Проверить якорь электродвигателя на межвитковое короткое замыкание: Якоря на межвитковое замыкание, решение проблемы

Содержание

Якоря на межвитковое замыкание, решение проблемы

Электрические машины состоят из ротора и статора.  Статор представляет собой неподвижные обмотки, уложенные в корпус. Якорь — это подвижная часть, поэтому на нее как правило попадают частички грязи и смазки и под воздействием температуры образуется  окисленный налет. Он может послужить причиной неисправной работы или выхода из строя ротора электрической машины. Обнаруживается он визуальным осмотром. Нагар может стать причиной межвиткового замыкания в якоре. Как таковой, ротор электродвигателя при  нормальных условиях эксплуатации не изнашивается. Со временем подлежат замене только токосъемные щетки, если их длина уже не соответствует допустимому размеру. Однако длительные нагрузки становятся причиной нагрева обмоток статора, что в результате и способствует образованию нагара. Межвитковое замыкание якоря может случиться при механических повреждениях. Недопустимо на трущихся поверхностях наличие сколов, вмятин, царапин и трещин. Замыкание между витками обмоток якоря происходит в случае выхода со строя подшипниковых узлов. Тогда якорь перекашивается, что приводит к повреждению ламелей. Еще одной причиной замыкания является воздействие влаги. При попадании капель воды на металлические поверхности начинается процесс коррозии. Ржавчина затрудняет вращение якоря, токовые нагрузки растут, происходит нагрев в следствии чего может отслаиваться припой, что в свою очередь при длительной эксплуатации может привести к межвитковому замыканию.

Диагностировать эту неисправность возможно и в домашних условиях. Проводят эту процедуру при помощи катушки индуктивности, называемую дросселем.

 

 

 

 

 

 

 

 

 

 

 

При помощи данного устройства, вам удастся узнать направление сброса, а также порядок, в котором катушки обмотки подключены к ламелям коллектора.

Таким образом, осуществляется проверка якоря на межвитковое замыкание.

Изготовить такой прибор своими руками совсем не трудно, достаточно ознакомится с содержанием нашей пошаговой инструкции.

Для сборки прибора, потребуется П—образное трансформаторное железо. Его можно извлечь из вибрационного насоса типа Малыш.

 

Шаг №1

Разбираем  конструкцию и достаем П— образное трансформаторное железо.Для этого предварительно необходимо нагреть нижнюю часть насоса, чтобы полимер, которым залиты катушки, расплавился.

 

Шаг №2

Далее  при помощи подручного инструмента срезаем края на трансформаторном железе, как показано на фото. При обработке помните, что железо слоеное, поэтому все операции нужно выполнять внимательно, чтобы не образовались задиры. После на наждачном станке снимаем все острые кромки на изделии. Это необходимо для сохранения целостности эмаль-провода.

 

Соблюдать строгие размеры углов не обязательно, главное, чтобы якоря разных размеров легко располагались в приготовленом месте.

 

Шаг №3

Следующим действием будет изготовление катушек. Чтобы выиграть в размере устройства и дроссель не оказался слишком громоздким, изготовим не одну, а две катушки, которые разместим по обеим сторонам П-образного железа. Для этого на понадобится:

  • картон;
  • мерительный инструмент;
  • карандаш;
  • острый нож;
  • ножницы.

 

Измеряем все размеры П-образного трансформаторного железа по их максимальным значениям. Далее переносим их на картон и вычерчиваем развертку корпуса будущей катушки. При этом обязательно нужно учесть размер паза сердечника. Далее тупым концом ножниц проводим по всем линиям перегиба. Это поможет изгибать картон без проблем. Вырезаем развертку. Таким же образом делаем выкройку на другую сторону. Теперь нам нужно подготовить крышки для катушек. Их понадобится 8 штук. Размечаем на картоне заготовки для крышек. Наружный контур вырезаем ножницами, внутренний острым ножом.

Далее склеиваем крышки с подготовленными развертками и получаем два остова будущих катушек.

 

Шаг №4

Теперь необходимо намотать провод на катушки. Для этого воспользуемся расчетом трансформатора. Сначала определяем площадь сечения сердечника путем перемножения его длины и ширины.  В нашем случае  площадь составила 3,7 см х 2,2 см = 8,14 см2. Далее делим 13200/8,14=1621 виток. Это количество округляем до 1700 витков и поровну распределяем между двумя катушками, получается по 850 витков. Такое количество можно без проблем намотать в ручном режиме. При этом ошибка в 20-40 витков не повлияет на результат. Но все же лучше ошибиться в сторону увеличения. Перед началом наматывания необходимо сделать отверстия, в которые будут выходить концы провода. На свободный конец провода надевается термоусадочный кембрик. Конец провода вставляется в отверстие и далее идет процесс наматывания.  По его окончании на другой конец припаиваем проводок с кембриком и вставляем в другое отверстие.  Точно так наматываем вторую катушку.

Шаг№5

 

После того, как обе катушки готовы, надеваем их на П—образный сердечник, при этом выводы проводов должны располагаться внизу с одной стороны. Важно, чтобы катушки были накручены  идентично, витки направлены одинаково, а их окончания выведены в одну сторону.  Далее следует соединение начал индукционных катушек и подача сетевого напряжения (220В) на их концы.

Шаг №6

Для тестирования самодельного дросселя воспользуемся прибором заводского изготовления. Сначала проверим якорь на межвитковое замыкание промышленным устройством и места прилипания пластины пометим мелом. При проверке ротора нашим дросселем пластина будет примагничиваться в тех же местах. Подведем итоги, прибор выполнен правильно, результаты идентичны.

Шаг №7

 

Снимаем катушки с сердечника и изолируем изолентой. Ставим их обратно припаиваем питание. Дроссель готов к эксплуатации, можно приступать к проверке наличия межвиткового замыкания в якоре.

Для этого необходимо включить изготовленное нами устройство, в его вырез уложить якорь и не спеша повернуть его.

Проверка межвиткового замыкания при помощи аналогового тестера

Впрочем проверить якорь на межвитковое замыкание можно и при помощи мультимера.  В этом случае удастся только узнать есть обрыв в обмотках якоря или нет.  Более точным прибором будет аналоговый тестер.  С его помощью замеряем сопротивление между каждыми двумя ламелями. Оно должно быть идентичным. После устанавливаем прибор на 200 кОм, Один щуп замыкаем на массу , а другой прикладываем к каждой ламели. Если якорь не звонится на массу то он скорее всего исправен или его нужно проверить при помощи дросселя.

Индикатор для обнаружение межвиткового замыкания якоря

Для обнаружение межвиткового замыкания якоря можно использовать нехитрый индикатор который можно собрать по приведенной ниже схеме.

Для того чтобы спаять такой элементарный индикатор понадобится немного денежных средств, свободное время и ваши руки.

Приобретаем 5 транзисторов, 8 резисторов, 4 конденсатора, 2 светодиода и батарейку. Кроме того самостоятельно наматываем две катушки.

Подготавливаем печатную плату и собираем прибор. Выполнять проверку  межвиткового замыкания с помощью такого индикатора очень удобно. Весомым аргументом в пользу прибора является то, что ним можно без проблем находить межвитковое замыкание и на статорах как указано ниже в видео.

Если на якоре обнаружено межвитковое замыкание, что делать?

Нужно проверить все, если металлическая линейка притягивается в определенном пазу, это значит, что его катушках имеет место быть межвитковое замыкание.

Кроме того, внимательно просмотрите коллектор.

Если между его ламелями возникает замыкание, это также говорит о наличии межвиткового замыкания.

Чаще всего в таких ситуациях приходится полностью перематывать якорь, поскольку даже одна обмотка без нанесения повреждений остальным представляется весьма проблематичной.

Кроме того, узнать о наличии межвиткового замыкания можно, просто тщательно осмотрев провод и шинки якоря.

Например, при этом может быть обнаружено, что витки помяты или согнуты, а также что между ними виднеются различного рода частицы, проводящие ток, например, припой, протекший после пропайки.

В таком случае поломку можно ликвидировать, удалив инородные тела или исправив помятости на шинке.

Поэтому, якоря на межвитковое замыкание чинить намного проще, чем, кажется.

Кроме того, рекомендуется покрыть детали лаком после устранения замыкания.

Помимо всего прочего, еще одним признаком наличия межвиткового замыкания является искрение щеток.

Речь идет о ситуациях, когда наблюдаются местные нагревы обмотки.

Таковы основные признаки, по которым можно обнаружить межвитковое замыкание в якоре.

А так же вы можете посмотреть видео проверка якоря стартера

Подобрано для вас:

Межвитковое замыкание. Как проверить различные замыкание витков

Электродвигатели часто выходят из строя, и основной причиной для этого является межвитковое замыкание. Оно составляет около 40% всех поломок моторов. От чего возникает замыкание между витками? Для этого есть несколько причин.

Основная причина – излишняя нагрузка на электродвигатель, которая выше установленной нормы. Статорные обмотки нагреваются, разрушают изоляцию, происходит замыкание между витками обмоток. Неправильно эксплуатируя электрическую машину, работник создает чрезмерную нагрузку на электродвигатель.

Нормальную нагрузку можно узнать из паспорта на оборудование, либо на табличке мотора. Лишняя нагрузка может возникнуть из-за поломки механической части электромотора. Подшипники качения могут послужить этой причиной. Они могут заклинить от износа или отсутствия смазки, в результате этого возникнет замыкание витков катушки якоря.

Замыкание витков возникает и в процессе ремонта или изготовления двигателя, в результате брака, если двигатель изготавливали или ремонтировали в неприспособленной мастерской. Хранить и эксплуатировать электромотор необходимо по определенным правилам, иначе внутрь мотора может проникнуть влага, обмотки отсыреют, как следствие возникнет витковое замыкание.

С витковым замыканием электродвигатель работает неполноценно и недолго. Если вовремя не выявить межвитковое замыкание, то скоро придется покупать новый электродвигатель или полностью новую электрическую машину, например, электродрель.

При замыкании витков обмотки двигателя повышается ток возбуждения, обмотка перегревается, разрушает изоляцию, происходит замыкание других витков обмотки. Вследствие повышения тока может послужить причиной выхода из строя регулятора напряжения. Витковое замыкание выясняется сравнением обмоточного сопротивления с нормой по техусловиям. Если оно снизилось, обмотка подлежит перемотке, замене.

Как найти межвитковое замыкание

Замыкание витков легко определить, для этого есть несколько методов. Во время работы электродвигателя обратите внимание на неравномерный нагрев статора. Если одна его часть нагрелась больше, чем корпус двигателя, то необходимо остановить работу и провести точную диагностику мотора.

Существуют приборы для диагностики замыкания витков, можно проверить токовыми клещами. Нужно измерить нагрузку каждой фазы по очереди. При разнице нагрузок на фазах надо задуматься о наличии межвиткового замыкания. Можно перепутать витковое замыкание с перекосом фаз сети питания. Чтобы избежать неправильной диагностики, надо измерить приходящее напряжение питания.

Обмотки проверяют мультиметром путем прозвонки. Каждую обмотку проверяем прибором отдельно, сравниваем результаты. Если замкнуты оказались всего 2-3 витка, то разница будет незаметна, замыкание не выявится. С помощью мегомметра можно прозвонить электромотор, выявив наличие замыкания на корпус. Один контакт прибора соединяем с корпусом мотора, второй к выводам каждой обмотки.

Если нет уверенности в исправности двигателя, то необходимо произвести разборку мотора. При разборе нужно осмотреть обмотки ротора, статора, наверняка будет видно место замыкания.

Наиболее точным методом проверки замыкания между витками обмоток является проверка понижающим трансформатором на трех фазах с шариком подшипника. Подключаем на статор электромотора в разобранном виде три фазы от трансформатора с пониженным напряжением. Кидаем шарик подшипника внутрь статора. Шарик бегает по кругу – это нормально, а если он примагнитился к одному месту, то в этом месте замыкание.

Можно вместо шарика применить пластинку от сердечника трансформатора. Ее также проводим внутри статора. В месте замыкания витков, она будет дребезжать, а где замыкания нет, она просто притянется к железу. При таких проверках нельзя забывать про заземление корпуса двигателя, трансформатор должен быть низковольтным. Опыты с пластинкой и шариком при 380 вольт запрещаются, это опасно для жизни.

Самодельный прибор для определения виткового замыкания

Сделаем дроссель своими руками для проверки межвиткового замыкания в обмотке двигателя. Нам понадобится П-образное трансформаторное железо. Его можно взять, например, от старого вибрационного насоса «Ручеек», «Малыш». Разбираем его нижнюю часть, хорошо нагреваем ее. Там имеются катушки, залитые эпоксидной смолой.


Эпоксидку разогреваем и выбиваем катушки с сердечником. С помощью наждака или болгарки срезаем губки сердечника.


Намотаны эти катушки как раз на П-образном трансформаторном железе.

Не нужно соблюдать углы. Нужно сделать место, в которое легко ляжет маленький и большой якорь.

При обработке необходимо учесть, что железо слоеное. Нельзя обрабатывать его так, чтобы камень его задирал. Нужно обрабатывать в таком направлении, чтобы слои лежали друг к другу, чтобы не было задиров. После обработки снимите все фаски и заусенцы, так как придется работать с эмалированным проводом, нежелательно его поцарапать.

Теперь нам надо сделать две катушки для этого сердечника, которые разместим с обеих сторон. Замеряем толщину и ширину сердечника в самых широких местах, по заклепкам. Берем плотный картон, размечаем его по размерам сердечника. Учитываем размер паза в сердечнике между катушками. Проводим неострым краем ножниц по местам сгиба, чтобы удобнее было сгибать картон. Вырезаем заготовку для каркаса катушек. Сгибаем по линиям сгиба. Получается каркас катушки.

Теперь делаем четыре крышки для каждой стороны катушек. Получаем два картонных каркаса для катушек.

Рассчитываем количество витков катушек по формуле для трансформаторов.

13200 делим на сечение сердечника в см2. Сечение нашего сердечника:

3,6 см х 2,1 см = 7,56 см2.

13200 : 7,56 = 1746 витков на две катушки. Это число не обязательное, отклонение 10% в обе стороны никакой роли не сыграет. Округляем в большую сторону, 1800 : 2 = 900 витков нужно намотать на каждую катушку. У нас есть провод 0,16 мм, он вполне подойдет для наших катушек. Наматывать можно как угодно. По 900 витков можно намотать и вручную. Если ошибетесь на 20-30 витков, то ничего страшного не будет. Лучше намотать больше. Перед намоткой шилом делаем отверстия по краям каркаса для вывода провода катушек.

На конец провода надеваем термоусадочный кембрик. Конец провода вставляем в отверстие, загибаем, и начинаем намотку катушки.

Заполнение получилось малым, поэтому можно мотать и проводом толще. На второй конец припаиваем проводок с кембриком и вставляем в отверстие. Не заматываем катушку, пока не провели испытание.

Обе катушки намотаны. Надеваем их на сердечник таким образом, чтобы провода шли вниз и были с одной стороны. Катушки абсолютно одинаково намотаны, направление витков в одну сторону, концы выведены одинаково. Теперь необходимо один конец с одной катушки и один с другой соединить, а на оставшиеся два конца подать напряжение 220 вольт. Главное не запутаться и соединить правильные провода. Чтобы понять порядок соединения, нужно мысленно разогнуть наш П-образный сердечник в одну линию, чтобы витки в катушках располагались в одном направлении, переходили от одной катушки во вторую. Соединяем два начала катушек. На два конца подаем напряжение.

