистанцию порядка 300-400 метров.
Сборка вторичных цепей выполнена в шкафу. Они к нему подаются от выводной коробки, расположенной внизу основания фарфорового изолятора коротким контрольным кабелем с жилами 1,5 мм кв.
Его длину можете оценить визуально по фотографии. Она не превышает несколько метров. Выходные кабели цепей напряжения, проложенные к панелям релейного зала, имеют повышенное сечение жил и превышают 16 мм квадратных.
Это хорошо видно на обратной стороне ввода релейной панели.
Сделано это для того, чтобы минимизировать потери напряжения на такой большой дистанции. Они не должны вносить погрешность большую 0,5%.
По самим же панелям разводка опять выполняется жилами 1,5 квадрата. Короткие расстояния от ТН к его шкафу и в релейном зале не оказывают существенного влияния на потери.
Приведенным примером я постарался показать, как длина протяженной магистрали может повлиять на выбор и расчет кабеля. Все это учтено в онлайн калькуляторе.
Калькулятор расчета сечения кабеля по мощности с учетом условий эксплуатации
Онлайн методика позволяет оптимально вычислить сечение, которое будет:
- надежно работать при длительной полной нагрузке без каких-либо повреждений;
- полностью выдержит возникающие в цепи короткие замыкания;
- исключит потери напряжения в магистрали ниже допустимого уровня;
- обеспечит работу защитных устройств при недостаточном качестве заземления.
Вычисления необходимо делать индивидуально для каждого кабельного участка. Они позволяют:
- определиться с условиями монтажа и видами нагрузок, которые будут протекать по его жилам;
- учесть минимальные размеры способом расчета по току;
- обеспечить надежную работу при возникновении температурных перегрузок от коротких замыканий;
- выявить допустимые габариты для снижения потерь напряжения;
- выбрать сечение, основываясь на импендансе петли из-за недостаточного заземления.
Для проведения расчета потребуется подготовить:
- информацию о характере нагрузки;
- условия работы в однофазной или трехфазной схеме питания;
- тип тока: постоянный или переменный;
- величину нагрузки в киловаттах;
- полный и пусковой коэффициенты мощности;
- протяженность рабочей магистрали;
- способ прокладки и конструкцию кабеля, учитывающую температурные нагрузки.
А дальше вводим эти исходные данные в таблицу и жмем кнопку «Расчет». Для перехода к следующим вычислениям надо просто нажать кнопку «Сброс» и повторить выше перечисленные операции.
Еще раз обращаю внимание на то, что за основу любого расчета пропускной способности кабеля взят наибольший ток, который способен выдерживать кабель длительно с сохранением диэлектрических свойств изоляции без ее повреждений. По его величине определяется поперечное сечение.
Рекомендую по вопросу выбора проводки дополнительно посмотреть видеоролик владельца «Электроснабжение в Москве»
Видеоматериал автора «Elektrik-sam.info» объясняет подробные алгоритмы вычисления сечения кабеля (провода).
Много полезной информации можно увидеть в комментариях под этими роликами.
Вот в принципе и все, что я хотел объяснить про расчет сечения кабеля по мощности, калькулятор к которому значительно облегчает математические действия. Если вы желаете обсудить это материал, то воспользуйтесь разделом комментариев.
Калькулятор расчета сечения кабеля
Калькулятор сечения кабеля
Таблица сечения кабеля по мощности и току
Медные кабеля
Сечение токопроводящей жилы мм2 | ||||
---|---|---|---|---|
Напряжение 220 В | Напряжение 380 В | |||
Ток (А) | Мощность (кВт) | Ток (А) | Мощность (кВт) | |
1,5 | 19 | 4,1 | 16 | 10,5 |
2,5 | 27 | 5,9 | 25 | 16,5 |
4 | 38 | 8,3 | 30 | 19,8 |
6 | 46 | 10,1 | 40 | 26,4 |
10 | 70 | 15,4 | 50 | 33,0 |
16 | 85 | 18,7 | 75 | 49,5 |
25 | 115 | 25,3 | 90 | 59,4 |
35 | 135 | 29,7 | 115 | 75,9 |
50 | 175 | 38,5 | 145 | 95,7 |
70 | 215 | 47,3 | 180 | 118,8 |
95 | 260 | 57,2 | 220 | 145,2 |
120 | 300 | 66 | 260 | 171,6 |
Алюминиевые кабеля
Сечение токопроводящей жилы мм 2 | Кабеля и провода с алюминиевыми жилами | |||
---|---|---|---|---|
Напряжение 220 В | Напряжение 380 В | |||
Ток (А) | Мощность (кВт) | Ток (А) | Мощность (кВт) | |
2,5 | 20 | 4,4 | 19 | 12,5 |
4 | 28 | 6,1 | 23 | 15,1 |
6 | 36 | 7,9 | 30 | 19,8 |
10 | 50 | 39 | 25,7 | |
16 | 60 | 13,2 | 55 | 36,3 |
25 | 85 | 18,7 | 70 | 46,2 |
35 | 100 | 22 | 85 | 56,1 |
50 | 135 | 110 | 72,6 | |
70 | 165 | 36,3 | 140 | 92,4 |
95 | 200 | 44,0 | 170 | 112,2 |
120 | 230 | 50,6 | 200 | 132,0 |
Разнообразные электрокабели и провода – это важная часть энергетики. Без них сегодня никуда. Провода окружают нас дома и на работе. Однако, если они подобраны неверно, это может привести к серьезным проблемам: перегреву шнура и даже замыканию.
Подбирая кабельно-проводниковую продукцию для дома или офиса, обратите должное внимание на диаметр кабеля, чтобы он подходил под возрастающую в процессе эксплуатации мощность.
Опытные электрики хорошо знают, какой проводник нужно выбирать в той или иной ситуации, а вот обычному покупателю на помощь придет наш онлайн-калькулятор расчета сечения кабеля. Проблема неправильного подбора проводов на самом деле сегодня достаточно высока, так как очень часто недобросовестные строители, желая сэкономить, ставят недорогой тонкий кабель, не учитывая мощность и напряжение.
Также современные гаджеты и бытовые приборы требуют особого подбора электрокабеля и его сечения. Учитывая это, сотрудники компании «Kabel-Energo» разработали специальный калькулятор расчета сечения кабеля, с помощью которого можно рассчитать допустимые нагрузки и мощность.
Что такое калькулятор сечения кабеля?
Представленный функционал дает возможность проводить расчет сечения провода, исходя из показателей максимальной нагрузки и входного напряжения. При этом учитывается не только материал жилы, но и условия прокладывания, критерии подбора и предположительная утечка напряжения.
Также программа дает возможность провести расчеты максимально допустимых нагрузок и тока на проводник с указанными параметрами. Пользоваться калькулятором просто, чтобы провести расчет сечения провода, стоит сделать следующее:
- Укажите данные для расчета: ток или мощность.
- Выставьте необходимое напряжение.
- Выберите, какая вас интересует жила – медная или алюминиевая.
- Учтите тип проводки – открытая или закрытая, а также количество проводов.
- В качестве дополнительных условий напишите длину провода.
Нажмите «Расчет» и получите все необходимые параметры. Очень легко и удобно, а главное вы не ошибетесь и точно сможете купить нужный кабель. По результатам подсчета вы сможете сделать выбор подходящего товара у нас в каталоге.
Стоит учитывать, что представленный функционал носит только рекомендательный характер и перед тем как использовать провода в электрических системах, стоит посоветоваться с профессионалом. В зависимости от того, какое количество верных и нужных параметров вы введете, тем правильнее и точнее будет результат.
Таблица сечения кабеля по мощности и току – для чего она нужна?
Также чтобы определить нужное сечение кабеля по мощности и току, используется специальная таблица расчета мощности кабеля. Все внесенные данные в ней рассчитаны и прописаны ПУЭ (правила устройства электроустановок).
Таблица расчета сечения провода состоит из нескольких колонок, где указываются все известные сечения кабеля и показатели максимально допустимых мощности и тока для разного напряжения. Для медных и алюминиевых проводов приведены разные расчеты.
Что разобраться было легче, приведем пример: согласно таблице, для алюминиевого провода сечением 16 мм кв. максимально допустимая мощность составляет 13,2 кВт и ток 60 А при напряжении 220 В.
Приведенные в таблице данные весьма полезны при подборе стабилизаторов или прокладывании проводки в новых зданиях. Для удобства наших клиентов, таблица сечения проводов по току и мощности размещена у нас на сайте в разделе «Калькулятор сечения провода».
Потребляемый ток можно рассчитать по формуле I=P/U, где:
- I – сила тока;
- P – мощность;
- U – напряжение.
Заходите к нам на сайт, используйте для подсчетов любой из способов расчета сечения кабеля и покупайте нашу продукцию. При необходимости наши специалисты помогут вам и с выбором, и с подсчетами. Ждем вас с нетерпением.
Калькулятор расчета сечения кабеля по мощности и току
С помощью онлайн калькулятора вы можете рассчитать нужное сечение провода или кабеля по заданной мощности и току.
Перед выполнением электромонтажных работ очень часто требуется рассчитать сечение проводов по току или мощности. Это можно сделать при помощи таблиц или специального калькулятора расчета сечения кабеля по мощности и току.