Сравним дроссель фабричный и самодельный.

Проверяем заводской дроссель металлической пластинкой на вибрацию места витковых замыканий якоря двигателя и отмечаем их маркером. Теперь то же самое делаем на нашем самодельном дросселе. Результаты получились идентичные. Наш новый дроссель работает нормально.

Снимаем наши катушки с сердечника, обмотки фиксируем изолентой. Пайку также изолируем лентой. Одеваем готовые катушки на сердечник, припаиваем к концам проводов питание 220 В. Дроссель готов к эксплуатации.

Межвитковое замыкание якоря

Для проверки якоря воспользуемся специальным прибором, который представляет трансформатор с вырезанным сердечником. Когда мы кладем якорь в этот зазор, его обмотка начинает работать как вторичная обмотка трансформатора. При этом, если на якоре имеется межвитковое замыкание, от местного перенасыщения железом металлическая пластинка, которая будет находиться сверху якоря, будет вибрировать, либо примагничиваться к корпусу якоря.

Включаем прибор. Для наглядности мы специально замкнули две ламели на коллекторе, чтобы показать каким образом производится диагностика. Помещаем пластинку на якорь и сразу видим результат. Наша пластинка примагнитилась и начала вибрировать. Поворачиваем якорь, витки смещаются, и пластинка перестает вибрировать.

Теперь удалим замыкание ламелей для проверки. Повторяем проверку и видим, что обмотка якоря исправна, пластинка не вибрирует ни в каких местах.

Способ №2 проверки якоря на витковое замыкание

Этот способ подходит для тех, кто не занимается профессиональным ремонтом электроинструмента. Для точной диагностики межвиткового замыкания требуется скоба с катушкой.

Мультиметром можно выяснить лишь обрыв катушки якоря. Лучше для этой цели применять аналоговый тестер. Между каждыми двумя ламелями замеряем сопротивление.

Сопротивление должно быть везде одинаковое. Бывают случаи, когда обмотки не сгорели, коллектор нормальный. Тогда замыкание витков определяют только с помощью прибора со скобой от трансформатора. Теперь устанавливаем мультиметр на 200 кОм, один щуп замыкаем на массу, а другим касаемся каждой ламели коллектора, при условии, что нет обрыва катушек.

Если якорь не прозванивается на массу, то он исправный, либо может быть межвитковое замыкание.

Межвитковое замыкание трансформатора

У трансформаторов есть распространенная неисправность – замыкание витков между собой. Мультиметром не всегда можно выявить этот дефект. Необходимо внимательно осмотреть трансформатор. Провод обмоток имеет лаковую изоляцию, при ее пробое между витками обмотки есть сопротивление, которое не равно нулю. Оно и приводит к разогреву обмотки.

При осмотре трансформатора на нем не должно быть гари, обуглившейся бумаги, вздутия заливки, почернений. Если известен тип и марка трансформатора, можно узнать, какое должно быть сопротивление обмоток. Мультиметр переключают в режим сопротивления. Сравнивают измеренное сопротивление со справочными данными. Если отличие составляет больше 50%, то обмотки неисправны. Если данные сопротивления не удалось найти в справочнике, то наверняка известно количество витков, тип и сечение провода, можно вычислить сопротивление по формулам.

Чтобы проверить трансформатор блока питания с выходом низкого напряжения, подключаем к первичной обмотке напряжение 220 В. Если появился дым, запах, то сразу отключаем, обмотка неисправна. Если таких признаков нет, то измеряем напряжение тестером на вторичной обмотке. При заниженном на 20% напряжении есть риск выхода из строя вторичной обмотки.

Если есть второй исправный трансформатор, то путем сравнения сопротивлений выясняют исправность обмоток. Чтобы проверить более подробно, применяют осциллограф и генератор.

Межвитковое замыкание статора

Часто на неисправном двигателе имеется межвитковое замыкание. Сначала проверяют обмотку статора на сопротивление. Это ненадежный метод, так как мультиметр не всегда может точно показать результат замера. Это зависит и от технологии перемотки двигателя, от старости железа.

Клещами тоже можно измерить сопротивление и ток. Иногда проверяют по звуку работающего мотора, при условии, что подшипники исправны, смазаны, редуктор привода исправен. Еще проверяют межвитковое замыкание осциллографом, но они имеют большую стоимость, не у каждого имеется этот прибор.

Внешне осматривают двигатель. Не должно быть следов масла, подтеков, запаха. Измеренный по фазам ток, должен быть одинаковый. Хорошим тестером проверяют обмотки на сопротивление. При разнице в замерах более 10% есть вероятность замыкания витков обмоток.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Поделиться ссылкой:

Похожее

Проверка, ремонт и замена якоря болгарки своими руками

Якорь болгарки больше всех узлов подвергается температурным, механическим и электромагнитным нагрузкам. Поэтому он является частой причиной отказа работы инструмента, и как следствие, часто нуждается в ремонте. Как проверить якорь на работоспособность и починить элемент своими руками — в нашей статье.

Устройство якоря болгарки

Якорь двигателя болгарки представляет собой токопроводящую обмотку и магнитопровод, в который запрессован вал вращения. Он имеет на одном конце ведущую шестерню, на другом коллектор с ламелями. Магнитопровод состоит из пазов и мягких пластин, покрытых лаком для изоляции друг от друга.

Схема якоря болгарки

В пазы по специальной схеме уложены по два проводника якорной обмотки. Каждый проводник составляет половинку витка, концы которого попарно соединяются на ламелях. Начало первого витка и конец последнего находятся в одном пазу, поэтому они замкнуты на одну ламель.

Ламели коллектора

Как проверить якорь болгарки на исправность

Виды неисправностей якоря:

  1. Обрыв токопроводников.
  2. Межвитковое замыкание.

  3. Пробой изоляции на массу — это замыкание обмотки на металлический корпус ротора. Происходит из-за разрушения изоляции.
  4. Распайка коллекторных выводов.
  5. Неравномерный износ коллектора.

Если якорь неисправен, происходит перегрев двигателя, оплавляется изоляция обмотки, витки коротко замыкаются. Отпаиваются контакты, соединяющие обмотку якоря с пластинами коллектора. Прекращается подача тока и двигатель перестаёт работать.

Виды диагностики якоря:

  • визуально;
  • мультиметром;
  • лампочкой;
  • специальными приборами.

Стандартная диагностика

Прежде чем взять прибор для диагностики, осмотрите якорь. На нём могут быть повреждения. Если проводка оплавилась, подгоревший изоляционный лак оставит чёрные следы или специфический запах. Можно увидеть погнутые и смятые витки либо токопроводящие частицы, например, остатки припоя. Эти частицы являются причиной короткого замыкания между витками. Ламели имеют загнутые края, называемые петушками, для соединения с обмоткой.

Петушок ламели

Из-за нарушения этих контактов ламели выгорают.

Выгорание ламели

Другие повреждения коллектора: приподнятые, изношенные или пригоревшие пластины. Между ламелями может скапливаться графит от щёток, что тоже указывает на короткое замыкание.

Загнутые пластины коллектора

Как проверить с помощью мультиметра

  • Поставьте сопротивление 200 Ом. Соедините щупы прибора с двумя соседними ламелями. Если сопротивление одинаковое между всеми соседними пластинами, значит, обмотка исправна. Если сопротивление менее 1 Ом и очень близко к нулю, есть короткое замыкание между витками. Если сопротивление выше среднего в два и более раз, значит, есть обрыв витков обмотки. Иногда при обрыве сопротивление настолько велико, что прибор зашкаливает. На аналоговом мультиметре стрелка уйдёт до конца вправо. А на цифровом ничего не покажет.

    Диагностика обмотки якоря мультиметром

  • Определение пробоя на массу делается в случае отсутствия обрыва обмотки. Поставьте на шкале прибора максимальное сопротивление. В зависимости от тестера оно может быть от 2 МОм до 200 МОм. Один щуп соедините с валом, а другой с каждой пластиной по очереди. При отсутствии неисправностей сопротивление должно быть нулевое. То же проделайте с ротором. Один щуп соедините с железным корпусом ротора, а другой перемещайте по ламелям.

Видео: как проходит проверка

Если у вас нет тестера, воспользуйтесь лампочкой с напряжением 12 вольт мощностью до 40 Вт.

Как проверить ротор болгарки с помощью лампочки

  • Возьмите два провода и соедините их с лампой.
  • На минусовом проводе сделайте разрыв.
  • Подайте на провода напряжение. Концы разрыва приложите к пластинам коллектора и прокрутите его. Если лампочка горит, не меняя яркости, значит, короткого замыкания нет.
  • Проведите тест замыкания на железо. Соединяйте один провод с ламелями, а другой с железом ротора. Потом с валом. Если лампочка будет гореть, значит, есть пробой на массу. Обмотка замыкает на корпус ротора или вал.

Эта процедура аналогична диагностике мультиметром.

Проверка индикатором короткозамкнутых витков (ИКЗ)

Попадаются якоря, у которых не видно проводов, подсоединённых к коллектору из-за заливки непрозрачным компаундом или из-за бандажа. Поэтому трудно определить коммутацию на коллекторе относительно пазов. Поможет в этом индикатор короткозамкнутых витков.

Икз в корпусе

Этот прибор имеет небольшие размеры и прост в эксплуатации.

Устройство ИКЗ

Сначала проверьте якорь на отсутствие обрывов. Иначе, индикатор не сможет определить короткое замыкание. Для этого тестером измерьте сопротивление между двумя соседними ламелями. Если сопротивление превышает среднее хотя бы в два раза, значит, есть обрыв. При отсутствии обрыва переходите к следующему этапу.

Регулятор сопротивления позволяет выбрать чувствительность прибора. У него имеются две лампочки: красная и зелёная. Настройте регулятор так, чтобы красная лампочка начала гореть. На корпусе индикатора есть два датчика в виде белых точек, расположенных на расстоянии 3 сантиметра друг от друга. Приложите индикатор датчиками к обмотке. Медленно крутите якорь. Если загорится красная лампочка, значит, есть короткое замыкание.

Видео: ИКЗ в работе

Диагностика прибором проверки якорей (дросселем)

Прибором проверки якорей определяют наличие межвиткового замыкания обмотки. Дроссель представляет собой трансформатор, у которого есть только первичная обмотка и вырезан магнитный зазор в сердечнике.

Схема прибора проверки якорей

Когда мы кладём ротор в этот зазор, его обмотка начинает работать как вторичная обмотка трансформатора. Включите прибор и положите на якорь металлическую пластину, например, металлическую линейку или ножовочное полотно. Если имеется межвитковое замыкание, от местного перенасыщения железа пластина будет вибрировать либо намагничиваться к корпусу якоря. Поворачивайте якорь вокруг оси, перемещая пластину так, чтобы она лежала на разных витках. Если замыкания нет, то пластина будет свободно перемещаться по ротору.

Прибор проверки якорей

Видео: Как сделать дроссель своими руками и проверить якорь

Как отремонтировать якорь в домашних условиях

Из-за якоря происходит треть поломок шуруповёрта. При каждодневном интенсивном режиме работы неисправности могут возникнуть уже в первые полгода, например, при несвоевременной замене щёток. При щадящем использовании шуруповёрт продержится год и более.

Якорь можно спасти, если не нарушена балансировка. Если во время работы прибора слышен прерывистый гул и идёт сильная вибрация, то это нарушение балансировки. Такой якорь подлежит замене. А отремонтировать можно обмотку и коллектор. Небольшие короткие замыкания устраняются. Если повреждена значительная часть обмотки, её можно перемотать. Изношенные и сильно повреждённые ламели проточить, нарастить или впаять. К тому же не стоит браться за ремонт якоря, если вы неуверены в своих возможностях. Лучше его заменить или отнести в мастерскую.

Проточка коллектора

Со временем на коллекторе образуется выработка от щёток. Чтобы от неё избавиться, необходимо:

  • Проточить коллектор, используя резцы для продольного обтачивания, то есть проходные резцы.

    Проходной прямой резец

  • Ещё нам необходим обратный конус для центрирования по подшипнику. Сделайте в нём отверстие до 8 мм.

    Обратный конус

  • Так как медь тягучая, отрегулируйте станок на количество оборотов от 600 до 1500 в минуту.
  • Первичная подача по половине деления. Когда резец слегка коснётся изделия, произведите продольную проточку всего коллектора. По образовавшемуся блестящему рисунку вы увидите состояние ламелей, все неровности поверхностей.
  • Если коллектор ровный, то проточка будет равномерной.
  • Если есть ямки, то продолжайте проточку, пока поверхность не выровняется.
  • Для последнего прохода нужно подать резец на одну четвёртую от деления.
  • Для полировки возьмите наждачную бумагу с тысячной зернистостью и включите станок так, чтобы якорь вращался в ту сторону, в которую вращается во время работы.

Не забудьте очистить ротор от стружки, чтобы не произошло замыкания.

Видео по теме

Как перемотать якорь

Перед тем как разобрать якорь, запишите или зарисуйте направление обмотки. Оно может быть влево или вправо. Чтобы его определить правильно, посмотрите на торец якоря со стороны коллектора. Наденьте перчатки, возьмите острые кусачки или ножовку по металлу. Удалите лобовые части обмотки. Коллектор нужно почистить, а снимать необязательно. Аккуратно, не повреждая пазовые изоляторы, выбейте стержни оставшихся частей обмотки с помощью молотка и металлического зубила.

Видео: Снимаем обмотку

Надфилем, не повреждая плёнки изолятора, удалите остатки пропитки. Посчитайте проводники в пазу. Высчитайте число витков в секции и измерьте диаметр провода. Нарисуйте схему. Нарежьте из картона гильзы для изоляции и вставьте их в пазы.

Видео: Намотка влево и вправо

После намотки сварите выводы секций с петушками коллектора. Теперь проверьте обмотку тестером и индикатором короткого замыкания. Приступайте к пропитке.

Инструкция по пропитке (с учётом регулятора числа оборотов)

  • Убедившись в отсутствии проблем, отправьте якорь в электродуховку на прогрев для лучшего протекания эпоксидной смолы.
  • После прогрева поставьте якорь на стол под наклоном для лучшего растекания по проводам. Капните смолой на лобовую часть и медленно крутите якорь. Капайте до появления клея на противоположной лобовой части.

    Пропитка под наклоном

  • Расположите якорь горизонтально и капайте на обе лобовые части. Крутите якорь до потери текучести.
  • Оставьте в вертикальном положении до полной полимеризации.

    Сушка якоря на воздухе до полимеризации

В конце процесса слегка проточите коллектор. Балансируйте якорь при помощи динамической балансировки и болгарки. Теперь проточите окончательно на подшипнике. Необходимо прочистить пазы между ламелями и отполируйте коллектор. Сделайте окончательную проверку на обрывы и замыкания.

Особенность обмотки для болгарок с регулируемым числом оборотов в том, что ротор намотан с запасом мощности. Плотность тока влияет на число оборотов. Сечение провода завышено, а количество витков занижено.

Ремонт: Устранение пробоя изоляции

Если пробой изоляции был небольшой и вы его нашли, необходимо очистить это место от нагара и проверить сопротивление. Если его значение нормальное, заизолируйте провода асбестом. Сверху капните быстросохнущим клеем типа «Супермомент». Он просочится через асбест и хорошо заизолирует провод.

Если вы так и не нашли место пробоя изоляции, то попробуйте аккуратно пропитать обмотку пропиточным электроизоляционным лаком. Пробитая и непробитая изоляция пропитается этим лаком и станет прочнее. Высушите якорь в газовой духовке при температуре около 150 градусов. Если и это не поможет, попробуйте перемотать обмотку или поменять якорь.

Пайка пластин коллектора

Ламели установлены на пластмассовую основу. Они могут быть стёрты до самой основы. Остаются только края, до которых щётки не достают.

Стёртые ламели

Такой коллектор можно восстановить методом пайки.

  • Из медной трубы или пластины нарежьте необходимое количество ламелей по размерам.
  • После того как зачистили якорь от остатков меди, припаивайте обычным оловом с паяльной кислотой.
  • Когда все ламели припаяны, сделайте шлифовку и полировку. Если нет токарного станка, воспользуйтесь дрелью или шуруповёртом. Вставьте вал якоря в патрон. Сначала отшлифуйте напильником. Потом отполируйте нулевой наждачной бумагой. Не забудьте прочистить пазы между ламелями и измерить сопротивление.
  • Бывают не до конца повреждённые ламели. Чтобы их восстановить, необходимо провести более тщательную подготовку. Слегка проточите коллектор для очистки пластин.

    Повреждённая пластина коллектора

  • Место под пластиной нужно расширить бормашиной осторожно, чтобы не снять большой слой изолятора.

    Расширяем место бормашиной

  • Найдите два куска медного провода такого размера, чтобы они плотно улеглись в образовавшийся паз. Очищенные провода уложите в паз и облудите.
  • Сделайте заготовку ламели из меди. Она должна плотно входить в паз и быть выше существующих ламелей, чтобы легче паять.

    Заготовка ламели в пазу

  • Облудите заготовку так, чтобы было много припоя. Она плотнее будет сидеть в пазу. Уложите заготовку в паз и приложите к ней паяльник. Держите его, пока припой не расплавится.

    Припаянная заготовка

  • Лишнее сточите напильником, отшлифуйте и отполируйте.

Если коллектор был изношен полностью, то после пайки его хватит не более, чем на месяц активного использования. А не до конца повреждённые пластины после такого ремонта выдерживают несколько замен щёток и не выпаиваются.

Гальваническое наращивание пластин коллектора

Восстановленная медь очень твёрдая. Срок службы коллектора как у нового. Гальваническим наращиванием можно восстановить как полностью стёртый коллектор, так и частично повреждённые пластины.

Полностью изношенный коллектор

Качество восстановления будет одинаковым.

Повреждены отдельные пластины

  • Хорошо зачистьте всю поверхность коллектора, включая изолятор между ламелями.
  • Намотайте оголённый медный провод диаметром около 0,2 миллиметра.
  • Обмотайте скотчем вал якоря, а коллектор с торца намажьте пластилином, чтобы медь не разрасталась там, где не надо. И чтобы на железо не попал электролит.
  • Для ванночки отрежьте пол пластиковой бутылки. На вал намотайте изоленту так, чтобы она плотно держалась в горлышке бутылки. Вставьте якорь в бутылку.
  • Возьмите кусок медной шины. Её размер в два раза больше наращиваемой поверхности. Сверните её спиралью и поместите в бутылку.
  • Подключите источник питания минусом к восстанавливаемой поверхности, а плюсом к шинке. Полтора ампера тока на один квадратный дециметр раствора. Если коллектор отделён от вала, обмотайте его проволокой и подвесьте в банке на какой-нибудь перекладине, чтобы электролит касался только изношенной части ламелей. Подключите последовательно лампочки разной мощности, чтобы регулировать силу тока и предотвращать короткое замыкание на сосуде. Через 24 часа получается восстановленный коллектор.

    Восстановленный коллектор до обработки

  • Коллектор необходимо проточить и разделить пластины бормашиной или ножовочным полотном. В конце протестируйте коллектор на отсутствие замыканий между пластинами.

    Доработка коллектора

Составные части электролита:

  1. Медный купорос — 200 г.
  2. Серная кислота 1,84 — 40 г.
  3. Спирт — 5 г. Его можно заменить тройным количеством водки.
  4. Кипячёная вода — 800 мл.

Как поменять старый редуктор на новый

Болгарки отличаются размерами, мощностью, производителями, но принцип компоновки комплектующих одинаковый. Новый якорь двигателя болгарки подбирается строго в соответствии с моделью вашего инструмента.

  • После откручивания всех крепёжных болтов кожуха, корпуса и редуктора вынимаем редуктор с якорем из корпуса. Обычно редуктор и якорь жёстко крепятся друг к другу. Чтобы их разъединить необходимо разобрать редуктор.

    Редуктор с якорем

  • Открутите болты крепления.
  • Вал ротора прикручен к корпусу редуктора гайкой. Открутите её. Снимите шестерню.
  • Далее, идёт подшипник. Чтобы его снять, иногда достаточно постучать деревянным бруском по корпусу редуктора. Но чаще всего прикипевший подшипник не снимается без некоторых хитростей. Между крыльчаткой и подшипником стоит пластина, которая прикручена двумя болтами к редуктору. Чтобы до них добраться, отломите кусок пластмассовой крыльчатки или разогретым гвоздём прожгите два симметричных отверстия. Второе отверстие необходимо для балансировки, если вы не собираетесь менять крыльчатку.
  • Открутите оба болта, постучите деревянным бруском по корпусу редуктора, и якорь отсоединится от него. При этом подшипник останется на валу. Снимите съёмником все подшипники с вала.

Видео: как снять и в чём могут быть трудности

Новый подшипник посадите в корпус редуктора со стороны ротора. Прикрутите пластину, из-за которой была сломана крыльчатка. Внутрь корпуса вставьте шестерню и наживите гайку так, чтобы она вошла в пазы шестерни. На новый якорь наденьте крыльчатку, вставьте якорь в корпус редуктора. Закрутите гайку.

Видео: Замена якоря

Ремонт якоря болгарки занимает много времени. Но у вас есть выбор. Вы можете просто поменять его на новый или отдать мастерам.

Наталья. В копирайтинге впервые. Оцените статью: Поделитесь с друзьями!

Индикатор межвитковых замыканий ротора

Всем доброго времени суток. Предлагаю вашему вниманию свой вариант реализации довольно популярной и простой схемы индикатора межвитковых замыканий в роторах коллекторных электродвигателей.

На просторах интернета описано множество вариантов изготовления аналогичных схем собранных с использованием разных комбинаций транзисторов и одинаковым принципом работы.

Основные идеи были:
1. Собрать данное устройство из имевшихся после разборки разного электронного хлама деталей.
2. Сделать законченную конструкцию, т.е. включая корпус.
3. При изготовлении избавить себя от поиска или самостоятельной намотки катушек индуктивности, указанных в найденных схемах номиналов, а использовать те, которые имелись под рукой!
4. Провести сравнительное тестирование конструкции с оборудованием заводского изготовления.


В данной конструкции использовано:
— Люминесцентные лампы «ЭРА».
— Корпус от сгоревшего пускорегулятора от люминесцентной лампы.
— Фольгированный стеклотекстолит односторонний 109х28мм.
— Шурупы 3мм.
— Кусочки пластика.
— Радиодетали согласно схеме.

Из инструментов использовалось:
— МФИ типа «Dremel».
— Паяльник.
— Суперклей.
— Отвертка, кусачки и т.д.

Поскольку в найденных мною в интернете схемах используются катушки с разной индуктивностью, в идею эксперимента входило заставить нормально работать две катушки с одинаковыми номиналами. По этому для начала схема собиралась и тестировалась на макетной плате. Настраивалась с использованием оборудования времен еще СССР.

Принципиальная схема устройства, согласно использованных деталей.

В схеме были использованы катушки от двух одинаковых люминесцентных лампочек «ЭРА» (давно валялись без дела, пользуюсь светодиодными). Т.к. у меня не было под рукой LC-метра, а вычислять параметры другими способами не было желания, то их индуктивность мне пока не известна.

В описаниях, найденных в интернете, аналогичных схем устройств указывались разные рабочие частоты от 30кГц до 120кГц. Подбором частотозадающего конденсатора C1 удалось добиться синусоиды относительно правильной формы на излучающей катушке L1. Рабочая частота получилась около 91кГц.

На приемной катушке L2 сигнал имел искажения в виде неравномерной синусоиды и «зюки» на ней. Или за счет взаимных наводок, или из-за появления гармоники (не стал глубоко вникать).

Используя метод «научного тыка», параллельно приемной катушке был установлен конденсатор C5 (который отсутствует в аналогичных схемах), исходя из идеи C5=C1. Который откорректировал приемный LC контур под рабочую частоту. В результате на приемной катушке поднялась амплитуда сигнала и выровнялась форма синусоиды, что значительно повысило чувствительность прибора.

Расстояние между катушками подбиралось минимальным, при котором нет сильной прямой наводки между катушками, при условии отсутствия рядом замкнутого проводника (для удобства проверки относительно коротких якорей).


Печатная плата делалась с возможностью установки катушек на расстоянии 21мм и 27мм между их центрами (для удобства возможного эксперимента с разными катушками). Так же на плате оставлены свободные поля для удобства монтажа платы в корпусе.

Печатная плата выполнена на куске одностороннего фольгированного стеклотекстолита размерами 109х28мм.

Монтаж на плате получился не очень презентабельного вида, т.к. использовался кусок стеклотекстолита, валявшийся у меня еще с советских времен. Видимо от времени, у него внутри образовались непонятные разводы и пятна бурого цвета, которые меня сильно смущали, но не повлияли на работоспособность приборчика.

Корпус приборчика был изготовлен из корпуса сгоревшего пускорегулятора от люминесцентной лампы.


С помощью МФИ типа «Dremel» установленного в самодельный станок, верхняя часть корпуса была обрезана по краю отверстий для проводов. Сточены мешающиеся ребра. Надфилями подогнана нижняя часть корпуса.

Далее в корпус с помощью суперклея были вклеены пластиковые опоры для платы и вырезаны отверстия для переключателей, светодиодов и отверстия для доступа к подстроечным резисторам. Потом просверлены отверстия под саморезы 3мм для скрепления корпуса.


В результате получился достаточно удобный корпус размерами 113х33х17мм. Который легко разбирается для замены батарейки. Отверстия для регулировки можно заклеить кусочком изоленты.

Для удобства эксплуатации приборчика стрелками на наклейке указаны местоположения центров катушек индуктивности. Красными точками на корпусе указаны центры катушек.

Сначала приборчик проверялся дома на имевшемся якоре, где кусочком провода был имитирован замкнутый виток. Так же устройство прекрасно реагирует на любой кусочек замкнутого провода (т.е. без наличия сердечника). Прибор очень чуствительный и реагирует на любой замкнутый проводник включая оправу очков, кольцо для ключей и т.д. По этому очень удобно иметь два заранее настроенных диапазона чуствительности.

Так же результаты проверки якорей этим приборчиком сравнивались с результатами полученными на специализированном оборудовании фирмы «Bosch» в условиях мастерской.


Результатами сравнительной диагностики якорей на КЗ я остался очень доволен т.к. они полностью совпали. Приборчик уверенно показывал наличие КЗ на «убитых» якорях и не показывал ложных срабатываний на «здоровых».

Уже после тестирования в мастерской. Экспериментируя с уже готовым приборчиком, обнаружилась интересная возможность настройки не только двух режимов чувствительности приборчика, но и двух разные режимов работы:
1. При включении горит зеленый, при проверке «здорового» якоря продолжает гореть зеленый, при наличии КЗ на якоре загорается красный, при этом срабатывает на простой кусок замкнутого провода, не реагирует на металлическую поверхность.
2. При включении горит красный, при проверке «здорового» якоря загорается и горит зеленый, при наличии КЗ на якоре загорается красный, при этом не срабатывает на простой кусок замкнутого провода, реагирует на металлическую поверхность загорается зеленый.


В мастерской приборчик тестировался в первом режиме. Как оказалось, благодаря наличию переключателя и двух подстроечных резисторов, приборчик можно настроить либо на два уровня чувствительности или на два разных режима работы.

Если что-то в описании упущено, надеюсь, эти нюансы можно рассмотреть на представленных фото. Заранее прошу прощения за возможные ошибки и опечатки.


Если нужна дополнительная информация, пишите на почту, постараюсь обязательно ответить. Отзывы, идеи, предложения по улучшению конструкции и комментарии очень приветствуются.

Январь 2020г.
Станислав Шурупкин.
Email: [email protected]

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Кто-то знает, как проверить межвитковое замыкание в стартере?

Есть только мультиметр…

10 раз снимал стартер, проверил все вообще, остается только межвитковое замыкание в статоре. Статор сделан из медной шины, всего 3 катушки, но может ли эти витки закоротить? И как проверить?

Так хорошо стартер крутил, и на тебе, падох. Раньше на нем можно было даже ездить, двиг крутил без проблем даже в мороз.

Сейчас работает рывками, крутит еле еле, ничего не пойму, в чем дело. Или может у кого еще какие мысли? Головоломка…

Что проверено:

1. Масса (делал дополнительную) (плюс тоже в норме)
2. Отключил зажигание (чтобы не мешало)
3. Мотор 60C градусов — еле крутит
4. Контакты втягивающего в порядке
5. Щетки стартера (рабочие), достают
6. Коллектор якоря без следов подгорелостей
7.Пробоя в якоре и в статоре на массу нет.
8. Шунтовая катушка статора работает (при подаче напряжения притягивает отвертку, причем сильно)
9. Остальные три катушки сделаны из медной шины, обрыва нет, пробоя на массу нет. Возможно лишь замыкание витков между собой, но как проверить?
10. Напряжение АКБ 12.8В (далее заряжал «до кипения»)
11. Контаты щеток в порядке.

Продолжение…

Собрал стартер, обследовал все, комар носа не подточит! Массу кинул напрямую на двигатель, так как была небольшая просадка по току.
Зачистил клеммы АКБ, перепроверил все провода, все равно еле крутит! Нигде ничего не греется, не дымит, как бывает при плохом контакте. Напряжение на АКБ при запуске проседает до 10.5В-10В, аккум свежий.
Зарядка в норме, напряжение 14.7В, при включении всех фар, печки и габаритов 13.2В, никаких проблем.

Завел, прогрел, все равно туго крутит, и такое чувство, что стартеру тяжело преодолеть сжатие в цилиндрах. Без свечей крутит легко.

СХЕМА


1 – крышка стартера со стороны привода;
2 – резиновая заглушка;
3 – рычаг привода;
4 – тяговое реле;
5 – полюс статора;
6 – сервисная катушка обмотки статора;
7 – шунтовая катушка обмотки статора;
8 – резиновая заглушка;
9 – защитная лента;
10 – втулка крышки;
11 – крышка со стороны коллектора;
12 – щетка;
13 – пружина щетки;
14 – тормозной диск крышки;
15 – корпус;
16 – стяжная шпилька;
17 – якорь;
18 – ограничитель хода шестерни;
19 – обгонная муфта с шестерней привода;
20 – ограничительное кольцо;
21 –упорная шайба;
22 – регулировочная шайба

Как проверить якорь на межвитковое замыкание

Как проверить якорь электродвигателя

В бытовых приборах и оборудовании установлены различные типы электродвигателей. Эти различия зависят от условий эксплуатации, назначения и выполняемых ими функций. Например, в электродрелях, миксерах, кухонных комбайнах, пылесосах, стиральных машинах и других устройствах с частым изменением скорости вращения вала применяются коллекторные двигатели.

Если требуется обеспечить долговременный стабильный режим работы, то в таком оборудовании используются уже асинхронные электродвигатели, наиболее подходящие для небольших самодельных станков. Тем не менее, во всех случаях часто приходится решать вопрос, как проверить якорь электродвигателя в домашних условиях. Современные сервисные услуги достаточно дороги, поэтому очень многие пытаются самостоятельно обнаружить неисправность и выполнить ремонт.