Способы расчетов
Для быстрых и точных вычислений сечения кабеля используйте калькулятор онлайн, для этого нужно ввести исходные данные. В первую очередь, вводится значение потребляемой мощности и номинального напряжения. В обязательном порядке указывается количество фаз и материал, из которого изготовлены жилы. Кроме того, понадобится информация о протяженности и типе кабельных линий. На калькуляторе результаты вычислений отображают два показателя – расчетное и рекомендуемое сечение.
Подобные расчеты выполняются без учета индуктивности сопротивления кабельных линий на потери напряжения. В калькуляторе заранее заложена величина допустимых потерь в количестве 5%. Данная норма будет действительной при соблюдении некоторых условий. Для сетей переменного тока значение коэффициента мощности должно составлять 1. Кроме того, должны обязательно учитываться материалы, используемые в жилах проводников. Результаты вычислений при помощи калькулятора, не следует считать окончательным вариантом. Для конкретных случаев могут понадобиться дополнительные уточняющие расчеты с привлечением квалифицированных специалистов.
Для чего рассчитывается сечение
Правильные расчеты сечения кабеля являются залогом безопасной эксплуатации электрических сетей. С помощью кабельно-проводниковой продукции осуществляется не только передача, но и распределение тока, поскольку иных способов просто не существует.
При недостаточном сечении кабеля мощные потребители не смогут нормально функционировать, проводник начнет перегреваться. В результате, постепенно разрушается изоляция, снижается надежность и продолжительность эксплуатации. В конце концов, несоответствие провода повышенной нагрузке может привести к его полному перегоранию. Это происходит, когда хозяева, пытаясь сэкономить, используют кабели с меньшим сечением, чем необходимо. Именно такой подход и является наиболее частой причиной коротких замыканий. Поэтому еще на стадии проектирования особое внимание уделяется расчетам, что позволяет избежать перегрева, потери мощности, непредвиденных расходов на ремонтно-восстановительные работы.
Правильный выбор параметров проводника обеспечивает, в дальнейшем, качественную и устойчивую работу потребителей. Основным критерием расчетов выступает мощность приборов и оборудования, запланированных для постоянной эксплуатации. При одной и той же нагрузке площадь сечения медного и алюминиевого провода различаются между собой.
Калькулятор расчёта сечения кабеля
Любой профессиональный электрик, даже начинающий и, следовательно, неопытный, должен знать, каким образом провести расчет сечения кабеля. Ошибка в вычислениях — и ожидать стопроцентной безопасности эксплуатации электрической энергии нельзя.
С какой целью делается расчет сечения кабеля
В чем же такая неоспоримая важность этого умения? А встречный вопрос – вам безопасность при пользовании электрической энергией важна? Он даже не предполагает какого-либо ответа, кроме «да, очень». Значит, думаем по порядку.
Основное русло для передачи электричества – это кабель и провод. Ток «разбегается» по ним к нашим розеткам, плитам, светильникам и так далее. Если не рассчитать всего, до чего должен добраться ток, можно запросто «перегрузить» проводку. Она начнет нагреваться, стараясь обеспечить потребность. Изоляция оплавится и повредится (мы говорим «перегорела»), а это чревато, понятно, немалыми опасностями. Так что расчет сечения кабеля по нагрузке важен настолько, насколько важна вам ваша безопасность.
Первый помощник электрика — калькулятор сечения кабеля
Безошибочно сделать вычисления поможет специальный онлайн- калькулятор. Все алгоритмы введены в программу – и печальный «человеческий фактор» здесь роли не получит.
На производстве, да и зачастую в быту, нынче используются оборудование/электроприборы большой мощности. Значит, нужен расчет сечения кабеля по мощности. Находим калькулятор, задаем параметры мощности – они всегда значатся в паспорте агрегатов и на корпусе изделия. Калькулятор оснащен удобной таблицей – нужно только ввести все данные.
Полученные расчеты применимы и без учета индуктивности сопротивления линии (допустимый спад напряжения в калькуляторе берется 5% — это норма ГОСТа 13109-97).
Калькулятором легко рассчитать и другой не менее нужный в общей безопасности пункт, как сечение кабеля по длине. Если есть монтажная схема и известен ее масштаб, длину определяют, просто измерив расстояния между щитками, выключателями, розетками, распаечными коробками и так далее. К каждому отрезку прибавить до 10 см для скруток.
Электрификация жилища — сложный и трудоемкий процесс. Во многом это связано с увеличением количества разных приборов в доме. Используя калькулятор, специалист сможет без труда и, главное, без ошибок, сделать расчет сечения проводов кабелей. И сделает это быстрее. Как пример – насколько расчет сечения медного кабеля отличается от аналогичного по кабелю из алюминия. Если вы выбрали не медный, а на алюминиевый, то в следствие худшей проводимости пришлось бы выбирать большее сечение. Для медного отлично подходит сечение 2,5 мм квадратных, а для алюминиевого это значение — более 4 мм квадратных.
Интернет-услуги для электриков предлагают расчет сечения кабеля онлайн. Это удобно.Ведь каждая формула расчёта сечения кабеля, которую еще не выучил назубок электрик – всегда под рукой, в смысле буквальном – набрал в поисковике «калькулятор сечения» — вводи свои данные. Ошибка исключена.
Расчет сечения кабеля по току
Без электричества жизнь современного человека представить сейчас просто невозможно. Но при небрежном отношении к себе оно способно становиться не другом, а смертельно опасным врагом. Даже на бытовом уровне эксплуатация электрических сетей, систем и приборов требует строгого соблюдения целого ряда непреложных правил.
Расчет сечения кабеля по токуИ, кстати, одним из наиболее уязвимых мест именно в сфере конечного потребления электроэнергии, то есть в жилых домах и квартирах, является электропроводка. А именно – неправильно выполненный расчет сечения кабеля по току нагрузки, из-за чего чаще всего случаются аварии с очень тяжелыми, а иногда – и трагичными последствиями.
Проблема часто в том, что владельцы жилья попросту не видят связи между сечением проводника и мощностью подключаемой нагрузки: «идет ток – и ладно». Встречаются и такие ситуации, когда при строительстве подрядчики явно «халтурили», и, пытаясь максимально сэкономить на материалах, скрытно уложили некачественные или не соответствующие проекту провода. Сплошь и рядом случаи, когда продолжает эксплуатироваться старая проводка, смонтированная может быть и правильно, но когда-то очень давно, то есть явно не рассчитанная на современную насыщенность жизни людей электрическими бытовыми приборами.
В настоящей публикации будет рассмотрено несколько путей оценки соответствия сечения проводника реальным условиям эксплуатации электроприборов.
Несколько базовых понятийА для чего вообще необходимо рассчитывать сечение проводов? Нельзя ли ограничиться подбором «на глаз»?
Нет, нельзя, так как совсем несложно впасть в две крайности:
- Проводник недостаточного сечения начинает сильно перегреваться. Это ведет к оплавлению изоляции проводки, созданию условий для самовозгорания, для коротких замыканий. Все это становится причиной разрушительных пожаров, часто сопровождающихся человеческими трагедиями.
- Проводники избыточного диаметра, безусловно, такими опасностями не грозят. Но зато они и существенно дороже (особенно если разговор идет о медных кабелях), и не столь удобны в работе. Получаются совершенно неоправданные материальные и трудовые затраты.
Так что руководствоваться следует принципом разумной достаточности. Тем более что произвести необходимые вычисления – по силам каждому, кто хоть немного разбирается в азах математики и физики.
Для начала вспомним некоторые понятия, многим, наверное, и без того хорошо известные. Но просто для того, чтобы в дальнейшем изложении не появилось разночтений.
Провода одножильные и многожильныеС этим вопросом часто бывает путаница, в том числе в статьях, опубликованных на интернет-сайтах.
Итак, в качестве проводника в проводах и кабелях может использоваться одна проволока — с точки зрения электрической проводимости — это оптимальный вариант.
Но для достижения гибкости кабельной продукции приходится использовать более сложные конструкции – множество тонких проволочек, обычно скрученных при этом в «косичку». Чем больше таких проволочек – тем более гибким получается проводник.
Однако, это не следует путать с многожильностью провода. Под отдельной жилой подразумевается именно отдельный проводник. Чтобы стало понятнее – смотрим на иллюстрацию.
На картинке ниже – примеры одножильного провода. Просто с левой стороны – жесткий однопроволочный, а с правой – более гибкий многопроволочный вариант.
И слева, и справа — это одножильный провод.Если провод (кабель) конструктивно совмещает два изолированных друг от друга проводника или больше, он становится двухжильным, трехжильным и т.п. Но он также может оставаться одно- или многопроволочным.
Двухжильный многопроволочный проводАналогичная ситуация и с кабелями. По определению, кабель – это конструкция из нескольких изолированных друг от друга проводников, заключенных в общую изолирующую и защитную оболочку. А вот проводники также могут быть одно- или многопроволочными.
Трехжильные силовые кабели – с однопроволочными или многопроволочными жиламиЖесткие однопроволочные изделия хороши для неподвижных участков проводки, например, вмуровываемых в стены. Многопроволочные провода и кабели отлично подходят для тех участков, где бывает нужна подвижность — типичным примером являются шнуры питания бытовой техники и осветительных приборов.
Итак, все последующие расчеты будут вестись для сечения жилы провода или кабеля.
При оценке условий расположения проводов в дальнейшем могут быть варианты, когда придется представлять разницу, например, между тремя одножильными проводами, протянутыми в одной трубе, или одним трехжильным кабелем.
Диаметр и площадь поперечного сечения проводаДва взаимосвязанных параметра, которые порой по неопытности путают. Смотрим на схему – по ней все станет понятно.
Слева – диаметр проводника (жилы), измеряется в миллиметрах. Справа – площадь поперечного сечения проводника, измеряется в мм².Во всех справочника обычно используется параметр сечения, так как именно по этому критерию производится классификация различных марок проводов и кабелей.
Но это хорошо, если известна марка кабеля (провода). Если нет, то сечение остается подсчитать, опираясь на диаметр, который можно измерить штангенциркулем или микрометром.
Диаметр жилы (проволоки) поддается обычному измерению. Площадь сечения – только расчёту.Формулу площади круга должны, наверное, помнить все. Но тем не менее – приведем ее на всякий случай.
Sc = π × d² / 4 ≈ 3.14 × d² / 4 ≈ 0.785 × d²
Знак «примерно равно» применен только потому, что взято округление числа π до сотых, всем известное значение π ≈ 3,14. Но в нашем случае такой точности – более чем достаточно!
Это формула сечения однопроволочного проводника. А если нужно найти сечение неизвестного провода, с многопроволочной жилой?
Тоже ничего сложного. Жила распушается, чтобы появилась возможность подсчитать количество проволочек в «косичке». И останется только микрометром или штангенциркулем промерить диаметр одной проволочки.
Sc = n × π × d² / 4 ≈ n × 3.14 × d² / 4 ≈ 0.785 × n × d²
где n – это количество проволочек в одной жиле.
Калькулятор пересчёта диаметра проводника в площадь его поперечного сеченияПерейти к расчётам
Основные электрические параметры цепиПри проведении расчетов нам могут понадобиться формулы, показывающими взаимосвязь между основными электрическими параметрами.
- Базовой формулой для цепей переменного и постоянного тока является известный закон Ома, гласящий¸ что сила тока в проводнике (на участке цепи) прямо пропорциональна напряжению и обратно пропорциональна сопротивлению этого участка.
I = U / R
I — сила тока, ампер, А.
U — напряжение (разность потенциалов), вольт, В.
R — электрическое сопротивление, ом, Ом.
Из этой формулы несложно вывести другие:
U = I × R
R = U / I
- Теперь обратимся к мощности электрического тока.
Для начала – работа, выполняемая электрическим током. Она равна произведению силы тока на напряжение и на длительность промежутка времени, в течение которого она выполнялась.
А = I × U × Δt
А — работа электрического тока, джоулей, Дж.
Δt — длительность периода, секунд, с.
Но более наглядной величиной всегда является мощность, то есть показатель работы, выполненной за единицу времени, например, секунду.
P = A / Δt = I × U × Δt / Δt = I × U
P — мощность электрического тока, джоулей в секунду или ватт, Вт.
- Отсюда напрашивается целый каскад производных формул, описывающих взаимосвязи напряжения, силы тока, сопротивления и мощности между собой. Чтобы не перечислять все формулы «в столбик», можно привести хорошо понятное графическое их представление.
- Вернемся к сопротивлению проводника. Как оно выражается через ток и напряжение – мы уже знаем.
Но оно в первую очередь зависит от материала изготовления проводника и его геометрических размеров. Описывается эта зависимость следующей формулой:
R = ρ × L / S
ρ — удельное сопротивление материала, из которого изготовлен проводник. Показывает, какое сопротивление имеет проводник длиной 1 метр с площадью поперечного сечения 1 мм².
Как правило, на практике в электротехнике чаще всего встречаются алюминий и медь. Реже применяются стальные проводники, но обычно – лишь в качестве каких-то токонесущих деталей электротехнической арматуры.
Для алюминия удельное сопротивление равно 0,029 Ом×м, у меди оно пониже – 0,0175 Ом×м.
L — длина линии (участка цепи) метров, м.
S — площадь поперечного сечения проводника, мм²
Эти соотношения полезно знать, так как иногда приходится оценивать собственные резистивные потери мощности на линиях большой протяженности.
- Акцентируем внимание еще на одном взаимоотношении, которое, в принципе, уже было рассмотрено выше. Это – количество тепла, выделяемое проводником при прохождении по нему электрического тока. Описывается уравнением Джоуля-Ленца.
Q = I² × R × Δt
Как видно, нагрев проводника (Q) лежит в квадратичной зависимости от силы тока (I) и от сопротивления (R). Понятно, что при всех остальных равных параметрах медный провод будет иметь более низкое сопротивление, нежели алюминиевый, то есть при одинаковой нагрузке греться станет существенно меньше.
Так оно и есть – это будет очень хорошо заметно дальше, при работе с таблицами.
- Можно еще вспомнить понятие плотности тока. Здесь все относительно просто – это количество ампер на единицу площади сечения проводника. Этот термин будет задействован в одном из способов оценки проводки.
Далеко не все их показанных формул и определений понадобятся для правильного подбора сечения проводника. Но зато они помогают более «рельефно» представить взаимосвязи между разными величинами.
Материалы изготовления проводкиОб этом уже вкратце говорилось – в подавляющем большинстве случаев используются медь и алюминий. Провода из иных металлов и сплавов если и встречаются, то имеют очень узкую специализацию.
Медь выигрывает у алюминия практически по всем статьям!Сравнение меди и алюминия практически по всем статьям показывает ее преимущество.
- Удельное сопротивление даже просто в «чистом виде» у меди практически в полтора раза ниже.
- Оба этих металла от контакта с кислородом покрываются тонким слоем окислов. Однако, к меди этот слой практически не становится препятствием для токопроводимости. То есть в местах контактных соединений особых проблем не возникает (низкое переходное сопротивление).
А вот окислы алюминия по своим качествам близки к диэлектрикам. И проводимость обеспечивается только тем, что этот слой очень тонок. В местах механических контактов проблем значительно больше. Поэтому рекомендуется зачистка проводников, а также использование специальных смазок, предотвращающих поверхностную коррозию алюминия.
- Медь прочнее алюминия. Она в меру пластична, что позволяет достигать надёжных контактов при обжиме. Сломать медный проводник механическим воздействием – довольно сложно.
Переломить же алюминиевый провод можно буквально через несколько изгибов по одному месту. Недостаток упругости этого металла (слишком уж высокая пластичность) приводит к тому, что после выполнения скруток или обжима в клеммах, то есть при стабилизировавшейся механической нагрузке, алюминий продолжает «течь». А это значит, что надежность механических контактных соединений всегда постоянно снижается и требует регулярной подтяжки.
- Оптимальный вариант контактов для любого металла – это сварка или пайка. Но и по этим позициям медь впереди. Произвести пайку меди можно, не прибегая к каким-то сложным технологическим приёмам. Пайка или сварка алюминия требует использования специальных припоев и флюсов, и неопытному человеку выполнить эту операцию – крайне затруднительно.
- Единственные позиции, по которым алюминий обходит медь – он втрое легче и значительно дешевле. Этим и объясняется его широкое использование в эпоху массового городского многоэтажного строительства. Сейчас же по действующим СНиП в качестве проводки в жилых домах должна использоваться исключительно медь.
С теорией закончили. Пора переходить к основному вопросу темы – как же определить требуемое сечение токонесущей жилы для различных условий эксплуатации электропроводки.
Здесь возможны несколько вариантов поиска нужного результата.
Выбрать можно тот, который покажется наиболее удобным или подходящим к конкретному случаю.
Расчет через допустимую плотность токаИзо всего изложенного выше уже должно быть понятно, что главным ограничителем при выборе требуемого сечения является резистивный нагрев проводников, способный привести к плавлению изоляции, к коротким замыканиям, к перегреву окружающих материалов вплоть до вероятности самовозгорания.
То есть выбираемое сечение провода должно исключать подобные явления.
Проведение точных теплотехнических расчетов – дело очень непростое. Но специалисты уже многое сделали в этом плане, так что можно воспользоваться их наработками.
В частности, ими просчитана безопасная плотность тока, которая не вызывает опасного нагрева проводника до температур, способных вызвать плавление наиболее распространенной в наше время ПВХ или ПЭ изоляции.
Так, для проводников, находящихся в условиях условной комнатной температуры (+20℃), эта плотность тока составляет:
Материал проводов | Оптимальная плотность тока, А/мм² | |
---|---|---|
Расположение проводки | Открытая | Закрытая |
Алюминий | 3.5 | 3 |
Медь | 5 | 4 |
Сразу оговорим разницу между открытой и закрытой проводками.
- Открытая встречается не столь часто. Она прокладывается по стенам или потолкам на хомутах или изоляторах, может быть воздушной — самонесущей или же удерживаться несущим тросом. К открытым проводкам можно отнести и сетевые шнуры, удлинители, если, конечно, они не намотаны на катушки, бобины и т.п.
- Все остальное, по сути – это закрытая проводка: расположенная к кабель-каналах, коробах или гофротрубах, вмурованная в стены, проложенная в грунте и т.п. Иными словами, в любых условиях, где отсутствует нормальный теплоотвод. С опорой на этот критерий к закрытой проводке следует отнести и те участки, которые располагаются в распределительных щитах и монтажных коробках – нормального теплообмена здесь тоже нет.