Коллекторные двигатели и основные неисправности якоря

Коллекторные электродвигатели рассчитаны на работу от бытовых сетей, напряжением 220В. Практически все они являются синхронными агрегатами. В отличие от асинхронных электродвигателей, коллекторные устройства состоят из неподвижного статора и вращающейся обмотки на валу – якоря. Напряжение на них подается с помощью щеточно-графитного устройства, которое и есть коллектор.

Основная причина, требующая проверки якоря и других деталей, состоит в появлении искр. Активное искрение свидетельствует об износе щеток и коллекторного узла или нарушении контактов. Кроме того, искры могут появиться в результате межвиткового замыкания, то есть, замыкания обмоток в коллекторе. Появление таких нарушений требует качественной диагностики, начиная с визуального осмотра и заканчивая проверкой мультиметром.

Первоначальный осмотр позволяет выявить оборванные или выгоревшие обмотки, а также выгорание в точках их подключения. Поэтому, в первую очередь следует обращать внимание на состояние обмоток и целостность витков. Если обмотки почернели полностью или частично, это уже указывает на определенные проблемы с якорем. Иногда изоляцию достаточно просто понюхать, чтобы определить характерный запах гари.

Более точную информацию можно получить путем проверки якоря мультиметром. Прозвонка выполняется поэтапно, захватывая все элементы двигателя:

  • Вначале прозваниваются попарные выводы обмоток статора к ламелям. Сопротивления на каждом из них должны иметь одинаковое значение.
  • Далее проверяется сопротивление между ламелями и корпусом якоря. В норме оно должно быть бесконечным.
  • Целостность обмотки проверяется путем прозвонки выводов.
  • После этого проверяется состояние цепи между корпусом статора и выводами якорной обмотки. При наличии пробоя на корпус, бытовое устройство категорически запрещается подключать к напряжению. В этом случае требуется обязательный ремонт или полная замена неисправных деталей.

После ремонта коллекторного электродвигателя нужно соединить все элементы между собой и подключить устройство к питанию 220В. Если агрегат работает нормально, значит ремонт выполнен правильно.

Проверка асинхронного электродвигателя

Кроме коллекторных, в быту можно встретить и асинхронные двигатели, устанавливаемые в некоторых моделях стиральных машин или в компрессорах холодильников. Гораздо чаще они используются в компрессорах, насосах, различных станках и другом оборудовании. Несмотря на высокую надежность, данные электродвигатели также подвержены поломкам и неисправностям. В этих конструкциях роль якоря выполняют обмотки статора, поэтому визуальный осмотр нужно начинать именно с них.

Часто обмотки перестают работать, когда они отсырели или, произошел обрыв витков. Поэтому если двигатель очень долго не эксплуатировался, необходимо выполнить проверку сопротивления изоляции с помощью мегомметра. При отсутствии мгаомметра, агрегат в целях профилактики рекомендуется разобрать и сушить обмотки статора в течение нескольких суток.

Вполне возможно, что причина неисправности кроется не в самом электродвигателе, а связана с какими-либо другими факторами. Поэтому, прежде чем начинать ремонтировать сам агрегат, следует убедиться в наличии напряжения, проверить магнитные пускатели, кабели подключения, тепловое реле. Если в схеме имеется конденсатор, его тоже нужно проверить. При исправности всех перечисленных элементов, можно приступать к разборке двигателя для первичного осмотра. Проверка должна проводиться при полном отсутствии электропитания. Необходимо предотвратить самопроизвольное или ошибочное включение агрегата.

В процессе осмотра, кроме других деталей, особенно тщательно проверяются обмотки статора. Они должны быть целыми, без торчащих или оторванных проводков. Особое внимание следует обращать на черные пятна, указывающие на возможное подгорание проводов. В исправном состоянии проводники имеют темно-красный цвет. Почернение наступает при выгорании электроизоляционного лака, наносимого на их поверхность. При осмотре может быть выявлено полное или частичное выгорание обмотки и межвитковое замыкание. При частичном выгорании двигатель будет работать и быстро нагреваться. Поэтому обмотка в любом случае перематывается полностью.

Если внешний осмотр не дал результатов, дальнейшую диагностику нужно проводить с помощью измерительных приборов. Чаще всего для этих целей используется мультиметр, позволяющий определить целостность обмотки, наличие или отсутствие пробоя на корпус.

В двигателях на 220В прозваниваются пусковая и рабочая обмотки. Сопротивление пусковой должно быть в 1,5 выше, чем у рабочей. В электродвигателях на 380В, подключаемых звездой или треугольником, схема разбирается, после чего поочередно прозванивается каждая обмотка. Сопротивление на каждой из них должно быть одинаковым, с отклонением не более чем на 5%. Также все обмотки обязательно прозваниваются между собой и на корпус. Если значение сопротивления не бесконечно, это свидетельствует о наличии пробоя обмоток на корпус или между собой. В этом случае требуется их полная перемотка.

Отдельно проверяется сопротивление изоляции обмоток двигателя. В этом случае мультиметр не поможет, потребуется мегомметр на 1000В, подключаемый к отдельному источнику питания. При выполнении измерений один провод прибора касается корпуса двигателя в неокрашенном месте, а другой провод поочередно соединяется с каждым выводом обмотки. Если сопротивление изоляции составляет менее 0,5 Мом, значит двигатель требует просушки. При выполнении измерений нужно соблюдать осторожность и не касаться измерительных проводов. Измеряемое оборудование должно быть обесточено, продолжительность измерений составляет не менее 2-3 минут.

Наибольшую сложность представляет поиск межвиткового замыкания. Его невозможно выявить при визуальном осмотре. Для трехфазных двигателей применяются специальные измерители индуктивности, которые в норме показывают одинаковое значение на всех обмотках. При наличии повреждения, индуктивность у такой обмотки будет наиболее низкой.

Как проверить якорь электроинструмента в домашних условиях

Самостоятельная проверка якоря электродвигателя легко может быть выполнена в домашних условиях. Это позволит, во-первых, самостоятельно восстановить работоспособность инструмента, во-вторых, не переплачивать специалисту за достаточно простую операцию. Для проверки понадобится только отвертка и мультиметр. Дополнительно можно приобрести специальный приборчик для определения межвиткового замыкания.

Этап 1. Визуальный осмотр инструмента

Очень часто случаются ситуации, когда инструмент еще работает, но уже не так, как положено. И в 30 % случаев виной тому подгоревший якорь. Выявить это можно визуально, еще до вскрытия корпуса.

Косвенными признаками «подуставшего» якоря электродвигателя являются такие неполадки:

  • При работающем электродвигателе видно очень сильное искрение на коллекторе.
  • При попытке запустить болгарку (дрель, дисковую пилу и пр.) наблюдается жесткая просадка напряжения (моргает освещение).
  • Запуск электродвигателя сопровождается резкими рывками.
  • Из корпуса доносится характерный запах горелой проводки.
  • Инструмент не набирает прежней мощности.

Обратите внимание, что большая половина этих признаков может также указывать на банальный износ щеток электродвигателя. Если они стерлись или выкрошились, то якорь, скорее всего, здесь ни при чем. Меняем на новые, чистим коллектор от графитного налета, и спокойно работаем дальше. Если же щетки выглядят целыми, а вышеперечисленные симптомы наблюдаются, с 80-процентной вероятностью можно утверждать, что проблема в якоре электродвигателя.

Если электроинструмент и вовсе не подает признаков жизни, причин может быть гораздо больше, и понадобится не только проверка якоря.

Этап 2. Разборка электроинструмента

Так или иначе, если со щетками все в порядке, без разборки инструмента не обойтись. На этом этапе самое главное – не навредить еще больше. Особое внимание следует обращать на правильный подбор отвертки, так как испорченные винты выкрутить будет проблематично, и проверка превратится в мучительные слесарные работы. В некоторых инструментах используются крепежи разной длины. Их месторасположение нужно запоминать (лучше записывать или зарисовывать).

Чтобы после диагностики и ремонта успешно собрать электроинструмент, начинающим рекомендуется фотографировать каждый этап разборки. Это сильно поможет, если вы забудете, какая деталь как стояла до проверки.

Этап 3. Подготовка якоря электродвигателя к проверке

После того, как якорь был извлечен из корпуса, его желательно подготовить для диагностики. Процедура заключается в тщательной очистке ламелей коллектора от графитного налета. Если этого не сделать, дальнейшая проверка может не дать требуемого результата.

Снять налет можно при помощи ветоши и спирта. Если на ламелях имеется не налет, а толстый слой нагара, удалять его придется мелкозернистой наждачной бумагой. Обратите внимание, чтобы на коллекторе не оставалось видимых борозд от абразива. Это ухудшит контакт ламелей со щетками, а также ускорит их износ.

Этап 4. Визуальный осмотр якоря перед проверкой

Смотреть нужно на следующее:

  • Ламели коллектора. На них не должно быть сильного износа.
  • Обмотка якоря электродвигателя. Ищем обрывы или видимые следы горения провода.
  • Контакты. Вся обмотка припаяна к ламелям коллектора. Эти точки нужно проверить на целостность.

Если на коллекторе слишком глубокая выработка, якорь подлежит замене. Следы гари на обмотках или контактах говорят о том, что деталь неисправна. Можно перемотать, конечно, но дело это неблагодарное, и требует особых навыков. Проще купить новый.

Этап 5. Проверка якоря мультиметром

Проверка якоря электродвигателя мультиметром состоит из двух этапов. В первую очередь, необходимо прозвонить его на наличие пробоя. Для этого мультиметр устанавливается в режим проверки цепи со звуковым сигналом.

Далее одним щупом проходим по ламелям коллектора, а вторым по корпусу якоря.

Второй этап проверки якоря мультиметром заключается в измерении сопротивлений между соседними обмотками. Для этого прибор устанавливается в режим определения сопротивления на самый минимальный порог (как правило, это 200 Ом).

Далее щупы прикладываются к соседним ламелям коллектора, а показания на экране фиксируются. При измерении сопротивления между всеми соседними ламелями должно быть одинаковое значение. Если это не так – якорь неисправен.

О том же самом говорит полное отсутствие сопротивление на какой-либо из обмоток.

Этап 6. Проверка якоря на межвитковое замыкание

Перед тем, как проверить якорь электродвигателя на межвитковое короткое замыкание, необходимо обзавестись специальным приборчиком. Стоит он копейки, и о нем полно информации в Интернете.

Суть проверки якоря заключается в прикладывании этого самого приборчика ко всем секциям корпуса. По показаниям светодиодного индикатора определяется неисправность.

Этап 7. Замена якоря и обратная сборка инструмента

Неисправный якорь либо отдается на перемотку, либо заменяется новым. К счастью, сегодня даже на самый дешевый китайский инструмент в интернет-магазинах можно найти подходящие комплектующие. Новый или восстановленный якорь перед установкой желательно проверить по алгоритму, описанному выше.

Если все в норме, собираем все обратно и работаем. Меняя якорь электродвигателя рекомендуется также установить новые щетки. Благо, они копеечные.

Проверка якоря на межвитковое замыкание

Электрические машины состоят из ротора и статора. Статор представляет собой неподвижные обмотки, уложенные в корпус. Якорь — это подвижная часть, поэтому на нее как правило попадают частички грязи и смазки и под воздействием температуры образуется окисленный налет. Он может послужить причиной неисправной работы или выхода из строя ротора электрической машины. Обнаруживается он визуальным осмотром. Нагар может стать причиной межвиткового замыкания в якоре. Как таковой, ротор электродвигателя при нормальных условиях эксплуатации не изнашивается. Со временем подлежат замене только токосъемные щетки, если их длина уже не соответствует допустимому размеру. Однако длительные нагрузки становятся причиной нагрева обмоток статора, что в результате и способствует образованию нагара. Межвитковое замыкание якоря может случиться при механических повреждениях. Недопустимо на трущихся поверхностях наличие сколов, вмятин, царапин и трещин. Замыкание между витками обмоток якоря происходит в случае выхода со строя подшипниковых узлов. Тогда якорь перекашивается, что приводит к повреждению ламелей. Еще одной причиной замыкания является воздействие влаги. При попадании капель воды на металлические поверхности начинается процесс коррозии. Ржавчина затрудняет вращение якоря, токовые нагрузки растут, происходит нагрев в следствии чего может отслаиваться припой, что в свою очередь при длительной эксплуатации может привести к межвитковому замыканию.

Диагностировать эту неисправность возможно и в домашних условиях. Проводят эту процедуру при помощи катушки индуктивности, называемую дросселем.

При помощи данного устройства, вам удастся узнать направление сброса, а также порядок, в котором катушки обмотки подключены к ламелям коллектора.

Таким образом, осуществляется проверка якоря на межвитковое замыкание.

Изготовить такой прибор своими руками совсем не трудно, достаточно ознакомится с содержанием нашей пошаговой инструкции.

Для сборки прибора , потребуется П — образное трансформаторное железо . Его можно извлечь из вибрационного насоса типа Малыш .

Разбираем конструкцию и достаем П — образное трансформаторное железо.Для этого п редварительно необходимо нагреть нижнюю часть насоса , чтобы полимер, которым залиты катушки, расплавился .

Далее при помощи подручного инструмента срезаем края на трансформаторном железе, как показано на фото. При обработке помните, что железо слоеное, поэтому все операции нужно выполнять внимательно, чтобы не образовались задиры. После на наждачном станке снимаем все острые кромки на изделии. Это необходимо для сохранения целостности эмаль-провода.

Соблюдать строгие размеры углов не обязательно, главное, чтобы якоря разных размеров легко располагались в приготовленом месте.

Следующим действием будет изготовление катушек. Чтобы выиграть в размере устройства и дроссель не оказался слишком громоздким, изготовим не одну, а две катушки, которые разместим по обеим сторонам П-образного железа. Для этого на понадобится:

  • картон;
  • мерительный инструмент;
  • карандаш;
  • острый нож;
  • ножницы.

Измеряем все размеры П-образного трансформаторного железа по их максимальным значениям. Далее переносим их на картон и вычерчиваем развертку корпуса будущей катушки. При этом обязательно нужно учесть размер паза сердечника. Далее тупым концом ножниц проводим по всем линиям перегиба. Это поможет изгибать картон без проблем. Вырезаем развертку. Таким же образом делаем выкройку на другую сторону. Теперь нам нужно подготовить крышки для катушек. Их понадобится 8 штук. Размечаем на картоне заготовки для крышек. Наружный контур вырезаем ножницами, внутренний острым ножом.

Далее склеиваем крышки с подготовленными развертками и получаем два остова будущих катушек.

Теперь необходимо намотать провод на катушки. Для этого воспользуемся расчетом трансформатора. Сначала определяем площадь сечения сердечника путем перемножения его длины и ширины. В нашем случае площадь составила 3,7 см х 2,2 см = 8,14 см 2 . Далее делим 13200/8,14=1621 виток. Это количество округляем до 1700 витков и поровну распределяем между двумя катушками, получается по 850 витков. Такое количество можно без проблем намотать в ручном режиме. При этом ошибка в 20-40 витков не повлияет на результат. Но все же лучше ошибиться в сторону увеличения. Перед началом наматывания необходимо сделать отверстия, в которые будут выходить концы провода. На свободный конец провода надевается термоусадочный кембрик. Конец провода вставляется в отверстие и далее идет процесс наматывания. По его окончании на другой конец припаиваем проводок с кембриком и вставляем в другое отверстие. Точно так наматываем вторую катушку.