Выше не зря было оговорено, что указанные показатели справедливы для комнатной температуры. Случается, что проводку приходится прокладывать в помещениях с особым температурным режимом, то есть в которых поддерживается нагрев выше обычного (предбанники, сушилки, оранжереи и т.п.) В таком случае в значение допустимой плотности тока вносятся коррективы – применяется коэффициент 0,9 на каждые 10 градусов температуры свыше + 20 ℃.
Например, на какую плотность тока следует ориентироваться, если планируется проложить медную проводку в кабель-канале для подключения ТЭНа в сушилке, в которой будет поддерживаться температура +50 ℃?
По таблице плотность тока G для закрытой медной проводки равна 4 А/мм².
Разница между нормой температуры и планируемым режимом равна
50 – 20 = 30 ℃.
То есть понижающий коэффициент должен быть учтен трижды. Но столько это означает не 0,9 × 3, а 0,9³:
G = 4 × 0,9 × 0,9 × 0,9 = 4 × 0,9³ = 4 × 0,729 = 2,92 А/мм²
На этот показатель плотности и придется ориентироваться для создания безопасной в данных условиях проводки.
Еще один пример. Скажем, в уже рассмотренных условиях проводка прокладывается для подключения двух обогревателей мощностью по 750 ватт каждый.
Суммарная нагрузка по мощности на линию получается:
Р = 750 + 750 = 1500 Вт
Пересчитаем ее в необходимый ток при напряжении 220 вольт:
I = P / U = 1500 / 220 = 6.8 А
Нормальная плотность тока для таких условий эксплуатации была нами подсчитана – 2,92 А/мм². То есть ничего уже не стоит подсчитать то сечение медной жилы, которое обеспечит безопасную плотность:
S = I / G = 6.8 / 2.92 = 2.33 мм²
Естественно, полученное значение приводится к ближайшему с округлением в большую сторону. То есть для прокладки проводки в указанных условиях подойдет медный провод сечением 2.5 мм².
В принципе, по такому же принципу можно проводить расчеты и для любых других помещений. В том числе для линий, к которым планируется подключить несколько электрических приборов различной мощности.
При этом суммарную мощность линии можно подсчитать так:
ΣP = (P₁ + Р₂ + … + Рₙ) × Кс × Кз
В скобках — мощности подключаемых к линии электроприборов, от 1 до n.
Кс – так называемый коэффициент спроса. Вряд ли все подключенные в линии приборы будут работать одновременно. То есть этот коэффициент учитывает вероятность их одновременного включения.
Расчет этого коэффициента – задача непростая, так как учитывает немало нюансов. Но так как наша публикация предназначена для электриков-любителей, которые в своей работе наверняка ограничиваются своими небольшими жилыми владениями, можно задачу упростить. А конкретно: при двух приборах коэффициент оставляем равным единице. При трех ÷ четырех – 0,8. Пять ÷ шесть – 0,75. Большего количества потребителей на линии в условиях дома или квартиры вряд ли встретится, но на всякий случай, если вдруг… – коэффициент 0,7.
Кз – коэффициент запаса. Величина необязательная. Но рачительный хозяин может подумать и наперед, что, возможно, через год-другой к этой же линии придется подключать и дополнительную нагрузку, о которой пока можно только догадываться. Так что имеет смысл сразу заложить резерв, приняв коэффициент, например, от 1,5 до 2,0. Но, повторимся, дело – добровольное, и этот коэффициент можно вообще исключить из расчетов.
Еще один важный нюанс. Реальная мощность электрического прибора может оказаться выше номинальной, указанной в паспорте. Это связано с понятиями активной и реактивной мощностей.
Не будем вдаваться особо в физику этого явления, скажем лишь, что полная мощность для некоторых типов нагрузки рассчитывается по формуле:
Pп = Pn / cos φ
Pп — полная мощность;
Pn — указанная в паспорте номинальная мощность;
cos φ — коэффициент мощности, равный косинусу угла φ — смещения фаз тока и напряжения.
Такое смещение свойственно приборам с мощным электроприводом, с высокой индуктивной нагрузкой (трансформаторами, дросселями). Значение cos φ для такой техники также указывается в паспорте изделия.
Значения номинальной мощности и cos φ на шильдике асинхронного двигателяВ бытовых условиях подобные приборы встречаются нечасто, но все же если линия проводится, скажем, для питания мощного насоса, компрессора, электродвигателя, для сварочного поста – лучше этим показателем не манкировать.
А теперь можно попробовать произвести полный расчет с учетом всего сказанного выше. Для этого читателю предлагается онлайн-калькулятор.
В поля ввода программы необходимо ввести запрашиваемые данные:
- Какая проводка будет использоваться: медная или алюминиевая, расположенная открыто или закрытая.
- Напряжение в планируемой линии.
- Если в помещении предполагается какой-то специфический температурный режим, то это следует указать – выбрать из предлагаемых вариантов. Температура в комнате ниже +25℃ будет считаться нормальной – она стоит в перечне первой и учитывается по умолчанию.
- Далее, указывается мощность планируемой к подключению нагрузки. Предусмотрено до 6 разных единиц – для бытовых условий этого обычно достаточно. При этом если поле не заполняется, то мощность считается равной нулю, то есть поле в расчет не принимается.
Два последних поля позволяют учесть нагрузку с реактивной составляющей мощности, если таковая есть. Для этого помимо номинала необходимо указать и значение cos φ. По умолчанию cos φ = 0, то есть как для обычной активной нагрузки.
- В зависимости от количества подключаемых к линии приборов в алгоритме автоматически учитывается коэффициент спроса.
- Наконец, пользователь может заложить резерв мощности, повысив коэффициент запаса, от 1 до 2 с шагом 0,1.
Результат расчета будет выдан в квадратных миллиметрах сечения жилы провода (кабеля) с точностью до сотой. Естественно, после этого придется сделать округление до ближайшего стандартного размера в большую сторону.
Калькулятор расчета площади сечения токонесущей жилы кабеля или провода Поиск нужного сечения кабеля с помощью таблицНе все и не всегда любят заниматься самостоятельными расчетами. Таким пользователям можно порекомендовать воспользоваться таблицами.
По сути, это те же расчеты, выполненные специалистами по приведённым формулам. Но только для удобства их результаты сведены в табличное представление.
Например, таблица для определения допустимого сечения (и соответствующего диаметра) жилы исходя из мощности нагрузки и (или) значения силы тока для переменного напряжения 220 вольт (ОП и ЗП — открытая и закрытая проводка соответственно):
Мощность нагрузки, Вт | Ток, А | МЕДЬ | АЛЮМИНИЙ | ||||||
---|---|---|---|---|---|---|---|---|---|
ОП | ЗП | ОП | ЗП | ||||||
S, мм ² | d, мм | S, мм ² | d, мм | S, мм ² | d, мм | S, мм ² | d, мм | ||
100 | 0,43 | 0,09 | 0,33 | 0,11 | 0,37 | 0,12 | 0,40 | 0,14 | 0,43 |
200 | 0.87 | 0,17 | 0,47 | 0,22 | 0,53 | 0,25 | 0,56 | 0.29 | 0,61 |
300 | 1,30 | 0,26 | 0,58 | 0,33 | 0,64 | 0,37 | 0,69 | 0,43 | 0,74 |
400 | 1,74 | 0,35 | 0,67 | 0,43 | 0,74 | 0,50 | 0,80 | 0,58 | 0,86 |
500 | 2.17 | 0,43 | 0,74 | 0,54 | 0,83 | 0,62 | 0,89 | 0.72 | 0,96 |
750 | 3,26 | 0,65 | 0,91 | 0,82 | 1,02 | 0,93 | 1,09 | 1,09 | 1,18 |
1000 | 4,35 | 0,87 | 1,05 | 1,09 | 1,18 | 1,24 | 1,26 | 1,45 | 1,36 |
1500 | 6,52 | 1,30 | 1,29 | 1,63 | 1,44 | 1,86 | 1,54 | 2,17 | 1,66 |
2000 | 8,70 | 1,74 | 1,49 | 2,17 | 1,66 | 2,48 | 1,78 | 2,90 | 1,92 |
2500 | 10,87 | 2,17 | 1,66 | 2,72 | 1,86 | 3,11 | 1,99 | 3.62 | 2,15 |
3000 | 13.04 | 2,61 | 1,82 | 3,26 | 2,04 | 3,73 | 2.18 | 4,35 | 2,35 |
3500 | 15,22 | 3,04 | 1,97 | 3,80 | 2,20 | 4,35 | 2,35 | 5.07 | 2,54 |
4000 | 17.39 | 3,48 | 2,10 | 4,35 | 2,35 | 4.97 | 2.52 | 5,80 | 2.72 |
4500 | 19,57 | 3,91 | 2,23 | 4,89 | 2,50 | 5,59 | 2,67 | 6,52 | 2,88 |
5000 | 21,74 | 4,35 | 2,35 | 5,43 | 2,63_ | 6,21 | 2,81 | 7.25 | 3,04 |
6000 | 26.09 | 5,22 | 2,58 | 6,52 | 2,88 | 7,45 | 3,08 | 8,70 | 3,33 |
]000 | 30,43 | 6,09 | 2,78 | 7,61 | 3,11 | 8,70 | 3,33 | 10,14 | 3,59 |
8000 | 34.78 | 6,96 | 2,98 | 8,70 | 3,33 | 9,94 | 3,56 | 11,59 | 3,84 |
9000 | 39.13 | 7,83 | 3,16 | 9,78 | 3,53 | 11,18 | 3,77 | 13,04 | 4,08 |
10000 | 43,48 | 8,70 | 3,33 | 10,87 | 3,72 | 12,42 | 3,98 | 14.49 | 4,30 |
Чаще встречаются несколько иные таблицы. В них приведены стандартные сечения выпускаемой кабельной продукции, и соответствующие им допустимые значения силы тока и мощности нагрузки.
Вот такая таблица для кабелей с медными жилами:
Сечение токонесущей жилы, мм ² | Напряжение 220 В | Напряжение 380 В | ||
---|---|---|---|---|
I, A | P, кВт | I, A | P, кВт | |
1.5 | 19 | 4.1 | 16 | 10.5 |
2.5 | 27 | 5.9 | 25 | 16.5 |
4 | 38 | 8.3 | 30 | 19.8 |
6 | 46 | 10.1 | 40 | 26.4 |
10 | 70 | 15.4 | 50 | 33 |
16 | 85 | 18.7 | 75 | 49.5 |
25 | 115 | 25.3 | 90 | 59.4 |
35 | 135 | 29.7 | 115 | 75.9 |
50 | 175 | 38.5 | 145 | 95.7 |
70 | 215 | 47.3 | 180 | 118.8 |
95 | 260 | 57.2 | 220 | 145.2 |
120 | 300 | 66 | 260 | 171.6 |
Аналогичная таблица – для кабелей с алюминиевыми проводниками:
Сечение токонесущей жилы, мм ² | Напряжение 220 В | Напряжение 380 В | ||
---|---|---|---|---|
I, A | P, кВт | I, A | P, кВт | |
2.5 | 20 | 4,4 | 19 | 12,5 |
4 | 28 | 6,1 | 23 | 15,1 |
6 | 36 | 7,9 | 30 | 19,8 |
10 | 50 | 11,0 | 39 | 25,7 |
16 | 60 | 13,2 | 55 | 36,3 |
25 | 85 | 18,7 | 70 | 46,2 |
35 | 100 | 22,0 | 85 | 56,1 |
50 | 135 | 29,7 | 110 | 72,6 |
70 | 165 | 36,3 | 140 | 92,4 |
95 | 200 | 44,0 | 170 | 112,2 |
120 | 230 | 50,6 | 200 | 132,2 |
Есть таблицы, которые сразу учитывают количество токонесущих жил в одном кабель-канале (коробе, трубе и т.п.). То есть принимается в расчет взаимное тепловое влияние в условиях ограниченности теплоотвода.
Такая таблица для медных кабелей показана ниже.
(Сокращения: ОЖ – одножильный, ДЖ – двужильный, ТЖ – трехжильный).
Сечение токонесущей жилы, мм² | Ток, А, для проводов, проложенных | |||||
---|---|---|---|---|---|---|
открыто | в одном кабель-канале | |||||
2×ОЖ | 3×ОЖ | 4×ОЖ | 1×ДЖ | 1×ТЖ | ||
0.5 | 11 | — | — | — | — | — |
0.75 | 15 | — | — | — | — | — |
1 | 17 | 16 | 15 | 14 | 15 | 14 |
1.2 | 20 | 18 | 16 | 15 | 16 | 14.5 |
1.5 | 23 | 19 | 17 | 16 | 18 | 15 |
2 | 26 | 24 | 22 | 20 | 23 | 19 |
2.5 | 30 | 27 | 25 | 25 | 25 | 21 |
3 | 34 | 32 | 28 | 26 | 28 | 24 |
4 | 41 | 38 | 35 | 30 | 32 | 27 |
5 | 46 | 42 | 39 | 34 | 37 | 31 |
6 | 50 | 46 | 42 | 40 | 40 | 34 |
8 | 62 | 54 | 51 | 46 | 48 | 43 |
10 | 80 | 70 | 60 | 50 | 55 | 50 |
16 | 100 | 85 | 80 | 75 | 80 | 70 |
25 | 140 | 115 | 100 | 90 | 100 | 85 |
35 | 170 | 135 | 125 | 115 | 125 | 100 |
50 | 215 | 185 | 170 | 150 | 160 | 135 |
70 | 270 | 225 | 210 | 185 | 195 | 175 |
95 | 330 | 275 | 255 | 225 | 245 | 215 |
120 | 385 | 315 | 290 | 260 | 295 | 250 |
Аналогичная таблица – для кабелей с алюминиевыми проводами:
Сечение токонесущей жилы, мм² | Ток, А, для проводов, проложенных | |||||
---|---|---|---|---|---|---|
открыто | в одном кабель-канале | |||||
2×ОЖ | 3×ОЖ | 4×ОЖ | 1×ДЖ | 1×ТЖ | ||
2 | 21 | 19 | 18 | 15 | 17 | 14 |
2.5 | 24 | 20 | 19 | 19 | 19 | 16 |
3 | 27 | 24 | 22 | 21 | 22 | 18 |
4 | 32 | 28 | 28 | 23 | 25 | 21 |
5 | 36 | 32 | 30 | 27 | 28 | 24 |
6 | 39 | 36 | 32 | 30 | 31 | 26 |
8 | 46 | 43 | 40 | 37 | 38 | 32 |
10 | 60 | 50 | 47 | 39 | 42 | 38 |
16 | 75 | 60 | 60 | 55 | 60 | 55 |
25 | 105 | 85 | 80 | 70 | 75 | 65 |
35 | 130 | 100 | 95 | 85 | 95 | 75 |
50 | 165 | 140 | 130 | 120 | 125 | 105 |
70 | 210 | 175 | 165 | 140 | 150 | 135 |
95 | 255 | 215 | 200 | 175 | 190 | 165 |
120 | 295 | 245 | 220 | 200 | 230 | 190 |
При желании можно отыскать таблицы более узкой специализации, например, для воздушной прокладки проводов или для подземной, причем — еще и с учетом теплоотводных качеств того или иного грунта. Но не станем ими перегружать настоящую публикацию – она рассчитана все же на начинающих электриков, которые в своем дебюте выполняют задачи попроще.
Некоторые мастера и вовсе рекомендуют брать во внимание упрощенный вариант таблицы сечений проводов и кабелей, используемых для домашней проводки. Вот такой:
Сечение жилы медного провода, мм ² (в скобках — алюминиевого) | Максимальный ток при длительной нагрузке, А | Максимальная мощность нагрузки. кВт | Номинальный ток защиты автомата, А | Предельный ток защиты автомата, А | Сфера применения в условиях дома (квартиры) |
---|---|---|---|---|---|
1,5 (2,5) | 19 | 4.1 | 10 | 16 | приборы освещения, сигнализации |
2,5 (4,0) | 27 | 5.9 | 16 | 25 | розеточные блоки, системы подогрева полов |
4,0 (6,0) | 38 | 8.3 | 25 | 32 | мощное климатическое обрудование, водонагреватели, стиральные и посудомоечные машины |
6,0 (10,0) | 46 | 10.1 | 32 | 40 | электроплиты и электродуховки |
10,0 (16,0) | 70 | 15.4 | 50 | 63 | входные линии электропитания |
По большому счету, так оно обычно и получается.
Но напоследок рассмотрим еще один важный нюанс.
Любой проводник обладает собственным сопротивлением – об этом мы говорили в самом начале статьи, когда приводили значения удельного сопротивления материалов, меди и алюминия.
Оба этих металла обладают весьма достойной проводимостью, и на участках небольшой протяженности собственное сопротивление линии не оказывает сколь-нибудь значимого влияния на общие параметры цепи. Но если планируется прокладка линии большой протяженности, или, например, изготавливается удлинитель-переноска большой длины для работы на значительном удалении от дома, то собственное сопротивление желательно просчитать, и сравнить вызываемое им падение напряжения с напряжением питания. Если падение напряжения получается более 5% от номинала напряжения в цепи, правила эксплуатации электроустановок предписывают брать кабель с жилами большего сечения.
Например, изготавливается переноска для сварочного инвертора. Если сопротивление самого кабеля будет чрезмерным, провода под нагрузкой будут сильно перегреваться, а напряжения и вовсе может оказаться недостаточно для корректной работы аппарата.
Собственное сопротивление кабеля можно вычислить по формуле:
Rk = 2 × ρ × L / S
Rk — собственное сопротивление кабеля (линии), Ом;
2 — длина кабеля удваивается, так как учитывается весь путь прохождения тока, то есть «туда и обратно»;
ρ — удельное сопротивление материала жил кабеля;
L — длина кабеля, м;
S — площадь поперечного сечения жилы, мм².
Предполагается, что нам уже известно, с каким током придется иметь дело при подключении нагрузки — об этом уже не раз рассказывалось в настоящей статье.
Зная силу тока, несложно по закону Ома вычислить падение напряжения, а затем сравнить его с номиналом.
Ur = Rk × I
ΔU (%) = (Ur / Uном) × 100
Если проверочный результат получается более 5%, то следует увеличить сечение жил кабеля на один шаг.
Быстро провести такую проверку поможет еще один онлайн-калькулятор. Дополнительных пояснений он, думается, не потребует.
Калькулятор проверки падения напряжения на линии большой протяженностиПерейти к расчётам
Как уже говорилось, при значении до 5% можно ничего не менять. Если получается больше – увеличивается сечение жилы кабеля, также с последующей проверкой.
* * * * * * *
Итак, были рассмотрены основные вопросы, касающиеся необходимого сечения кабеля в зависимости от планируемой нагрузки на него. Читатель волен выбрать любой из предлагаемых способов расчета, какой ему больше понравится.