После того , как обе катушки готовы , надеваем их на П — образный сердечник , при этом выводы проводов должны располагаться внизу с одной стороны . Важно , чтобы катушки были накручены идентично , витки направлены одинаково , а их окончания выведены в одну сторону . Далее следует соединение начал индукционных катушек и подача сетевого напряжения ( 220В ) на их концы .

Для тестирования самодельного дросселя воспользуемся прибором заводского изготовления. Сначала проверим якорь на межвитковое замыкание промышленным устройством и места прилипания пластины пометим мелом. При проверке ротора нашим дросселем пластина будет примагничиваться в тех же местах. Подведем итоги, прибор выполнен правильно, результаты идентичны.

Снимаем катушки с сердечника и изолируем изолентой. Ставим их обратно припаиваем питание. Дроссель готов к эксплуатации, можно приступать к проверке наличия межвиткового замыкания в якоре.

Для этого необходимо включить изготовленное нами устройство, в его вырез уложить якорь и не спеша повернуть его.

Проверка межвиткового замыкания при помощи аналогового тестера

Впрочем проверить якорь на межвитковое замыкание можно и при помощи мультимера. В этом случае удастся только узнать есть обрыв в обмотках якоря или нет. Более точным прибором будет аналоговый тестер. С его помощью замеряем сопротивление между каждыми двумя ламелями. Оно должно быть идентичным. После устанавливаем прибор на 200 кОм, Один щуп замыкаем на массу , а другой прикладываем к каждой ламели. Если якорь не звонится на массу то он скорее всего исправен или его нужно проверить при помощи дросселя.

Индикатор для обнаружение межвиткового замыкания якоря

Для обнаружение межвиткового замыкания якоря можно использовать нехитрый индикатор который можно собрать по приведенной ниже схеме.

Для того чтобы спаять такой элементарный индикатор понадобится немного денежных средств, свободное время и ваши руки.

Приобретаем 5 транзисторов, 8 резисторов, 4 конденсатора, 2 светодиода и батарейку. Кроме того самостоятельно наматываем две катушки.

Подготавливаем печатную плату и собираем прибор. Выполнять проверку межвиткового замыкания с помощью такого индикатора очень удобно. Весомым аргументом в пользу прибора является то, что ним можно без проблем находить межвитковое замыкание и на статорах как указано ниже в видео.

Если на якоре обнаружено межвитковое замыкание, что делать?

Нужно проверить все, если металлическая линейка притягивается в определенном пазу, это значит, что его катушках имеет место быть межвитковое замыкание.

Кроме того, внимательно просмотрите коллектор.

Если между его ламелями возникает замыкание, это также говорит о наличии межвиткового замыкания.

Чаще всего в таких ситуациях приходится полностью перематывать якорь, поскольку даже одна обмотка без нанесения повреждений остальным представляется весьма проблематичной.

Кроме того, узнать о наличии межвиткового замыкания можно, просто тщательно осмотрев провод и шинки якоря.

Например, при этом может быть обнаружено, что витки помяты или согнуты, а также что между ними виднеются различного рода частицы, проводящие ток, например, припой, протекший после пропайки.

В таком случае поломку можно ликвидировать, удалив инородные тела или исправив помятости на шинке.

Поэтому, якоря на межвитковое замыкание чинить намного проще, чем, кажется.

Кроме того, рекомендуется покрыть детали лаком после устранения замыкания.

Помимо всего прочего, еще одним признаком наличия межвиткового замыкания является искрение щеток.

Речь идет о ситуациях, когда наблюдаются местные нагревы обмотки.

Таковы основные признаки, по которым можно обнаружить межвитковое замыкание в якоре.

А так же вы можете посмотреть видео проверка якоря стартера

Проверка, ремонт и замена якоря болгарки своими руками

Якорь болгарки больше всех узлов подвергается температурным, механическим и электромагнитным нагрузкам. Поэтому он является частой причиной отказа работы инструмента, и как следствие, часто нуждается в ремонте. Как проверить якорь на работоспособность и починить элемент своими руками — в нашей статье.

Устройство якоря болгарки

Якорь двигателя болгарки представляет собой токопроводящую обмотку и магнитопровод, в который запрессован вал вращения. Он имеет на одном конце ведущую шестерню, на другом коллектор с ламелями. Магнитопровод состоит из пазов и мягких пластин, покрытых лаком для изоляции друг от друга.

Схема якоря болгарки

В пазы по специальной схеме уложены по два проводника якорной обмотки. Каждый проводник составляет половинку витка, концы которого попарно соединяются на ламелях. Начало первого витка и конец последнего находятся в одном пазу, поэтому они замкнуты на одну ламель.

Как проверить якорь болгарки на исправность

Виды неисправностей якоря:

  • Пробой изоляции на массу — это замыкание обмотки на металлический корпус ротора. Происходит из-за разрушения изоляции.
  • Распайка коллекторных выводов.
  • Неравномерный износ коллектора.
  • Если якорь неисправен, происходит перегрев двигателя, оплавляется изоляция обмотки, витки коротко замыкаются. Отпаиваются контакты, соединяющие обмотку якоря с пластинами коллектора. Прекращается подача тока и двигатель перестаёт работать.

    Виды диагностики якоря:

    • визуально;
    • мультиметром;
    • лампочкой;
    • специальными приборами.

    Стандартная диагностика

    Прежде чем взять прибор для диагностики, осмотрите якорь. На нём могут быть повреждения. Если проводка оплавилась, подгоревший изоляционный лак оставит чёрные следы или специфический запах. Можно увидеть погнутые и смятые витки либо токопроводящие частицы, например, остатки припоя. Эти частицы являются причиной короткого замыкания между витками. Ламели имеют загнутые края, называемые петушками, для соединения с обмоткой.

    Из-за нарушения этих контактов ламели выгорают.

    Другие повреждения коллектора: приподнятые, изношенные или пригоревшие пластины. Между ламелями может скапливаться графит от щёток, что тоже указывает на короткое замыкание.

    Загнутые пластины коллектора

    Как проверить с помощью мультиметра

    • Поставьте сопротивление 200 Ом. Соедините щупы прибора с двумя соседними ламелями. Если сопротивление одинаковое между всеми соседними пластинами, значит, обмотка исправна. Если сопротивление менее 1 Ом и очень близко к нулю, есть короткое замыкание между витками. Если сопротивление выше среднего в два и более раз, значит, есть обрыв витков обмотки. Иногда при обрыве сопротивление настолько велико, что прибор зашкаливает. На аналоговом мультиметре стрелка уйдёт до конца вправо. А на цифровом ничего не покажет.

    Диагностика обмотки якоря мультиметром

    Видео: как проходит проверка

    Если у вас нет тестера, воспользуйтесь лампочкой с напряжением 12 вольт мощностью до 40 Вт.

    Как проверить ротор болгарки с помощью лампочки

    • Возьмите два провода и соедините их с лампой.
    • На минусовом проводе сделайте разрыв.
    • Подайте на провода напряжение. Концы разрыва приложите к пластинам коллектора и прокрутите его. Если лампочка горит, не меняя яркости, значит, короткого замыкания нет.
    • Проведите тест замыкания на железо. Соединяйте один провод с ламелями, а другой с железом ротора. Потом с валом. Если лампочка будет гореть, значит, есть пробой на массу. Обмотка замыкает на корпус ротора или вал.

    Эта процедура аналогична диагностике мультиметром.

    Проверка индикатором короткозамкнутых витков (ИКЗ)

    Попадаются якоря, у которых не видно проводов, подсоединённых к коллектору из-за заливки непрозрачным компаундом или из-за бандажа. Поэтому трудно определить коммутацию на коллекторе относительно пазов. Поможет в этом индикатор короткозамкнутых витков.

    Этот прибор имеет небольшие размеры и прост в эксплуатации.

    Сначала проверьте якорь на отсутствие обрывов. Иначе, индикатор не сможет определить короткое замыкание. Для этого тестером измерьте сопротивление между двумя соседними ламелями. Если сопротивление превышает среднее хотя бы в два раза, значит, есть обрыв. При отсутствии обрыва переходите к следующему этапу.

    Регулятор сопротивления позволяет выбрать чувствительность прибора. У него имеются две лампочки: красная и зелёная. Настройте регулятор так, чтобы красная лампочка начала гореть. На корпусе индикатора есть два датчика в виде белых точек, расположенных на расстоянии 3 сантиметра друг от друга. Приложите индикатор датчиками к обмотке. Медленно крутите якорь. Если загорится красная лампочка, значит, есть короткое замыкание.

    Видео: ИКЗ в работе

    Диагностика прибором проверки якорей (дросселем)

    Прибором проверки якорей определяют наличие межвиткового замыкания обмотки. Дроссель представляет собой трансформатор, у которого есть только первичная обмотка и вырезан магнитный зазор в сердечнике.

    Схема прибора проверки якорей

    Когда мы кладём ротор в этот зазор, его обмотка начинает работать как вторичная обмотка трансформатора. Включите прибор и положите на якорь металлическую пластину, например, металлическую линейку или ножовочное полотно. Если имеется межвитковое замыкание, от местного перенасыщения железа пластина будет вибрировать либо намагничиваться к корпусу якоря. Поворачивайте якорь вокруг оси, перемещая пластину так, чтобы она лежала на разных витках. Если замыкания нет, то пластина будет свободно перемещаться по ротору.

    Прибор проверки якорей

    Видео: Как сделать дроссель своими руками и проверить якорь

    Как отремонтировать якорь в домашних условиях

    Из-за якоря происходит треть поломок шуруповёрта. При каждодневном интенсивном режиме работы неисправности могут возникнуть уже в первые полгода, например, при несвоевременной замене щёток. При щадящем использовании шуруповёрт продержится год и более.

    Якорь можно спасти, если не нарушена балансировка. Если во время работы прибора слышен прерывистый гул и идёт сильная вибрация, то это нарушение балансировки. Такой якорь подлежит замене. А отремонтировать можно обмотку и коллектор. Небольшие короткие замыкания устраняются. Если повреждена значительная часть обмотки, её можно перемотать. Изношенные и сильно повреждённые ламели проточить, нарастить или впаять. К тому же не стоит браться за ремонт якоря, если вы неуверены в своих возможностях. Лучше его заменить или отнести в мастерскую.

    Проточка коллектора

    Со временем на коллекторе образуется выработка от щёток. Чтобы от неё избавиться, необходимо:

      Проточить коллектор, используя резцы для продольного обтачивания, то есть проходные резцы.

    Проходной прямой резец

    Не забудьте очистить ротор от стружки, чтобы не произошло замыкания.

    Видео по теме

    Как перемотать якорь

    Перед тем как разобрать якорь, запишите или зарисуйте направление обмотки. Оно может быть влево или вправо. Чтобы его определить правильно, посмотрите на торец якоря со стороны коллектора. Наденьте перчатки, возьмите острые кусачки или ножовку по металлу. Удалите лобовые части обмотки. Коллектор нужно почистить, а снимать необязательно. Аккуратно, не повреждая пазовые изоляторы, выбейте стержни оставшихся частей обмотки с помощью молотка и металлического зубила.

    Видео: Снимаем обмотку

    Надфилем, не повреждая плёнки изолятора, удалите остатки пропитки. Посчитайте проводники в пазу. Высчитайте число витков в секции и измерьте диаметр провода. Нарисуйте схему. Нарежьте из картона гильзы для изоляции и вставьте их в пазы.

    Видео: Намотка влево и вправо

    После намотки сварите выводы секций с петушками коллектора. Теперь проверьте обмотку тестером и индикатором короткого замыкания. Приступайте к пропитке.

    Инструкция по пропитке (с учётом регулятора числа оборотов)

    • Убедившись в отсутствии проблем, отправьте якорь в электродуховку на прогрев для лучшего протекания эпоксидной смолы.
    • После прогрева поставьте якорь на стол под наклоном для лучшего растекания по проводам. Капните смолой на лобовую часть и медленно крутите якорь. Капайте до появления клея на противоположной лобовой части.

    Пропитка под наклоном

    Сушка якоря на воздухе до полимеризации

    В конце процесса слегка проточите коллектор. Балансируйте якорь при помощи динамической балансировки и болгарки. Теперь проточите окончательно на подшипнике. Необходимо прочистить пазы между ламелями и отполируйте коллектор. Сделайте окончательную проверку на обрывы и замыкания.

    Особенность обмотки для болгарок с регулируемым числом оборотов в том, что ротор намотан с запасом мощности. Плотность тока влияет на число оборотов. Сечение провода завышено, а количество витков занижено.

    Ремонт: Устранение пробоя изоляции

    Если пробой изоляции был небольшой и вы его нашли, необходимо очистить это место от нагара и проверить сопротивление. Если его значение нормальное, заизолируйте провода асбестом. Сверху капните быстросохнущим клеем типа «Супермомент». Он просочится через асбест и хорошо заизолирует провод.

    Если вы так и не нашли место пробоя изоляции, то попробуйте аккуратно пропитать обмотку пропиточным электроизоляционным лаком. Пробитая и непробитая изоляция пропитается этим лаком и станет прочнее. Высушите якорь в газовой духовке при температуре около 150 градусов. Если и это не поможет, попробуйте перемотать обмотку или поменять якорь.

    Пайка пластин коллектора

    Ламели установлены на пластмассовую основу. Они могут быть стёрты до самой основы. Остаются только края, до которых щётки не достают.

    Такой коллектор можно восстановить методом пайки.

    • Из медной трубы или пластины нарежьте необходимое количество ламелей по размерам.
    • После того как зачистили якорь от остатков меди, припаивайте обычным оловом с паяльной кислотой.
    • Когда все ламели припаяны, сделайте шлифовку и полировку. Если нет токарного станка, воспользуйтесь дрелью или шуруповёртом. Вставьте вал якоря в патрон. Сначала отшлифуйте напильником. Потом отполируйте нулевой наждачной бумагой. Не забудьте прочистить пазы между ламелями и измерить сопротивление.
    • Бывают не до конца повреждённые ламели. Чтобы их восстановить, необходимо провести более тщательную подготовку. Слегка проточите коллектор для очистки пластин.

    Межвитковое замыкание якоря, статора, трансформатора. Как определить замыкание между витками.

    Электродвигатели часто выходят из строя, и основной причиной для этого является межвитковое замыкание. Оно составляет около 40% всех поломок моторов. От чего возникает замыкание между витками? Для этого есть несколько причин.

    Основная причина – излишняя нагрузка на электродвигатель, которая выше установленной нормы. Статорные обмотки нагреваются, разрушают изоляцию, происходит замыкание между витками обмоток. Неправильно эксплуатируя электрическую машину, работник создает чрезмерную нагрузку на электродвигатель.

    Нормальную нагрузку можно узнать из паспорта на оборудование, либо на табличке мотора. Лишняя нагрузка может возникнуть из-за поломки механической части электромотора. Подшипники качения могут послужить этой причиной. Они могут заклинить от износа или отсутствия смазки, в результате этого возникнет замыкание витков катушки якоря.

    Замыкание витков возникает и в процессе ремонта или изготовления двигателя, в результате брака, если двигатель изготавливали или ремонтировали в неприспособленной мастерской. Хранить и эксплуатировать электромотор необходимо по определенным правилам, иначе внутрь мотора может проникнуть влага, обмотки отсыреют, как следствие возникнет витковое замыкание.

    С витковым замыканием электродвигатель работает неполноценно и недолго. Если вовремя не выявить межвитковое замыкание, то скоро придется покупать новый электродвигатель или полностью новую электрическую машину, например, электродрель.