Завершим статью видеосюжетом на эту же тему.
Видео: Основные правила выбора сечения проводовКалькулятор размера провода NEC | jCalc.net
Калькулятор размера проводов рассчитывает размер провода AWG для электрических кабелей и проводов в соответствии с Национальным электрическим кодексом (NEC) в США
См. Также
Параметры:
- Напряжение (В): Укажите напряжение и выберите расположение фаз: 1 фаза переменного тока или 3 фазы переменного тока. В настоящее время поддерживает только AC.
- Нагрузка (кВт, кВА, А, л.с.): Укажите нагрузку в кВт, кВА, А или л.с.Укажите cosF (коэффициент мощности нагрузки), если нагрузка указывается в кВт или л.с.
- Максимальное падение напряжения (%): Максимально допустимое падение напряжения.
- Расстояние (м, футы): Расчетная длина кабеля или провода в метрах футов
- Ток и время короткого замыкания (кА, мс): Ток короткого замыкания и время отключения устройства защиты.
- В цепях низкого напряжения обычно используется сквозной ток, т.е.после защитного устройства (предохранитель, автоматический выключатель или автоматический выключатель).
- В цепях высокого напряжения обычно используется предполагаемый ток повреждения, то есть ток повреждения на первичной стороне автоматического выключателя, контактора или предохранителя. Это сделано для того, чтобы кабель также мог справиться с ошибкой при выходе из строя первичной защиты. Кроме того, высоковольтные выключатели обычно не ограничивают ток короткого замыкания.
- Количество проводников: Количество токоведущих проводников в кабелепроводе, кабеле или непосредственно под землей.Допускается не более трех без применения понижающего коэффициента. Не обращайте внимания на нейтральный провод и заземляющий провод в трехфазных кабелях.
- Тип изоляции: Тип изоляции. Обычно термопласт (ПВХ, 75 ° C) или термореактивный (XLPE, 90 ° C). Важная часть — выбрать правильный температурный рейтинг.
- Количество параллельных жил: Обычно только один кабель. Для сценариев с высокой нагрузкой можно выбрать более одного кабеля. Это повлияет на снижение характеристик кабелей.В данной версии калькулятора это не учитывается.
- Монтаж кабеля: Способ подключения проводов. Параметры указаны в таблицах NEC 310.15 (B) (16) и 310.15 (B) (17).
Текущий рейтинг:
- Текущий рейтинг выбран из Таблицы 310.15 (B) (16) и Таблицы 310.15 (B) (17) в NEC 2017.
- Характеристики кабеля указаны для температуры окружающей среды 30 ° C.
- Номинальный ток зависит от типа изоляции.Учитываются только кабели из ПВХ и сшитого полиэтилена.
- Текущий рейтинг также основан на методе установки. В соответствии с таблицами 310.15 (B) (16) и 310.15 (B) (17) учитываются только кабельные каналы, кабели, скрытые проводники и свободный воздух.
- Калькулятор сечения проводов учитывает только медные проводники.
Снижение номинальных характеристик:
- В настоящее время в таблицах номинальных значений тока 310.15 (B) (16) и 310.15 (B) (17) не применяется снижение номинальных значений.
- Предполагается, что максимальная температура окружающей среды составляет 30 ° C, а максимальная температура грунта — 20 ° C.Для более высоких температур необходимо будет снизить номинальные параметры в соответствии с требованиями NEC.
- Предполагается, что в кабельной канализации, кабеле или под землей имеется только один три проводника с током. И что кабельные каналы, кабели и подземные проводники разнесены в соответствии с требованиями NEC для снижения номинальных характеристик.
- Чтобы применить ручное снижение номинальных характеристик, разделите нагрузку на коэффициент снижения номинальных характеристик из NEC и введите новое значение нагрузки в калькулятор.
Расчет падения напряжения:
- Падение напряжения однофазного переменного тока рассчитывается как:
\ (V_ {d1 \ phi} = \ dfrac {I L (2 Z_c)} {1000} \)
, где I — ток нагрузки, L — расстояние, а \ (Z_c \) — полное сопротивление кабеля в Ом / км.2} \)
, где \ (R_c \) — сопротивление, а \ (X_c \) — реактивное сопротивление. Этот метод рассчитывает импеданс для худшего случая коэффициента мощности, то есть когда коэффициент мощности кабеля и нагрузки одинаков.
- Калькулятор размеров кабеля использует значения сопротивления \ (R_c \) и реактивного сопротивления \ (X_c \) из таблицы 9 в главе 9 NEC.
- Значения в таблице 9 основаны на трех одиночных проводниках в кабелепроводе. В калькуляторе сечения проводов используются значения сопротивления и реактивного сопротивления из столбца трубопровода из ПВХ, приведенного в главе 9.2 t = 0,0297 \ log \ bigg (\ dfrac {T_2 + 234} {T_1 + 234} \ bigg) \)
где:
- I — ток короткого замыкания в амперах.
- A — площадь проводника в круглых миллиметрах.
- t — время короткого замыкания в секундах.
- \ (T_1 \) — максимальная рабочая температура. В калькуляторе размера провода используется 75 ° C для ПВХ и 90 ° для XLPE.
- \ (T_2 \) — максимальная температура короткого замыкания. В калькуляторе размера провода используется 150 ° C для ПВХ и 250 ° C для XLPE.
Онлайн-калькуляторы и таблицы размеров проводов
Этот сайт предлагает множество простых в использовании калькуляторов и диаграмм силы тока проводов, которые помогут вам правильно определить размеры провода и кабелепровод в соответствии с NEC. Посетите калькуляторы и таблицы страницы для полного списка ресурсов.
Калькулятор сечения провода
Введите информацию ниже, чтобы рассчитать соответствующий размер провода.
Размер проводника
Национальный электротехнический кодекс устанавливает требования к выбору электрических провод для предотвращения перегрева, пожара и других опасных ситуаций.Правильный размер Wire для многих различных приложений может стать сложным и непосильным. Сила тока — это мера электрического ток, протекающий по цепи. Номинальная допустимая нагрузка на провод определяет силу тока, которую провод может безопасно справиться. Чтобы правильно выбрать размер провода для вашего приложения, необходимо знать допустимую нагрузку на провод. Однако множество различных внешних факторов, таких как температура окружающей среды и изоляция проводника, играют роль в определении токовая нагрузка провода.
Допустимая нагрузка на провод рассчитывается таким образом, чтобы не превышать определенного повышения температуры при определенной электрической нагрузке. Нагрев проводника напрямую связан с его I 2 R потери в цепи. Длина проводника прямо пропорциональна его сопротивлению. Однако площадь поперечного сечения проводника также может быть изменена, чтобы изменить сопротивление проводника. При увеличении поперечного сечения проводника (или увеличении размера провода) сопротивление уменьшается, а допустимая допустимая токовая нагрузка увеличивается.При выборе размеров проводов следует руководствоваться здравым смыслом. потому что большие проводники могут стать дорогостоящими и сложными в установке, в то время как небольшие проводники могут представлять потенциальную опасность. Используйте калькулятор выше, чтобы определить размер провода для основных применений, или просмотрите некоторые диаграммы токовой нагрузки проводов для значений токовой нагрузки проводов.
Падение напряжения
Падение напряжения может стать проблемой для инженеров и электриков при выборе кабеля для длинных проводов. Падение напряжения в цепи может произойти из-за использования слишком маленького сечения провода или слишком большой длины кондуктора.Для длинных проводов, где может возникнуть падение напряжения, используйте калькулятор падения напряжения для определения падения напряжения и калькулятор расстояния цепи для определения максимальной длины цепи.
Электродвигатели
Существует множество различных типов электродвигателей, от однофазных до трехфазных двигателей переменного тока, двигателей постоянного и низкого напряжения, синхронных и асинхронных двигателей. При проектировании фидера или ответвительной цепи с одним или несколькими электродвигателями необходимо учитывать несколько важных моментов.Пусковой ток двигателя иногда может достигать 7 ампер полной нагрузки двигателя. Сечение провода двигателя должно быть рассчитано таким образом, чтобы выдерживать бросковый ток, а также выдерживать постоянный ток полной нагрузки двигателя. При проектировании фидера и параллельных цепей двигателя необходимо учитывать также защиту обмоток двигателя и тепловые характеристики. Просмотрите калькулятор размера провода двигателя или таблицу размеров провода двигателя, чтобы получить информацию о размерах проводов и устройствах защиты цепи для двигателей.
На этом сайте есть много калькуляторов размеров проводов и размеров проводов. диаграммы, которые помогут вам правильно подобрать размер провода в соответствии с нормами. Посетите Условия использования и Политику конфиденциальности этого сайта. Ваше мнение очень ценится. Сообщите нам, как мы можем улучшить.
Добро пожаловать в Doncaster Cables — техническая помощь
Таблицы допустимой нагрузки по току
По ссылкам ниже показаны таблицы допустимой нагрузки по току и падения напряжения, относящиеся к продукции Doncaster Cables.
Ниже этих ссылок вы найдете наш калькулятор кабеля. Инструкции ниже: —
1. Выберите тип источника питания (однофазный 230 В / трехфазный 400 В)
2. Выберите необходимое падение напряжения
3. Введите мощность в ваттах или ток в амперах, который требуется для передачи кабеля
4 Введите длину вашей кабельной трассы
5. Выберите метод прокладки кабеля
6. Нажмите «Рассчитать», и ваши размеры кабеля будут рассчитаны.В нашем калькуляторе теперь перечислены различные типы кабелей, поэтому, прокручивая список вниз, вы можете увидеть, как разные типы кабелей могут иметь разные размеры для одного и того же набора параметров.
Выберите кабель, подходящий для вашей установки.Калькулятор сечения кабеля
Калькулятор сечения кабеля Заявление об отказе от ответственности
Рекомендуемые сечения кабелей основаны на информации, предоставленной пользователем, и предназначены только для справки. Расчет основан на требованиях к электрическому монтажу BS7671, Правилах электропроводки IEE и основан на падении напряжения, выбранном при 230 и 400 вольт. Чтобы мы могли предоставить эту информацию в качестве ориентира, были сделаны определенные предположения.
Пользователь по-прежнему несет ответственность за обеспечение правильности всех данных и предположений, а также за то, что любой используемый кабель соответствует своему прямому назначению.
Таблицы допустимой нагрузки по току для гибких шнуров в BS7671 не включают варианты для различных методов установки, результаты были включены для гибких шнуров для всего диапазона методов установки. Ответственность за то, где подходят гибкие шнуры, остается за пользователем.
Мы объединили гибкие шнуры в один результат для использования нашего калькулятора (чтобы сделать его более удобным), пожалуйста, обратитесь к BS7671 для отдельных таблиц и любых соответствующих поправочных коэффициентов и т. Д.Doncaster Cables не несет ответственности за любое использование кабеля предложенного размера
.Внешний настольный и настенный блок питания / сетевой блок питания Калькулятор регулировки выходного кабеля
GlobTek предлагает внешние блоки питания и адаптеры переменного тока в неограниченном количестве конфигураций и опций.Популярной настройкой является изменение выходного шнура, например, калибра, типа и длины провода. Замена выходного шнура и кабеля может привести к побочным эффектам, которые могут повлиять на общую производительность системы. GlobTek также производит широкий спектр стандартных и нестандартных жгутов проводов и сборок, для которых также можно использовать этот калькулятор.
При использовании нестандартного выходного кабеля с внешним источником питания полезно знать ожидаемое напряжение нового кабеля, необходимого для индивидуального применения.Введя калибр провода, длину кабеля, выходное напряжение и выходной ток, можно определить ожидаемый эффект регулирования выходной мощности.
Поскольку окно регулирования выходного напряжения обычно составляет +/- 5%, размер окна можно рассматривать как в сумме 10%. Если мы допускаем половину 10% окна для падения напряжения регулирования выходного шнура, тогда другая половина окна может быть отведена для других форм изменения выходного напряжения, таких как регулирование линии переменного тока, отклонение температуры и отклонение компонентов.
Показанное регулирование выхода имеет 3 цвета фона, которые могут отображаться после расчета:
Зеленый: Регулировка выходного шнура менее 4% Желтый: Регулировка выходного шнура составляет от 4% до 5% Светло-красный: Регулировка выходного шнура больше 5% Если регулировка выходного шнура больше 5%, то общее требование регулирования +/- 5% для источника питания может быть непрактичным, и может потребоваться более широкая спецификация, например +/- 7 или, возможно, + 5%, -10%.
Факторы, которые могут повлиять на точность расчета:
Коаксиальные кабели, такие как UL1185, должны иметь спецификацию центрального проводника, соответствующую стандарту AWG (American Wire Gauge). Однако выходной спиральный проводник считается экранирующим проводом, и калибр может отличаться по площади поперечного сечения меди и результирующему сопротивлению. Поэтому при использовании кабеля Globtek UL1185 используйте следующую таблицу для определения правильного AWG кабеля для программы расчетов, а при создании спецификации для нестандартного продукта укажите диаметр кабеля, если будет использоваться кабель калибра 16:
Globtek UL1185 Коаксиальный кабель Данные для первого поля ввода калькулятора Диаметр (мм) Gauge Spec Gauge used for Calculator Note 3.5 мм номинальный 18 калибр 18,3 Сопротивление Слегка высокое 3,8 мм ном 16 калибр 17,9 Кабель высокого сопротивления 4,3 мм3 9022 9022 9022 9022 9022 9022 9022 9022 9022 9022 Кабель сопротивления 5,0 мм номинал Калибр 14 14,0 True 14 Кабели некоаксиального типа, такие как UL2464, не вызывают озабоченности по поводу этой конкретной проблемы.
Повышение температуры вызывает увеличение сопротивления провода кабеля на изменение температурного коэффициента 0,393% на градус Цельсия. Этот калькулятор кабеля основан на температуре приблизительно 30 ° C для расчета регулирования мощности кабеля.
Возможны отклонения в изготовлении калибра проволоки и, как следствие, отклонения в сопротивлении. Фактическое сопротивление провода может отклоняться от ожидаемого значения примерно на +/- 5%.
Ссылка на формулы, используемые в этом калькулятореКалькулятор калибра кабеля солнечной энергии
Как рассчитать общую мощность, потребляемую вашей электроникой
Самый точный способ использовать калькулятор стоимости солнечной энергии для расчета общих ватт (Вт), которые потребляет электроника в вашем доме, — это составить список имеющихся у вас приборов и записать их ежедневное потребление ватт.Например, если у вас есть телевизор мощностью 100 Вт, и вы используете его три часа в день, это будет равняться 300 Вт в день.
Если вы не хотите ходить по дому, чтобы определить мощность и ежедневное использование каждого устройства, вы также можете указать свой ежемесячный счет за электроэнергию. Помните, что ваш счет показывает использование в киловатт-часах (кВтч), а не ватт-часах.
Чтобы определить количество ватт-часов, просто умножьте количество киловатт-часов на 1000.Если ваш ежемесячный счет за электричество показывает, что ваш дом потребляет 800 кВтч, это будет 800 000 ватт-часов в месяц или около 27 000 ватт-часов в день (27 киловатт-часов).
Вы также можете обратиться в свою коммунальную компанию для получения дополнительной информации, которая поможет вам использовать калькулятор стоимости солнечной энергии.
Как определить среднее количество солнечных часов в день
Различные части страны получают разное количество солнечного света ежедневно в разное время в течение года.Чтобы определить среднее количество солнечных часов в день в вашем регионе, вам нужно определить часы пиковой нагрузки, а не только время восхода и захода солнца. Пиковые солнечные часы — это время, когда час солнечного света равен не менее 1000 Вт на квадратный метр.
Вы получите где-то от трех с половиной до шести часов пиковой нагрузки на большую часть Соединенных Штатов. На юго-западе больше всего часов, а на северо-востоке и северо-западе — меньше всего.Чтобы получить более подробную информацию, вы можете проверить карту инсоляции или использовать инсоляционный измеритель.
Знание вашего среднего количества солнечных часов в пиковое время является важным шагом при покупке солнечных панелей подходящего размера и количества для нужд вашего дома.
Стоимость панели солнечных батарей за ватт
После использования калькулятора солнечных панелей Renogy для определения рекомендуемой системы солнечных панелей вы можете рассчитать стоимость солнечной панели на ватт для предлагаемой вами энергетической системы.Это поможет вам рассчитать, стоит ли использовать солнечную энергию в вашей уникальной ситуации.
Солнечные панели бывают самых разных размеров — от пяти до 400 Вт на панель. Стоимость ватта должна зависеть от того, сколько панелей вам нужно и какого размера. В большинстве штатов стоимость солнечной панели за ватт колеблется от 2,25 до 3,25 доллара.
Солнечная система с сеткой стоит
Солнечная система с привязкой к сети означает, что ваш дом подключен к электросети коммунальной компании.При такой настройке вашей основной целью может быть сокращение ежемесячных счетов за электроэнергию. Ваше энергопотребление останется таким же, как и раньше, а солнечная энергетическая система просто дополнит установку, уже подключенную к сети в вашем доме.
Используя сетевой солнечный калькулятор, вы можете определить, какие комплекты солнечных панелей будут иметь наибольший смысл, исходя из процента солнечной энергии, которую вы собираетесь использовать.Являясь частью солнечной системы, связанной с сетью, вам также нужно будет решить, планируете ли вы использовать возобновляемую энергию в качестве резервного источника во время отключения электроэнергии.
Если основным фактором вашей солнечной энергетической системы является хранение энергии для дальнейшего использования, вам также необходимо будет приобрести необходимое количество батарей. По данным Национальной лаборатории возобновляемых источников энергии (NREL), системы с батарейным питанием могут стоить примерно в два раза дороже, чем автономные системы.
Однако дополнительная плата за хранение дополнительной энергии отсутствует, и большинство штатов предлагают скидки и льготы в рамках программ обратного выкупа. Существуют также федеральные налоговые льготы за установку возобновляемых источников энергии, таких как солнечные батареи. При использовании сетевого солнечного калькулятора следует помнить обо всем этом.
Стоимость автономной солнечной системы
Использование автономного солнечного калькулятора для определения затрат требует ввода немного большего количества данных, потому что вашей системе также потребуется контроллер заряда, такой как инвертор на 3000 Вт.Эти инверторы преобразуют энергию постоянного тока (DC), потребляемую вашими небольшими наборами солнечных панелей, в переменный ток (AC), чтобы вы могли использовать его для бесперебойного и безопасного питания ваших устройств.