    При замыкании витков обмотки двигателя повышается ток возбуждения, обмотка перегревается, разрушает изоляцию, происходит замыкание других витков обмотки. Вследствие повышения тока может послужить причиной выхода из строя регулятора напряжения. Витковое замыкание выясняется сравнением обмоточного сопротивления с нормой по техусловиям. Если оно снизилось, обмотка подлежит перемотке, замене.

    Как найти межвитковое замыкание

    Замыкание витков легко определить, для этого есть несколько методов. Во время работы электродвигателя обратите внимание на неравномерный нагрев статора. Если одна его часть нагрелась больше, чем корпус двигателя, то необходимо остановить работу и провести точную диагностику мотора.

    Существуют приборы для диагностики замыкания витков, можно проверить токовыми клещами. Нужно измерить нагрузку каждой фазы по очереди. При разнице нагрузок на фазах надо задуматься о наличии межвиткового замыкания. Можно перепутать витковое замыкание с перекосом фаз сети питания. Чтобы избежать неправильной диагностики, надо измерить приходящее напряжение питания.

    Обмотки проверяют мультиметром путем прозвонки. Каждую обмотку проверяем прибором отдельно, сравниваем результаты. Если замкнуты оказались всего 2-3 витка, то разница будет незаметна, замыкание не выявится. С помощью мегомметра можно прозвонить электромотор, выявив наличие замыкания на корпус. Один контакт прибора соединяем с корпусом мотора, второй к выводам каждой обмотки.

    Если нет уверенности в исправности двигателя, то необходимо произвести разборку мотора. При разборе нужно осмотреть обмотки ротора, статора, наверняка будет видно место замыкания.

    Наиболее точным методом проверки замыкания между витками обмоток является проверка понижающим трансформатором на трех фазах с шариком подшипника. Подключаем на статор электромотора в разобранном виде три фазы от трансформатора с пониженным напряжением. Кидаем шарик подшипника внутрь статора. Шарик бегает по кругу – это нормально, а если он примагнитился к одному месту, то в этом месте замыкание.

    Можно вместо шарика применить пластинку от сердечника трансформатора. Ее также проводим внутри статора. В месте замыкания витков, она будет дребезжать, а где замыкания нет, она просто притянется к железу. При таких проверках нельзя забывать про заземление корпуса двигателя, трансформатор должен быть низковольтным. Опыты с пластинкой и шариком при 380 вольт запрещаются, это опасно для жизни.

    Самодельный прибор для определения виткового замыкания

    Сделаем дроссель своими руками для проверки межвиткового замыкания в обмотке двигателя. Нам понадобится П-образное трансформаторное железо. Его можно взять, например, от старого вибрационного насоса «Ручеек», «Малыш». Разбираем его нижнюю часть, хорошо нагреваем ее. Там имеются катушки, залитые эпоксидной смолой.

    Эпоксидку разогреваем и выбиваем катушки с сердечником. С помощью наждака или болгарки срезаем губки сердечника.

    Руководство по поиску и устранению неисправностей — Асинхронные двигатели

    Используйте этот ресурс для устранения неполадок двигателя переменного тока. Если проблемы с двигателем не могут быть решены с помощью этого списка, обратитесь за помощью к своему поставщику .

    1. Двигатель не запускается при первоначальной установке

    • Двигатель подключен неправильно
      • Обратитесь к электрической схеме, чтобы убедиться, что двигатель подключен правильно.
    • Двигатель поврежден, ротор задевает статор
      • Проверните вал двигателя и нащупайте его на ощупь.
    • Электропитание или неисправность линии
      • Проверить источник питания, перегрузку, предохранители, элементы управления и т. Д.

    2. Двигатель работал, затем не запускается

    • Сработал предохранитель или автоматический выключатель
      • Замените предохранитель или сбросьте прерыватель.
    • Статор закорочен или заземлен (двигатель издает гудение, и срабатывает автоматический выключатель или предохранитель)
      • Проверить герметичность змеевиков.При обнаружении утечек мотор необходимо заменить.
    • Двигатель перегружен или заклинивает
      • Убедитесь, что нагрузка свободна. Сравните потребление тока двигателя в амперах с номиналом на паспортной табличке.
    • Возможно, вышел из строя конденсатор (на однофазном двигателе)
      • Сначала разрядите конденсатор. Чтобы проверить конденсатор, установите вольтметр на шкалу RX100 и прикоснитесь щупами к клеммам конденсатора. Если конденсатор в порядке, стрелка подскочит до нуля Ом и снова переместится на высокое значение.Устойчивый нулевой уровень сопротивления указывает на короткое замыкание; устойчиво высокое сопротивление указывает на обрыв цепи.

    3. Мотор работает, но гаснет

    • Падение напряжения
      • Если напряжение ниже 90% номинального значения двигателя, обратитесь в свою энергетическую компанию или убедитесь, что другое оборудование не отнимает мощность у двигателя.
    • Нагрузка увеличена
      • Убедитесь, что нагрузка не изменилась и оборудование не затянулось.Если это вентилятор, убедитесь, что поток воздуха не изменился.

    4. Мотор слишком долго разгоняется

    • Неисправный конденсатор
      • Проверьте конденсатор согласно предыдущим инструкциям.
    • Неисправные подшипники
      • Подшипники с шумом или неровностями должны быть заменены поставщиком двигателя.
    • Напряжение слишком низкое
      • Убедитесь, что напряжение находится в пределах 10% от номинального значения, указанного на паспортной табличке двигателя.Если нет, обратитесь в свою энергетическую компанию или проверьте, не отнимает ли какое-либо другое оборудование питание от двигателя.

    5. Двигатель вращается в неправильном направлении

    • Неправильный монтаж
      • Перемонтируйте двигатель согласно схеме, прилагаемой к двигателю. Электрические схемы Groschopp можно найти на странице «Электрические схемы» в нашем разделе ресурсов или на страницах отдельных двигателей.

    6. Двигатель перегружен / постоянно срабатывает термозащита

    • Слишком высокая нагрузка
      • Убедитесь, что груз не зажат.Если двигатель заменяется, убедитесь, что номинальные характеристики такие же, как у старого двигателя. Если предыдущий двигатель был особой конструкции, стандартный двигатель не сможет воспроизвести его характеристики. Снимите нагрузку с двигателя и проверьте мощность двигателя без нагрузки. Оно должно быть меньше номинальной нагрузки, указанной на паспортной табличке (верно только для трехфазных двигателей).
    • Слишком высокая температура окружающей среды
      • Убедитесь, что двигатель получает достаточно воздуха для надлежащего охлаждения.Большинство двигателей рассчитано на работу при температуре окружающей среды не выше 40 ° C. (Примечание. Правильно работающий двигатель может быть горячим на ощупь.)

    7. Перегрев двигателя

    • Перегрузка. Сравните фактический (измеренный) ток с номиналом на паспортной табличке.
      • Найдите и удалите источник чрезмерного трения в двигателе или нагрузке. Уменьшите нагрузку или замените двигатель на двигатель большей мощности.
    • Однофазный (только трехфазный)
      • Проверить ток на всех фазах.Должно быть примерно так же.
    • Неправильная вентиляция
      • Проверьте внешний вентилятор охлаждения, чтобы убедиться, что воздух правильно движется через каналы охлаждения. Если накопилось слишком много грязи, очистите двигатель.
    • Несимметричное напряжение (только трехфазное)
      • Проверить напряжение на всех фазах. Должно быть примерно так же.
    • Трение ротора о статор
    • Повышенное или пониженное напряжение
      • Проверьте входное напряжение на каждой фазе двигателя, чтобы убедиться, что двигатель работает при напряжении, указанном на паспортной табличке.
    • Обрыв обмотки статора (только трехфазный)
      • Проверьте сопротивление статора на всех трех фазах на предмет баланса.
    • Неправильные соединения
      • Проверьте все электрические соединения на предмет надлежащей заделки, зазоров, механической прочности и целостности цепи. См. Схему подключения двигателя.

    8. Двигатель вибрирует

    • Двигатель смещен относительно нагрузки
    • Несбалансированная нагрузка (приложение с прямым приводом)
      • Снимите двигатель с нагрузки и осмотрите двигатель самостоятельно.Убедитесь, что вал двигателя не погнут.
    • Неисправные подшипники двигателя
      • Проверить двигатель самостоятельно. Если подшипники неисправны, вы услышите шумы или почувствуете неровности.
    • Слишком малая нагрузка (только однофазное)
      • Некоторая вибрация при небольшой нагрузке является стандартной. Рассмотрите возможность перехода на двигатель меньшего размера из-за чрезмерной вибрации.
    • Неисправна обмотка
      • Проверить обмотку на короткое замыкание или разрыв цепи.Усилители также могут быть высокими. При дефектной обмотке замените двигатель.
    • Высокое напряжение
      • Проверьте источник питания, чтобы убедиться в правильности напряжения.

    9. Отказ подшипников

    • Нагрузка на двигатель может быть чрезмерной или несбалансированной
      • Проверьте нагрузку двигателя и проверьте натяжение приводного ремня, чтобы убедиться, что оно не слишком туго. Несбалансированная нагрузка также приведет к выходу подшипников из строя.
    • Высокая температура окружающей среды
      • Если двигатель используется в среде с высокими температурами окружающей среды, может потребоваться другой тип смазки для подшипников.Возможно, вам потребуется проконсультироваться с заводом-изготовителем.
    • Высокая температура двигателя
      • Проверьте и сравните фактические нагрузки двигателя с его номинальной нагрузочной способностью.

    10. Отказ конденсатора

    • Слишком высокая температура окружающей среды
      • Убедитесь, что температура окружающей среды не превышает допустимую температуру двигателя (указана на паспортной табличке).
    • Возможный скачок напряжения на двигателе (вызванный ударом молнии или другим высоким переходным напряжением)
      • Если это обычная проблема, установите сетевой фильтр.

    Диагностика неисправностей статора и ротора двигателя с короткозамкнутым ротором на основе метода извлечения основных компонентов

    В настоящее время анализу тока статора, используемому для обнаружения зарождающейся неисправности двигателя с короткозамкнутым ротором, уделяется большое внимание. Однако в случае межвиткового короткого замыкания статора традиционный метод симметричных компонентов утратил свои предварительные условия из-за гармоник и шума; компонент обратной последовательности (NSC) трудно получить точно.Для сломанных стержней ротора новую дополнительную характеристику неисправности, подавленную основной составляющей, также трудно выделить в текущем спектре. Для решения вышеуказанных проблем в данной статье предлагается метод выделения основных компонентов (FCE). С одной стороны, посредством преобразования антисинхронной координаты скорости (ASC), NSC извлеченных сигналов преобразуется в значение DC. Амплитуда синтетического вектора НСК используется для оценки степени повреждения статора. С другой стороны, извлеченная основная составляющая может быть отфильтрована, чтобы выявить неисправность ротора из спектра тока статора.Результаты экспериментов показывают, что этот метод осуществим и эффективен при диагностике как межвитковых коротких замыканий, так и неисправностей стержней ротора. Кроме того, необходимо записывать только токи статора и частоту напряжения, и этот метод легко реализовать.

    1. Введение

    В настоящее время двигатель с короткозамкнутым ротором широко используется в промышленном и сельскохозяйственном производстве благодаря своей простой и прочной конструкции [1]. Но обычно он подвержен неизбежным нагрузкам, которые вызывают отказы в различных частях.Статистические исследования показали, что между витками короткого замыкания статора приходится около 30-40% всех отказов; неисправность стержней ротора составляет около 10% [2–4]. Для диагностики неисправностей такого типа обычно используются традиционные неинвазивные методы. Эти стратегии основаны на анализе таких величин, как вибрация, напряжение, ток, крутящий момент и скорость [5]. С развитием современной обработки сигналов и компьютерных технологий в последнее время были предложены некоторые передовые методы диагностики.

    В случае межвиткового короткого замыкания в статоре традиционный метод симметричных компонентов потерял предварительное условие из-за гармоник и шума [6–8]. НБК как характеристику неисправности трудно получить точно. В [9] в качестве характеристики межвиткового короткого замыкания принималось полное сопротивление обратной последовательности статора; этот метод надежен в случае несимметричного источника питания, поскольку импеданс обратной последовательности представляет собой отношение напряжения обратной последовательности к току.Но если источник питания достаточно сбалансирован, результаты расчета будут включать ошибку. В [10] извлечены признаки вибрации для диагностики неисправности обмотки; к сожалению, он не может отличить пристрастие ротора к неисправности статора. В [11] использовалась нейронная сеть для обнаружения витков короткого замыкания в обмотке, но обычно для обучения требуется большой объем данных. Если данные перетренированы или недостаточно обучены, это повлияет на результат диагностики. Анализируя изменения высших гармоник в остаточном напряжении после сброса переменного тока, можно найти место межвиткового короткого замыкания в обмотке статора, но очень сложно провести оперативную диагностику неисправностей [12].В [13] используется метод мгновенного разложения мощности для повышения точности распознавания неисправностей в различных рабочих условиях, но необходимо идентифицировать множество параметров.

    В случае поломки стержней ротора наличие повреждения вызовет возмущение поля воздушного зазора в спектре тока статора, и в окрестности частоты питания появляются две компоненты боковой полосы с частотами, заданными следующим образом [14]: где представляет частота короткого замыкания, представляет собой частоту питания и представляет скольжение двигателя с короткозамкнутым ротором.

    Однако спектральная утечка основной составляющей скрывает компоненты неисправности ротора. Ситуация может ухудшиться, когда двигатель с короткозамкнутым ротором работает при низких значениях скольжения, поскольку компоненты становятся ближе. Чтобы решить эту проблему, [15, 16] предложили расширенный векторный подход Парка, а [17] предложили анализ спектра модуля Гильберта для выделения особенности разлома изломанных стержней. Но два вышеупомянутых метода дают некоторые другие скрещенные компоненты, которые усложняют спектр.В [18] использовалось преобразование Гильберта для обнаружения места повреждения сломанной стержня ротора посредством анализа огибающей пускового тока, но очень сложно выполнить диагностику неисправности в режиме онлайн. В [19] представлен вращающийся фильтр вектора Парка; основной компонент можно удалить точно. Но алгоритм должен сначала отфильтровать NSC, а сложный расчет ограничивает приложение. В [20] для обнаружения неисправности ротора использовался спектр более высокого порядка, но в первую очередь необходимо решить проблему большого объема вычислений.

    В данной статье предлагается метод FCE, основанный на корреляционном анализе токового сигнала. В случае межвиткового короткого замыкания в статоре, метод используется, во-первых, чтобы избежать влияния гармоник и шума в токовом сигнале. Затем посредством преобразования ASC NSC извлеченных сигналов преобразуется в значение постоянного тока, а амплитуда синтетического вектора NSC задается для оценки серьезности неисправности статора. В случае поломки стержней ротора извлеченная основная составляющая может быть точно отфильтрована в соответствии с результатами метода FCE, а компоненты неисправности ротора могут появиться из спектра тока статора.

    Работа организована следующим образом: Раздел 2 представляет метод FCE, и реализация этого метода представлена ​​как в случае диагностики межвиткового короткого замыкания, так и при диагностике неисправности стержней ротора. В разделе 3 представлена ​​структура системы диагностики неисправностей. Раздел 4 представляет благоприятное обсуждение и анализ экспериментальных результатов. Наконец, наши выводы представлены в разделе 5.

    2. Алгоритм FCE
    2.1. Метод FCE

    Корреляционная функция описывает взаимосвязь между одним мгновенным значением и другим.Функции автокорреляции и взаимной корреляции определяются следующим образом: где представляет период сигнала и представляет разницу во времени.