Контроллеры зарядных устройств работают с эффективностью 80% или 92%, в зависимости от их типа, что учитывает автономный солнечный калькулятор при расчете вашего результата. Также важно знать, сколько часов вы планируете использовать в своем доме на колесах или крошечной домашней солнечной системе в день, чтобы получить точные показания с помощью калькулятора стоимости солнечной энергии.
Стоимость установки солнечных панелей
После использования калькулятора солнечных батарей и приобретения всего необходимого для вашей системы, возможно, появится возможность самостоятельно установить комплекты солнечных панелей для вашего дома. Для этого вам понадобится не только быть под рукой, но и иметь опыт работы с электричеством и уметь безопасно и надежно забраться на крышу.
Большинству людей потребуется нанять профессионалов, что увеличит их затраты на установку солнечных панелей.Как правило, установщики солнечных батарей берут за свой труд от 0,75 до 1,25 доллара за ватт. Эта стоимость — еще одна причина, по которой полезно использовать калькулятор стоимости солнечной энергии, чтобы узнать, сколько ватт вы планируете установить.
Учет затрат на установку также поможет вам определить период окупаемости, который обычно составляет около восьми лет для большинства систем в Соединенных Штатах.
Сколько в целом стоят солнечные панели?
Использование калькулятора стоимости солнечной энергии — отличный способ вычислить конкретные цифры для ваших обстоятельств.Каждый дом потребляет разное количество электроэнергии в зависимости от различных факторов. При этом, если вы возьмете дом площадью 2000 квадратных футов, средняя стоимость солнечных панелей составит от 15 000 до 40 000 долларов.
Давайте рассмотрим пример, чтобы лучше понять, сколько стоят солнечные панели. Средняя площадь дома в США составляет 1500 квадратных футов, а ежемесячный счет за электричество составляет 100 долларов. Это означает, что для дома необходима система солнечных панелей мощностью 6 киловатт и от 15 до 18 солнечных батарей по 350 ватт.
Ориентировочная стоимость системы такого размера составит около 18 000 долларов. Если система сэкономит вам 2500 долларов в год на расходах на электроэнергию, период окупаемости составит чуть более семи лет, пока вы не выйдете на уровень безубыточности.
Калькулятор падения напряжения (постоянного и переменного тока)
Бесплатный онлайн-калькулятор для расчета падения напряжения и потерь энергии в проводе
Потери в проводах солнечных батарей должны быть ограничены, Потери постоянного тока в цепочках солнечных панелей и потери переменного тока на выходе инверторы.Способ ограничить эти потери — минимизировать напряжение падение кабелей. Падение напряжения менее 1% подходит и в любом в случае, если он не должен превышать 3%.
Экономьте электроэнергию: этот бесплатный онлайн-калькулятор рассчитывает переменный и постоянный ток. Мощность, падение напряжения, потери энергии в проводе, резистивный нагрев, для трехфазная и однофазная проводка.
Заполните желтые поля и нажмите кнопки «рассчитать». Результаты отображается в зеленых полях.КАЛЬКУЛЯТОР ПЕРЕМЕННОГО НАПРЯЖЕНИЯ И ПОТЕРЯ ЭНЕРГИИ
КАЛЬКУЛЯТОР ПЕРЕПАДА НАПРЯЖЕНИЯ ПОСТОЯННОГО ТОКА И ПОТЕРЯ ЭНЕРГИИ
КАК РАССЧИТАТЬ ПЕРЕПАД НАПРЯЖЕНИЯ И ПОТЕРИ ЭНЕРГИИ В ПРОВОДЕ?
ПАДЕНИЕ НАПРЯЖЕНИЯ
Падение напряжения определяется по следующей формуле:
Где:U: Напряжение постоянного или переменного тока система (В)
Это напряжение фаза-фаза для 3-фазной системы; напряжение фаза-нейтраль для однофазной системы.
Пример:
— Для стран Западной Европы трехфазная цепь обычно имеет напряжение 400 В, а однофазная 230 В.
— В Северной Америке типичное напряжение трехфазной системы составляет 208 вольт, а однофазное напряжение — 120 вольт.
Примечание: для падения напряжения постоянного тока в фотоэлектрической системе, напряжение система U = Umpp одной панели x количество панелей в серии.
ΔU: падение напряжения в В (В)
b: коэффициент длины кабеля, b = 2 для однофазная проводка, b = 1 для трехфазной проводки.
ρ1: удельное сопротивление в Ом · мм2 / м материала. проводник для заданной температуры. При 20 градусах Цельсия значение удельного сопротивления составляет 0,017 для меди и 0,0265 для алюминия.
Обратите внимание, что удельное сопротивление увеличивается с температурой. Удельное сопротивление меди достигает примерно 0,023 Ом.мм2 / м при 100 ° C, а удельное сопротивление алюминия достигает примерно 0,037 Ом.мм2 / м при 100 ° C.
Обычно для расчета падения напряжения в соответствии с электрическими стандартами используется удельное сопротивление при 100 ° C (например, NF C15-100).
ρ1 = ρ0 * (1 + alpha (T1-T0)), здесь ρ0 = удельное сопротивление при 20 ° C (T0) и альфа = температурный коэффициент на градус C и T1 = температура кабеля.
T1: Температура кабеля (значение по умолчанию = 100 ° C).
Обратите внимание, что по опыту проволока с правильным размером не должна иметь внешнюю температуру выше 50 ° C, но она может соответствовать внутренней температуре материала около 100 ° C.
L: простая длина кабеля (расстояние между источником и прибором) в метрах (м).
S: сечение кабеля в мм2
Cos φ: коэффициент мощности, Cos φ = 1 для чисто резистивной нагрузки, Cos φ <1 для индуктивного заряда (обычно 0,8).
λ: реактивное сопротивление на единицу длины (значение по умолчанию 0,00008 Ом / м)
Sin φ: sinus (acos (cos φ)).
Ib: ток в амперах (A)NB: для цепи постоянного тока cos φ = 1, поэтому sin φ = 0.
Падение напряжения в процентах:
ΔU (%) = 100 x ΔU / U0
Где:ΔU: падение напряжения в В
U0: напряжение между фазой и нейтраль (пример: 230 В в 3-фазной сети 400 В)ПОТЕРЯ ЭНЕРГИИ
Потери энергии в кабеле в основном связаны с резистивным нагревом кабеля. кабель.
Он определяется по следующей формуле:E = a x R x Ib²
Где:E: потери энергии в проводах, Ватт (Вт)
a: номер строки коэффициент, a = 1 для одиночной линии, a = 3 для 3-х фазной цепи.
R: сопротивление одного активного строка
Ib: ток в амперах (A)R определяется по следующей формуле:
R = b x ρ1 x L / Sb: коэффициент длины кабеля, b = 2 для однофазной проводки, b = 1 для трехфазной проводки.
ρ1: удельное сопротивление материал проводника, 0,017 для меди и 0,0265 для алюминия (температура провода 20 ° C) в Ом.мм2 / м. Удельное сопротивление меди достигает примерно 0,023 Ом.мм2 / м при 100 ° C, а удельное сопротивление алюминия достигает примерно 0,037 Ом.мм2 / м при 100 ° C.
L: простая длина кабеля (расстояние между источником и прибором) в метрах (м).
S: сечение кабеля в мм2NB: для постоянного тока потери энергии в процентах равны падение напряжения в процентах.
Диаграмма : Пример потерь при падении напряжения в зависимости от поперечного сечения проводов секция для фотоэлектрической системы мощностью 3 кВт с 50 м солнечного кабеля постоянного тока.
Инструмент для расчета досягаемости постоянного тока с гибридными кабелями
Из-за популярности технологии Power over Ethernet (PoE) медные кабели обычно занимают первое место, когда речь идет о передаче питания по кабелю. Однако с появлением гибридных кабелей теперь можно передавать питание постоянного тока и данные по оптоволоконному кабелю.Это позволяет вам подавать питание удаленно с помощью электрических проводов (например, медного кабеля Ethernet), одновременно наслаждаясь производительностью оптоволокна для передачи данных.
Однако для того, чтобы устройства IoT работали должным образом в приложениях, использующих гибридный кабель, важно, чтобы вы точно знали, какую мощность может обеспечить ваш гибридный кабель и как далеко эта мощность может пройти, прежде чем возникнут проблемы с производительностью.
Не существует универсального ответа, который подойдет для каждой установки, поэтому расчет достигаемой мощности следует производить для каждой установки, в которой используется гибридный кабель.
При выполнении этого расчета необходимо учитывать несколько факторов:
- Мощность, которую необходимо передать вашему устройству (будь то камера, точка беспроводного доступа, распределенная антенная система или что-то еще).
- Размер вашего провода (для передачи питания на большие расстояния необходимы большие размеры)
- Процент падения напряжения (величина потери напряжения в цепи из-за сопротивления току)
- Необходимая мощность в ваттах
Чтобы помочь с этим расчетом, мы собрали удобный (и бесплатный) онлайн-инструмент: Калькулятор максимального охвата системы DC.Если у вас готовится проект, требующий гибридного кабеля, калькулятор позволяет вам опробовать различные переменные, чтобы увидеть влияние каждого из них на подачу мощности и дальность действия.
После того, как вы выберете нужные параметры, калькулятор автоматически сообщит вам, сколько метров (и футов) вы можете рассчитывать на пропускную способность, напряжение постоянного тока, которое будет подаваться, и величину тока на проводник.