    Теперь есть два сигнала, которые выражаются в виде где и представляют амплитуду, представляют частоту в радианах, представляют угол фазы и представляют разность фаз.

    Поскольку является конечным, оценка взаимной корреляции между и может быть описана следующим образом:

    В (4) можно сделать вывод, что информация о частоте и информация о фазе зарезервированы.

    Теперь синусоидальный сигнал, содержащий шум, задается следующим образом: где представляет амплитуду синусоидальной составляющей, представляет фазовый угол и указывает шум.

    Затем можно построить два опорных сигнала, которые имеют одинаковую частоту: где представляет собой амплитуду опорных сигналов.

    Нет корреляции с и, поэтому оценку взаимной корреляции между и можно описать следующим образом:

    По (7) фазовый угол и амплитуда могут быть выражены следующим образом:

    Плавный пуск двигателя с ШИМ Схема для предотвращения высокого потребления при включении питания

    В сообщении объясняется эффективная схема плавного пуска двигателя с ШИМ, которая может использоваться для включения тяжелых двигателей с плавным пуском и, таким образом, предотвращения потребления оборудования опасными высокими токами.

    Почему плавный пуск

    Двигатели высокой мощности, такие как двигатели насосов или другие виды двигателей тяжелой промышленности, как правило, потребляют большой ток во время их первоначального включения питания, что, в свою очередь, влияет на соответствующие предохранители и переключатели, вызывая их либо срабатывание, либо деградировать сверхурочно. Чтобы исправить ситуацию, крайне необходима схема плавного пуска.

    В нескольких из моих предыдущих статей мы обсуждали связанную тему, которую вы можете подробно изучить в следующих сообщениях:

    Схема плавного пуска для двигателей насосов

    Схема плавного пуска для холодильников

    Хотя приведенные выше конструкции весьма полезны , с их подходом их можно считать слегка низкотехнологичными.

    В этой статье мы увидим, как этот процесс может быть реализован с использованием очень сложной схемы контроллера плавного пуска двигателя на основе ШИМ.

    Использование концепции ШИМ

    Идея здесь состоит в том, чтобы применять постепенно увеличивающийся ШИМ к двигателю каждый раз, когда он включается, это действие позволяет двигателю достигать линейно возрастающей скорости от нуля до максимума в течение установленного периода времени, что может быть регулируемым.

    Примечание. Используйте конфигурацию Darlington BC547 на выводе № 5 IC2 вместо одного BC547.Это даст более эффективный отклик по сравнению с одним BC547

    Пример схемы для регулируемого контроллера мотора 48 В с плавным пуском

    ## ПОЖАЛУЙСТА, ПОДКЛЮЧИТЕ 1К ОТ КОНТАКТА 5 IC2 К ЗАЗЕМЛЕНИЮ, КОТОРАЯ НЕ ПОКАЗАНА В ВЫШЕ ДИЗАЙН ##

    Как это работает

    Ссылаясь на приведенный выше рисунок, получение ШИМ с линейным приращением достигается с помощью двух ИС 555, настроенных в их стандартном режиме ШИМ.

    Я уже подробно обсуждал эту концепцию в одной из своих предыдущих статей, объясняющих, как использовать IC 555 для генерации ШИМ.

    Как видно из схемы, конфигурация использует две микросхемы 555, причем IC1 подключен как нестабильный, а IC2 — как компаратор.

    IC1 генерирует требуемые тактовые сигналы с заданной частотой (определяемой значениями R1 и C2), которые поступают на вывод № 2 IC2.

    IC2 использует тактовый сигнал для генерации треугольных волн на своем выводе №7, чтобы их можно было сравнить с потенциалом, доступным на его выводе управляющего напряжения №5.

    Контакт № 5 получает необходимое управляющее напряжение через каскад эмиттерного повторителя NPN, созданный с помощью T2 и связанных компонентов.

    При включении питания на T2 подается линейное или постепенно увеличивающееся напряжение на его базе через R9, и благодаря пропорциональной зарядке C5.

    Этот линейный потенциал соответствующим образом дублируется на эмиттере T2 по отношению к напряжению питания на его коллекторе, что означает, что базовые данные преобразуются в постепенно увеличивающийся потенциал в диапазоне от нуля до почти уровня напряжения питания.

    Это нарастающее напряжение на выводе № 5 IC 2 мгновенно сравнивается с имеющейся треугольной волной на выводе № 7 IC2, которая преобразуется в линейно нарастающий ШИМ на выводе № 3 IC2.

    Процесс линейного увеличения ШИМ продолжается до тех пор, пока C5 не будет полностью заряжен и база T2 не достигнет стабильного уровня напряжения.

    Вышеупомянутая конструкция обеспечивает генерацию ШИМ при каждом включении питания.

    Видеоклип:

    В следующем видео показан практический результат тестирования указанной выше схемы ШИМ, реализованной на двигателе 24 В постоянного тока. На видео показан отклик регулятора PWM цепи на двигателе, а также реакция светодиода дополнительного индикатора батареи, когда двигатель включен и выключен.

    Интеграция контроллера симистора с переходом через ноль

    Чтобы реализовать эффект схемы плавного пуска двигателя с ШИМ, выходной сигнал от контакта № 3 IC2 необходимо подать на схему драйвера питания симистора, как показано ниже:

    На изображении выше показано, как включение ШИМ-управления плавным пуском может быть реализовано на тяжелых двигателях по назначению.

    На изображении выше мы видим, как изоляторы драйвера симистора с детектором пересечения нуля могут использоваться для управления двигателями с линейно увеличивающимися ШИМ для выполнения эффекта плавного пуска.

    Вышеупомянутая концепция эффективно обеспечивает защиту от перегрузки по току при запуске однофазных двигателей.

    Исследование метода обнаружения межвиткового замыкания трансформатора на основе вейвлет-анализа

    [1] Дженнифер Йик, Бисванат Мукерджи, Дипак Гхосал.Обзор беспроводной сенсорной сети [J]. Компьютерные сети, 2008, 52 (12): 2292-2330.

    DOI: 10.1016 / j.comnet.2008.04.002

    [2] Гроновски Б.Применение испытаний сопротивления изоляции и линейных испытаний высокого постоянного напряжения для оценки систем изоляции стержней и катушек статора гидрогенераторов [J]. Отчет о конференции Международного симпозиума IEEE по электроизоляции 2006 г., 2006: 392-395.

    DOI: 10.1109 / elinsl.2006.1665340

    [3] Slade PG.Интерпретация измерений сопротивления обмоток трансформатора при малых токах постоянного тока и влияние контактов переключателя ответвлений [J]. Протоколы 56-й конференции IEEE Holm Coference по HOLM, 4-7 октября 2010 г. (2010 г.).

    DOI: 10.1109 / holm.2010.5619571

    [4] Майна Р., Тумиатти В.Характеристики диэлектрических потерь трансформаторных масел, загрязненных медью [J]. IEEE Transactions on Power Delivery, 2010 — № 1673 — 1677.

    DOI: 10.1109 / tpwrd.2010.2043693

    [5] Курита Х., Хасегава Т.Диэлектрические потери высоковольтных / высокочастотных трансформаторов, используемых в импульсных источниках питания для космоса [Дж]. Конференция специалистов по силовой электронике, 1988 № 1120 — 1126.

    DOI: 10.1109 / pesc.1988.18252

    [6] Пайя Т., Моро О., Тушар Г.Электрификация потока в трансформаторах: взаимосвязь между током утечки обмотки и накоплением заряда на картоне [Дж]. Электроизоляция и диэлектрические явления, 2000, № 85 — 88.

    DOI: 10.1109 / ceidp.2000.885233

    [7] Цзинь Э., Лю Л. Л., Бо Ц.Определение параметров обмотки трансформатора методом наименьших квадратов [J]. Общее собрание Энергетического общества — Преобразование и поставка электроэнергии в 21 веке, 2008 № 1-6.

    DOI: 10.1109 / pes.2008.4596453

    Исследование межвитковых коротких замыканий обмоток статора авиационной отказоустойчивой машины на основе Maxwell 2D

    [1] Сяо Линьлинь, Фу Юнлин, Ци Хайтао, Лю Хесун: Моделирование и симуляция мощного воздушного бесщеточного двигателя постоянного тока с двумя обмотками.Сервоуправление (2009), стр. 27-31.

    [2] Чжан Вэньминь, Хуанг Хай и Кай Пинг: Динамический анализ короткого замыкания в обмотках статора многофазного двигателя с постоянными магнитами.Взрывозащищенная электрическая машина (2007), с.35-40.

    [3] ZHAO Xiao-peng, LIU Jing-lin, FU Zhao-yang: Моделирование и симуляция избыточного высокого напряжения BLDCM.Микромоторы (2010), стр.9-12.

    [4] ВУ Юй-цай, Ли Юн-ган, ВАН Шу-тин, Л.И. Хэ-мин: Обнаружение гармоник при межвитковом коротком замыкании обмотки ротора турбогенератора.Технология энергосистем (2008), стр. 30-34.

    DOI: 10.1109 / drpt.2008.4523521

    [5] ЧЖОУ Хуэй-цзюнь, ДИН Вэнь, Ю Чжэнь-мин: Моделирование и анализ реактивного реактивного электродвигателя на основе Ansoft.Малые и специальные электрические машины (2007), с. 11-12 + 16.

    [6] ФУ Юн-лин, Сяо Линь-лин, Ци Хай-тао, ЛИУ Хэ-песня: Моделирование и имитация авиационного высокоскоростного бесщеточного двигателя постоянного тока с двумя обмотками.Электрические машины и приложения управления (2010), стр.7-12.

    [7] FANG Hong-wei, XIA Chang-liang, XIU Jie: Анализ электромагнитного крутящего момента генератора на межвитковое короткое замыкание обмотки якоря.Труды Китайского общества электротехники (2007), стр.83-87.

    [8] Z.Фу, Дж. Лю, Х. Чжао. Анализ методом конечных элементов нового высоковольтного модуля BLDCM с двойным резервированием. Журнал Северо-Западного политехнического университета. т. 28 (2010), стр 37-41.

    [9] Л.Jinglin, F. Zhaoyang, Z. Xiaopeng: Анализ магнитно-термической связи BLDCM с двойным резервированием. Электронные измерения и инструменты. ICEMI ’09. 9-я Международная конференция (2009 г.), стр. 2-805.

    DOI: 10.1109 / icemi.2009.5274431

    [10] Н.Грум, Р. Худ, США по аэронавтике, С. А. Сайентифик, филиал Т. И., Центр Л. Р.. Электрические системы полета: материалы семинара, проведенного в Хэмптоне, Вирджиния (1981).

    [11] Л.Стридсберг: Бесщеточный двигатель, который выдерживает короткое замыкание и замыкание на землю, продолжая при этом обеспечивать значительный крутящий момент. WO200263760-A; WO200263760-A1; EP1364453-A1; AU2002230346-A1; US2004119427-A1; US6885162-B2.

    [12] Ю.Такаба. Конструкция обмотки катушки для электродвигателя — имеет несколько пазов и зубцов, при этом каждая серия катушек с отдельными катушками разделена двумя промежуточными пазами. US4918347-А.

    [13] Л.W. Langley, R. B. Bross: Небольшой легкий двигатель для моделей — комплекты обмоток статора поставляются и управляются полностью независимо. FR2493059-A1; DE3140034-А; GB2088143-A; FR2493059-A; SE8106338-A; DE3140034-C; US4434389-А; CA1184596-A; GB2088143-B; SE456383-B.

    Поиск и устранение неисправностей двигателя постоянного тока

    на основе технической заметки EASA Устранение неисправностей двигателей постоянного тока

    1 Поиск и устранение неисправностей двигателя постоянного тока на основе Технической заметки EASA Устранение неисправностей двигателей постоянного тока ВСЕГДА отключайте питание перед работой с любыми частями электрического оборудования. Заблокируйте и пометьте все электрические цепи. Проверьте напряжение перед тем, как прикасаться к каким-либо компонентам. с помощью приподнятого или подпружиненного оборудования Основное испытательное оборудование, которое вам понадобится для устранения неисправностей двигателей постоянного тока в полевых условиях, включает: Мегомметр, вольтметр переменного тока, зажим постоянного тока на амперметре, омметр, вольтметр постоянного тока, тахометр. Определите, был ли неисправный двигатель:Успешная работа в течение определенного периода времени до отказа; или если было 2. Установлен недавно. 1

    2 ДВИГАТЕЛЯ С ПРЕДЫДУЩЕЙ ИСТОРИЕЙ УСПЕШНОЙ ЭКСПЛУАТАЦИИ Если двигатель эксплуатировался успешно, такие проблемы, как неправильное подключение или внутреннее неправильное подключение, могут быть немедленно исключены. Прежде чем продолжить, 1. Запишите соответствующие данные с паспортной таблички двигателя (л.с., число оборотов в минуту, номинальное напряжение и ток для якоря и возбуждения) 2. Осмотрите двигатель на предмет любых очевидных дефектов, которые могут помешать безопасному испытанию, таких как: Поврежденные обмотки (дым, частицы меди) Ослабление соединения (расплавленные гайки, обгоревшая изоляция). Сломанные или отсутствующие детали (шкивы, ремни, крышки и т. д.). Неисправные щетки или щеткодержатели. ПРОБЛЕМА: ДВИГАТЕЛЬ НЕ ЗАПУСКАЕТСЯ. Убедитесь, что на блок управления подается достаточное напряжение переменного тока (используйте вольтметр переменного тока. ) Если перегорел главный предохранитель, НЕ подавайте питание на двигатель до тех пор, пока вы не определите причину сгорания предохранителя.Используйте мегомметр для измерения сопротивления изоляции всех обмоток 1. Цепь якоря (обмотка якоря, коммутатор, щеткодержатели, межполюсные контакты, последовательное поле) 2. Шунтирующее поле (любые состояния заземления должны быть устранены до подачи питания на двигатель) Если главные предохранители в порядке, нажмите кнопку пуска и измерьте напряжение поля якоря и шунта на контроллере с помощью вольтметра постоянного тока. Все выходные напряжения должны соответствовать паспортной табличке двигателя. Если номинальное напряжение измеряется, проблема в двигателе или его проводке.Нулевое или очень низкое показание означает, что что-то не так с контроллером или проводкой управления. Процедура 1: Тестирование и проверка контроллера. Если выходной сигнал не считывается с контроллера, определите, в цепи управления и устранена ли проблема. Контроллер отключился? В случае срабатывания определите причину и устраните проблему. Перегрузка по току (чрезмерная нагрузка в течение определенного периода времени) Повышенное напряжение (тип нагрузки для капитального ремонта) Перегрев (перегрузка при высокой температуре окружающей среды) Сработали ли термостаты в двигателе (замыкающие контакты)? Нет сигнала тахометра. Попытка перезагрузки. Убедитесь, что контроллер получает сигнал запуска (замыкающие контакты). Убедитесь, что нет сигнала STOP (замыкающие контакты). Если к этому моменту контроллер не функционирует, это довольно безопасно. говорят что неисправен контроллер.2

    3 Процедура 2: Проверка и осмотр двигателя Проверьте электрические соединения с двигателем. Исправьте ослабленные или оборванные соединения. Проверьте наличие признаков нагрева или резистивных соединений. Проверьте щетки. Все ли они имеют хороший контакт с коммутатором? Нет ли ослабленных проводов щеток (замените слишком короткие или поврежденные щетки). Если двигатель все еще не работает, отключите источник питания от двигателя и с помощью омметра проверьте цепь якоря на целостность.Обрыв соединения в цепи якоря может быть вызван: 1. Изношенными и зависшими щетками 2. Перегоревшими шунтами щеток 3. Обрывом межполюсной цепи 4. Открытым последовательным полем (если таковое имеется) 5. Открытым якорем (соединения или обмотка коммутатора) ПРОБЛЕМА : РЕЛЕ ПЕРЕГРУЗКИ СРАБАТЫВАЕТ ИЛИ ПРЕДОХРАНИТЕЛИ ПРИ ЗАПУСКЕ ДВИГАТЕЛЯ Слишком высокий пусковой ток вызывает срабатывание реле перегрузки или перегорание предохранителей при запуске. Заземленные обмотки Проверьте все обмотки на отсутствие замыкания на землю с помощью мегомметра. Любые заземленные обмотки необходимо отремонтировать до подачи питания на двигатель. Механические проблемы с двигателем или приводимым оборудованием 1.Механические проблемы, такие как изношенные подшипники или сломанная шестерня, могут вызвать механическую перегрузку. 2. Определите, заключается ли проблема в самом двигателе или в приводном оборудовании. Отсоедините двигатель и вручную поверните якорь. Если якорь движется свободно и двигатель запускается без срабатывания реле перегрузки или срабатывания предохранителей при отключении, проблема, скорее всего, в приводном оборудовании, а не в двигателе. Короткое замыкание обмотки якоря 1. Вы можете проверить якорь на короткое замыкание, когда двигатель отключен.После снятия всех щеток с коммутатора подайте номинальное напряжение на шунтирующее поле и вручную поверните якорь. Показывается одна или несколько закороченных катушек, если кажется, что якорь скручен или закручивается при его вращении. 2. Если двигатель проработает некоторое время до того, как сработает перегрузка или сработает предохранитель, выключите двигатель, а затем ощупайте катушки якоря рукой. Закороченные катушки будут чувствовать себя более горячими, чем другие, потому что в них будут наведены сильные циркулирующие токи в закороченных витках.Неисправна обмотка возбуждения. Двигатель постоянного тока должен иметь 100% напряженность поля, чтобы обеспечивать максимальный крутящий момент и поддерживать силу тока якоря в надлежащих пределах. Пониженная напряженность поля вызовет высокие токи якоря. 1. Проверьте целостность поля шунта, измерив и записав сопротивление шунта с помощью омметра. Бесконечность указывает на разрыв цепи в обмотке, требующий ремонта двигателя. 3

    4 2. Проверить обмотку возбуждения на короткое замыкание.Сравните результаты измерения сопротивления поля шунта с данными на паспортной табличке. На паспортной табличке двигателя указано сопротивление поля. Помните, что если двигатель ГОРЯЧИЙ, ваше измеренное сопротивление будет выше сопротивления 20 C, указанного на паспортной табличке. Если сопротивление поля равно или меньше сопротивления, указанного на паспортной табличке, ваша обмотка, вероятно, закорочена. Если паспортная табличка не сообщает вам правильное сопротивление, вы можете рассчитать точную оценку, используя следующую формулу: Полевое напряжение / Полевой ток = Сопротивление поля (Ом) Примечание. Значения тока возбуждения на паспортной табличке соответствуют двигателю, работающему при нормальной полной нагрузке с полями HOT.Чтобы оценить ГОРЯЧЕЕ сопротивление при измерении ХОЛОДНОГО поля, используйте это старое практическое правило: (Ω холодное 10) / 8 = Ω горячее 3. В двигателях с комбинированной или стабилизированной шунтовой обмоткой проверьте наличие короткого замыкания между шунтирующей и последовательной обмотками. с помощью мегомметра. Короткое замыкание между обмотками потребует ремонта двигателя. ПРОБЛЕМА: ДВИГАТЕЛЬ РАБОТАЕТ С ОБОРОТАМИ БОЛЕЕ НОМИНАЛЬНЫХ. Проверьте правильность обратной связи тахометра. Измерьте напряжение якоря и шунтирующее поле на клеммах двигателя, чтобы убедиться, что они соответствуют данным на паспортной табличке.1. Скорость двигателя увеличится, если напряжение якоря будет выше, чем указано на паспортной табличке. 2. Скорость также может быть выше, если приложенное шунтирующее поле напряжения ниже значения, указанного на паспортной табличке. Если приложенное напряжение соответствует номинальным характеристикам двигателя, обмотка неисправна. Проверьте: 1. Заземление всех обмоток 2. Короткое замыкание в шунтирующем поле 3. Короткое замыкание между шунтом и последовательным полем (если это двигатель с составной обмоткой) 4. Непрерывность в шунтирующих и последовательных катушках (высокое сопротивление указывает на разрыв цепи) ДВИГАТЕЛЬ РАБОТАЕТ С ОБОРОТАМИ МЕНЬШЕ НОМИНАЛЬНОЙ Измерьте напряжение якоря и возбуждения на контроллере и сравните его со значением, указанным на паспортной табличке.1. Пониженное напряжение якоря приведет к снижению скорости двигателя. 2. Повышенное напряжение возбуждения снизит скорость двигателя. Если приложенные напряжения якоря и возбуждения соответствуют паспортной табличке двигателя, проверьте соединения с высоким сопротивлением в цепи якоря. 1. Ослабленные соединения и проверьте наличие горячих точек и обесцвеченной изоляции вокруг соединений 2. Хороший контакт контакторов в контроллере 3. Обрыв или разрыв проводов из-за перегиба 4. Закорачивающие контакторы должны быть замкнуты во время работы 4

    5 Если скорость двигатель постоянно изменяется при подаче постоянного напряжения, и вы устранили чрезмерное сопротивление в цепи якоря, проверьте наличие короткого замыкания катушек якоря.1. Вы можете проверить якорь на короткое замыкание, когда двигатель отключен. После снятия всех щеток с коммутатора подайте номинальное напряжение на шунтирующее поле и вручную поверните якорь. Показывается одна или несколько закороченных катушек, если кажется, что якорь скручен или закручивается при его вращении. 2. Выключите двигатель, а затем ощупайте катушки якоря рукой. Закороченные катушки будут чувствовать себя более горячими, чем другие, потому что в них будут наведены сильные циркулирующие токи в закороченных витках. ПРОБЛЕМА: ИСКРА ПОД ЩЕТКАМИ Искра под щетками — это проблема коммутации.Обычно причиной являются механические проблемы (а не электрические). Прежде всего, измерьте ток якоря с помощью амперметра постоянного тока, чтобы увидеть, не перегружен ли двигатель. Если ток якоря в порядке, сконцентрируйтесь на механических проблемах, связанных с щетками. Осмотрите щетки 1. Убедитесь, что щетки отсутствуют и все они правильно установлены на коллекторе 2. Убедитесь, что все провода щетки не повреждены и надежно прикреплены к держателю щетки 3. Проверьте пружины щеток на правильное давление 4 .Убедитесь, что кисти подходят правильно и свободно перемещаются в своих ящиках для щеток. Они не должны быть слишком тугими или слишком ослабленными. 5. Проверьте крепления держателя щеток на предмет ослабления, которое может быть вызвано сгоревшей изоляцией держателя щеток (карбонизацией) или ослаблением креплений. 6. Проверьте перемычки крепления щетки, чтобы убедиться, что они плотно и надежно соединены. 7. Осмотрите установочное кольцо щетки на предмет повреждений и убедитесь, что оно надежно зафиксировано в нейтральном положении. Осмотрите коммутатор (механическая фокусировка) 1. Физические повреждения (например, от трения) 2.Коммутатор перегружен? Выбег коммутатора должен быть меньше, чем у нового коммутатора. Нормальная рабочая скорость станка определяет допустимый допуск биения. Как правило, если выход на коммутаторе превышает его значение, коммутатор следует повернуть. 3. Осмотрите коммутатор, убедившись, что нет выступающих сегментов. 4. Убедитесь, что нет сегментов с плоскими пятнами. 5. Проверьте, нет ли большого количества слюды. 6. Убедитесь, что между стержнями коллектора нет посторонних предметов. 7. Все указанные выше условия. может привести к отскоку щеток на высоких оборотах двигателя.Прерывание тока якоря неизбежно вызовет искрение. 8. Сильные вибрации из-за неуравновешенного якоря. 9. Запустите двигатель без сцепления, прежде чем снимать его для обслуживания, чтобы проверить, присутствует ли дисбаланс в двигателе или машине 10. Изношенные подшипники 11. Неравномерные воздушные зазоры Это может произойти, если зазоры подшипников неправильные. Движение якоря также может привести к отскоку щеток. 5

    6 Осмотрите коммутатор (электрическая фокусировка). Осмотрите сегменты коммутатора на предмет обесцвечивания 1.Перегоревшие сегменты указывают на обрыв цепи. Обрыв проводов катушки за стояками. Переброшен припой и ослаблены соединения на стояках. 2. Затемненные сегменты могут указывать на короткое замыкание катушек якоря. Якорь можно проверить, как мы упоминали ранее, чтобы определить, не закорочено ли оно. Имейте в виду, что определенный узор из затемненных сегментов коммутатора (например, каждый третий или четвертый сегмент) часто ошибочно считается признаком проблемы. Конструкция арматуры позволяет создавать на пленке узоры, которые наносят кисти.Некоторые характеристики конструкции якоря, которые могут вызвать колебания тока и формирование рисунка стержней: Нечетные витки в катушках якоря Комбинации стержня коммутатора и паза сердечника якоря Суть в том, что если образец изменения цвета повторяется по всему диаметру коммутатора, вероятно, нет проблема с обмоткой якоря. 6

    7 НОВОЕ УСТАНОВЛЕННЫЕ ДВИГАТЕЛИ Все описанные ранее процедуры поиска и устранения неисправностей применимы к двигателям, которые вышли из строя после некоторого времени работы.Теперь мы обсудим устранение неисправностей двигателей, которые выходят из строя вскоре после установки. ПРОБЛЕМА: НОВОЕ УСТАНОВЛЕННЫЙ ДВИГАТЕЛЬ НЕ ЗАПУСКАЕТСЯ ИЛИ ВЫКЛЮЧАЕТ ВО ВРЕМЯ ПОСЛЕ УСТАНОВКИ Если новый или недавно отремонтированный двигатель выходит из строя при первом вводе в эксплуатацию: 1. Убедитесь, что блок управления правильно соответствует номинальным характеристикам двигателя, указанным на паспортной табличке 2. Определите, если устройства максимального тока имеют надлежащие размеры и отрегулированы 3. Проверьте входные и выходные соединения блока управления 4. Проверьте соединения проводов двигателя, чтобы убедиться, что они правильные и надежные 5.Убедитесь, что контроллер работает должным образом. Если эти проверки не выявили причины неисправности, соберите все возможные факты и позвоните в компанию по производству электрооборудования для получения помощи. Некоторые из описанных ниже процедур требуют специального оборудования и глубокого знания конструкции двигателей постоянного тока. Мы настоятельно рекомендуем проводить их только с помощью и при содействии персонала автосервиса. Вы особенно захотите, чтобы персонал автомастерской защищал ваши интересы, если вы считаете, что есть какие-либо соображения по гарантии производителя или ремонта.ПРОБЛЕМА: НОВИНКА УСТАНОВЛЕННЫЙ ДВИГАТЕЛЬ РАБОТАЕТ С ОБОРОТАМИ БОЛЕЕ НОМИНАЛЬНЫХ. Убедитесь, что шунтирующее поле правильно подключено к напряжению, обеспечиваемому контроллером. Если полевой двигатель с шунтирующим шунтом с двойным напряжением имеет поля, соединенные для высокого напряжения, и низкое напряжение подается на поле, двигатель будет работать со скоростью выше номинальной. Это условие также вызовет высокие токи якоря. Чтобы восстановить нормальный диапазон скорости двигателя, повторно подключите шунтирующее поле для низкого напряжения. Предупреждение: шунтирующее поле, подключенное (параллельно) для низкого напряжения, а затем подключенное к источнику высокого напряжения, приведет к сгоранию шунтирующего поля, если не будет обеспечена адекватная защита от перегрузки по току.Изготовитель или ремонтная мастерская НЕ могут гарантировать такое состояние сверхтока. Обратная последовательность Полярность поля может привести к тому, что двигатели с комбинированной обмоткой будут работать со скоростью, превышающей номинальную, когда двигатель находится под нагрузкой. Если вращение двигателя правильное, поменяйте местами последовательные провода возбуждения. Неправильно намотанный якорь также может привести к превышению номинальной скорости двигателя постоянного тока. Это произойдет, если в новой обмотке якоря будет использовано меньше витков. Другая ошибка обмотки может заключаться в том, что мастер по ремонту вставил первый провод катушки не в ту штангу коммутатора.Следовательно, все концы катушек в верхней части стержней коммутатора находятся в неправильном положении. Эта ошибка обычно удваивает или уменьшает вдвое скорость двигателя в зависимости от исходного соединения двигателя и того, какая ошибка была сделана. 7

    8 ПРОБЛЕМА: НОВИНКА УСТАНОВЛЕННЫЙ ДВИГАТЕЛЬ РАБОТАЕТ В ОБРАТНОМ НАПРАВЛЕНИИ После ремонта двигателя постоянного тока вы иногда обнаруживаете, что направление вращения изменилось на обратное. Устраните эту проблему, поменяв местами провода якоря. ПРОБЛЕМА: ИСКРА ПОД ЩЕТКАМИ В НОВОМ УСТАНОВЛЕННОМ ДВИГАТЕЛЕ. Нередко можно найти искру под щетками только что установленного двигателя.В большинстве случаев небольшая корректировка решит проблему. Выравнивание щеткодержателя Убедитесь, что щеткодержатели выровняли все щетки с переключающими стержнями и что расстояние между щетками одинаковое. Убедитесь, что щетки находятся в нейтральном положении. В нейтральном положении отметка линии на коромысле должна совпадать с отметкой на концевом колпаке. Внесите необходимые корректировки. Если вы подозреваете, что маркировка на коромысле неправильная, вы можете определить нейтральное положение, выполнив следующую процедуру: 1.Разблокируйте оснастку щеток, чтобы ее можно было свободно перемещать 2. Отсоедините провода шунтирующего поля от проводки 3. Подключите вольтметр переменного тока к шунтам щеток на соседних щеткодержателях 4. Подайте однофазное питание (110 В переменного тока) непосредственно на шунт обмотка возбуждения 5. Сдвиньте щеточную оснастку влево и вправо, наблюдая за напряжением, показываемым вольтметром переменного тока. Щетки находятся в нейтральном положении, когда указано минимальное напряжение (обычно менее 1 вольт переменного тока). 6. Надежно зафиксируйте оснастку щеток и отметьте коромысло и концевую часть, чтобы указать правильное нейтральное положение.Относительная полярность главных полюсов и межполюсников. Проверьте полярность всех главных полюсов и межполюсников с помощью магнитного компаса. Полярность правильная, если полярность межполюсника такая же, как у предшествующего ему главного полюса в направлении вращения. Если полярности не совпадают, поменяйте местами два провода держателя щеток. Степень чистоты щетки: убедитесь, что степень чистоты щетки совместима с окружающей средой, в которой работает двигатель. Все кисти должны быть одного сорта.Выбор марки щеток требует специальных знаний об используемых углеродных материалах и методах изготовления. Компания «Электрооборудование» может помочь вам получить данные, необходимые для принятия обоснованных решений по выбору новых щеток.

    Вам может понравится

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *