Принцип работы симистора: Схема симисторного регулятора мощности для трансформатора

Содержание

Схема симисторного регулятора мощности для трансформатора

Симисторы и тиристоры используются во многих электросхемах, в быту и на производстве. Ниже описано, что из себя представляет регулятор мощности, каковы его разновидности и где они применяются. Также будет дана инструкция, как собрать стабилизатор напряжения своими руками.

Что такое регулятор мощности

Самые первые прототипы устройств, позволяющих уменьшать проводимую к нагрузке мощность, были разработаны с учетом закона Ома. На этом принципе и основано функционирование реостата. Его можно подключать последовательно и параллельно нагрузке. При изменении сопротивления реостата можно регулировать его мощность.

Что собой представляет регулятор мощности

При подключении реостата к нагрузке ток распределяется между ними. В зависимости от способа подключения можно контролировать разные параметры: при параллельном — разницу потенциалов, а при последовательном — напряжение и силу тока. Реостаты различаются в зависимости от использованного в их конструкции материала: металла, керамики, угля или жидкости.

При использовании реостата поглощенная им энергия никуда не исчезает, а преобразуется в тепло. При большом количестве энергии целесообразно использовать системы охлаждения, чтобы температура устройства не была слишком высокой. Отводят тепло обычно с помощью обдува или погружая резистор в масло.

Такие простейшие реостаты широко применяются, но есть один значимый недостаток — невозможность использовать его в мощных электрических цепях. Поэтому резисторы применяются только в бытовых целях (к примеру, такие есть в конструкции радио).

Обратите внимание! Обычный реостат можно сделать и самому, для этого понадобится только проволока из нихрома или константана. Ее необходимо намотать на оправку, при этом изменение проходящей мощности происходит за счет регулировки длины проволоки.

Все полупроводниковые устройства сделаны на переходах или слоях (n-p, p-n). Простой диод — 1 переход и 2 слоя. Биполярный транзистор — 2 перехода и 3 слоя (трехфазный). А при добавлении четвертого слоя как раз и образуется стабилизатор мощности — тиристор. При соединении 2 тиристоров встречно-параллельно получается симистор.

Как работает регулятор мощности в трансформаторе

В трансформаторе обычно используется симисторный регулятор мощности для индуктивной нагрузки. Он работает как электронный ключ, раскрываясь и запираясь, причем частота задается схемой управления. Ток по симистору проводится в 2 направлениях, поэтому его часто используют для сетей переменного тока.

Схема регулятора напряжения на симисторе для трансформатора

При подключении к трансформатору на один из электродов стабилизатора подается переменный ток, на управляющий электрод — отрицательное управляющее напряжение (с диодного моста). Когда порог включения повысится, симистор раскроется и пустится ток. В момент смены полярности на входе симистор закроется.

Важно! Вся последовательность действий повторяется неоднократно.

Разновидности регуляторов мощности

Для разных целей используются различные регуляторы мощности.

Тиристорный прибор управления

Конструкция устройства довольно простая. Обычно тиристоры применяются в маломощных приборах. Тиристорный терморегулятор состоит из биполярных транзисторов, самого тиристора, конденсатора и нескольких резисторов.

Тиристорный транзисторный регулятор

Транзисторы образуют импульсный сигнал, когда конденсаторное напряжение уравнивается с рабочим, они открываются. Электросигнал передается на вывод тиристора, после чего происходит разрядка конденсатора и запирание ключа. Вся последовательность действий повторяется циклически.

Обратите внимание! Величина задержки обратно пропорциональна мощности, которая поступает в нагрузку.

Симисторный преобразователь мощности

Симистор — подвид тиристора, в котором несколько больше переходов p-n, из-за чего его принцип работы несколько иной. Но часто симистор считают отдельным видом стабилизатора мощности. Конструкция представляет собой 2 тиристора, подключенных параллельно и имеющих общее управление.

К сведению! Отсюда и происходит название «симистор» — «симметричные тиристоры». Иногда он еще называется ТРИАК (TRIAC).

Схема 2 параллельно подключенных тиристоров (слева) и симистора (справа)

На схеме видно, что у симистора вместо анода и катода указаны обозначения Т1 и Т2. Все потому, что понятия «катод» и «анод» в данном случае не имеют смысла, так как электроток может выходить через оба вывода.

Симисторные универсальные регуляторы имеют ряд плюсов, в их числе небольшая цена, долгий срок службы и отсутствие подвижных контактов, которые могут быть источниками помех. Но есть и недостатки: подверженность помехам и шумам, отсутствие поддержки высоких частот переключения.

Важно! Их не применяют в мощных промышленных установках, вместо этого там используют тиристоры или IGBT транзисторы.

Фазовый способ трансформации

Фазовая трансформация происходит в так называемых диммерах. Используются такие приборы, к примеру, для изменения интенсивности освещения галогенных ламп или лампочек накаливания. Электросхема обычно воплощается на специальных микроконтроллерах, в которых используется своя интегрированная электросхема снижения напряжения. Благодаря своей конструкции диммеры могут плавно снижать мощность.

Светодиодный диммер

Из минусов таких устройств высокая чувствительность к помехам, высокий коэффициент пульсаций и маленький коэффициент мощности сигнала на выходе. Чтобы стабилизировать диммер, используются сдвоенные тиристоры.

Как сделать регулятор мощности своими руками

Для сборки стабилизатора напряжения на симисторе для трансформатора понадобятся следующие компоненты:

  • сам симистор и электронные компоненты: динистор, потенциометр, диоды, конденсатор и сопротивления;
  • радиатор;
  • изолирующая теплопередающая прокладка;
  • пластиковый корпус;
  • печатная плата;
  • мультиметр;
  • паяльник.
Стабилизатор-самоделка

Пошаговая инструкция, как собрать самодельный регулятор мощности:

  1. Сперва необходимо определить некоторые характеристики устройства, для которого нужен регулятор: входное напряжение, силу тока, сколько фаз (3 или 1), а также, есть ли необходимость в точной настройке мощности на выходе.
  2. Нужно определиться с типом прибора — цифровое или аналоговое. Можно смоделировать электрическую цепь посредством скачиваемых утилит, таких как CircuitMaker или Workbench, чтобы проверить, насколько выбранный тип будет подходить конкретной электросети. Также это можно сделать и онлайн.
  3. После можно приступить к расчетам тепловыделения с использованием формулы: спад напряжения в регуляторе помножить на силу тока. Оба параметра должны быть указаны в спецификациях симистора. Ориентируясь на полученную с помощью формулы мощность, нужно выбрать радиатор.
  4. Купить радиатор, электронные компоненты и печатную плату.
  5. Осуществить разводку дорожек контактов и приготовить места, куда нужно устанавливать электронные компоненты, симистор и радиатор.
  6. Закрепить при помощи паяльника все компоненты на печатной плате. В качестве альтернативы плате можно воспользоваться навесным монтажом с короткими проводами. Нужно внимательно следить за полярностью подключаемых компонентов: симистора и диодов.
  7. Взять мультиметр и проверить сопротивление получившейся схемы. Полученное значение не должно отличаться от теоретического.
  8. Скрепить симистор и радиатор, проложив между ними прокладку и заизолировав винт, которым они соединяются.
  9. Полученную микросхему нужно поместить в корпус из пластика.
  10. Поставить потенциометр на минимальное значение и попробовать включить. С помощью мультиметра замерить напряжение на выходе. Медленно поворачивать регулируемую ручку потенциометра, наблюдая за переменой напряжения.
  11. Если схема будет работать так, как было задумано, то можно подсоединять нагрузку. В ином случае нужно отрегулировать мощность по-другому.

Схемы регуляторов мощности напряжения

Схема работы симистора

В некоторых бытовых приборах, к примеру, используются тиристорные стабилизаторы напряжения — в паяльниках, электронагревателях и т. д.

Схема тиристорного регулятора напряжения в паяльнике

Для регулирования напряжения применяют и индукционные приборы.

Схема индукционного стабилизатора

Регуляторы мощности используются практически во всех бытовых электроприборах, а также на производстве. При желании такое устройство можно собрать и самому. Главное — найти подходящую схему из множества существующих и строго следовать инструкции.

Симистор принцип работы — Electrik-Ufa.ru

Симистор. Описание, принцип работы, свойства и характеристики.

Справочные данные популярных отечественные симисторов и зарубежных
триаков. Простейшие схемы симисторных регуляторов мощности.

Ну что ж! На предыдущей странице мы достаточно плотно обсудили свойства и характеристики полупроводникового прибора под названием тиристор, неуважительно обозвали его “довольно архаичным”, пришло время выдвигать внятную альтернативу.
Симистор пришёл на смену рабочей лошадке-тиристору и практически полностью заменил его в электроцепях переменного тока.
История создания симистора также не нова и приходится на 1960-е годы, причём изобретён и запатентован он был в СССР группой товарищей из Мордовского радиотехнического института.

Итак:
Симистор, он же триак, он же симметричный триодный тиристор – это полупроводниковый прибор, являющийся разновидностью тиристора, но, в отличие от него, способный пропускать ток в двух направлениях и используемый для коммутации нагрузки в цепях переменного тока.

На Рис.1 слева направо приведены: топологическая структура симистора, далее расхожая, но весьма условная, эквивалентная схема, выполненная на двух тиристорах и, наконец, изображение симистора на принципиальных схемах.
МТ1 и МТ2 – это силовые выводы, которые могут обозначаться, как Т1&Т2; ТЕ1&ТЕ2; А1&А2; катод&анод. Управляющий электрод, как правило, обозначается латинской G либо русской У.

Глядя на эквивалентную схему, может возникнуть иллюзия, что симистор относительно горизонтальной оси является элементом абсолютно симметричным, что даёт возможность как угодно крутить его вокруг управляющего электрода. Это не верно.
Точно так же, как у тиристора, напряжение на управляющий электрод симистора должно подаваться относительно условного катода (МТ1, Т1, ТЕ1, А1).
Иногда производитель может обозначать цифрой 1 “анодный” вывод, цифрой 2 – “катодный”, поэтому всегда важно придерживаться обозначений, приведённых в паспортных характеристиках на прибор.

Полярность открывающего напряжения должна быть либо отрицательной для обеих полярностей напряжения на условном аноде, либо совпадать с полярностью “анодного” напряжения (т.е. быть плюсовой в момент прохождения положительной полуволны и минусовой – в момент прохождения отрицательной).

Приведём вольт-амперную характеристику тиристора и схему, реализующую самый простой способ управления симисторами – подачу на управляющий электрод прибора постоянного тока с величиной, необходимой для его включения (Рис. 2).


Рис.2

Огромным плюсом симистора перед тиристором является возможность в штатном режиме работать с разнополярными полупериодами сетевого напряжения. Вольт-амперная характеристика является симметричной, надобности в выпрямительном мосте – никакой, схема получается проще, но главное – исключается элемент (выпрямитель), на котором вхолостую рассеивается около 50% мощности.

Давайте рассмотрим работу симистора при подаче на его управляющий вход постоянного тока отрицательной полярности (Рис.2 справа), ведь мы помним, что именно такая полярность открывающего напряжения является универсальной и для положительных, и для отрицательных полупериодов напряжения сети. На самом деле, всё происходит абсолютно аналогично описанной на предыдущей странице работе тиристора.
Повторим пройденный материал.

1. Для начала рассмотрим случай, когда управляющий электрод симистора отключен (S1 на схеме разомкнут, Iу на ВАХ равен 0). Тока через нагрузку нет (участки III на ВАХ), симистор закрыт, и для того, чтобы его открыть, необходимо поднять напряжение на “аноде” симистора настолько, чтобы возник лавинный пробой p-n-переходов полупроводника.
Оговоримся – зафиксировать нам этот процесс не удастся, потому что величина этого напряжения составляет несколько сотен вольт и, как правило, превышает амплитудное значение напряжения сети.
Тем не менее – при достижении этого уровня напряжения (точки II на ВАХ) симистор отпирается, падение напряжения между силовыми выводами падает до единиц вольт, нагрузка подключается к сети – наступает рабочий режим открытого симистора (участки I на ВАХ).
Чтобы закрыть симистор, нужно снизить протекающий через нагрузку ток (или напряжение на “аноде”) ниже тока удержания.

2. Для того чтобы снизить величину напряжения включения симистора, следует замкнуть S1 и, тем самым, подать на управляющий электрод ток, задаваемый значением переменного резистора R1. Чем больше ток Iу, тем при меньшем анодном напряжении происходит переключение симистора в проводящее состояние.
А при какой-то величине тока управляющего электрода, называемой током спрямления (на ВАХ не показано), горба на характеристике вообще не будет, и напряжение открывания симистора составит незначительную величину, исчисляемую единицами вольт.
Абсолютно так же, как и в прошлом пункте, чтобы закрыть симистор, необходимо снизить протекающий через нагрузку ток (или напряжение на “аноде”) ниже значения тока удержания.

То бишь – всё полностью аналогично тиристору. Для открывания симистора следует подать на управляющий электрод прибора постоянный ток с величиной, необходимой для его включения, для закрывания – снизить протекающий через нагрузку ток (или напряжение на “аноде”) ниже значения тока удержания.
Т.е. в нашем случае, представленном на Рис.2 – симистор будет открываться при замыкании S1 в каждый момент превышения “анодным” напряжением некоторого значения, зависящего от номинала R1, а закрываться с каждым полупериодом сетевого напряжения в момент приближения его уровня к нулевому значению.

Описанный выше способ управления симистором посредством подачи на управляющий электрод постоянного напряжения обладает существенным недостатком – требуется довольно большой ток (а соответственно и мощность) управляющего сигнала (по паспорту – до 250мА для КУ208). Поэтому в большинстве случаев для управления симисторами используется импульсный метод, либо метод, при котором открытый симистор шунтирует цепь управления, не допуская бесполезного рассеивания мощности на её элементах.

В качестве примера рассмотрим простейшую, но вполне себе работоспособную схему симисторного регулятора мощности, позволяющего работать с нагрузками вплоть до 2000 Вт.


Рис.3

Как можно увидеть, на схеме помимо симистора VS2 присутствует малопонятный элемент VS1 – динистор. Для интересующихся отмечу – на странице ссылка на страницу мы подробно обсудили принцип работы, свойства и характеристики приборов данного типа.

А теперь – как это всё работает?
В начале действия положительного полупериода симистор закрыт. По мере увеличения сетевого напряжения конденсатор С1 заряжается через последовательно соединённые резисторы R1 и R2. Причём увеличение напряжения на конденсаторе С1 отстаёт (сдвигается по фазе) от сетевого на величину, зависящую от суммарного сопротивления резисторов и номинала ёмкости С1. Чем выше значения резисторов и конденсатора – тем больше сдвиг по фазе.
Заряд конденсатора продолжается до тех пор, пока напряжение на нём не достигнет порога пробоя динистора (около 35 В). Как только динистор откроется (следовательно, откроется и симистор), через нагрузку потечёт ток, определяемый суммарным сопротивлением открытого симистора и нагрузки.
При этом симистор остаётся открытым до конца полупериода, т.е. момента, когда полуволна сетевого напряжения приблизится к нулевому уровню.
Переменным резистором R2 устанавливают момент открывания динистора и симистора, производя тем самым регулировку мощности, подводимой к нагрузке.

При действии отрицательной полуволны принцип работы устройства аналогичен.

Диаграммы напряжения на нагрузке при различных значениях переменного резистора приведены на Рис.3 справа.

Для предотвращения ложных срабатываний триаков, вызванных переходными процессами в индуктивных нагрузках (например, в электродвигателях), симисторы должны иметь дополнительные компоненты защиты. Это, как правило, демпферная RC-цепочка (снабберная цепь) между силовыми электродами триака, которая используется для ограничения скорости изменения напряжения (на схеме Рис.3 показана синим цветом).
В некоторых случаях, когда нагрузка имеет ярко выраженный ёмкостной характер, между силовыми электродами необходима индуктивность для ограничения скорости изменения тока при коммутации.

А под занавес приведём основные характеристики отечественных симисторов и зарубежных триаков.

ТипU макс, ВI max, АIу отп, мА
КУ208Г4005
BT 131-6006001
BT 134-5005004
BT 134-6006004
BT 134-600D6004
BT 136-500Е5004
BT 136-600Е6004
BT 137-600Е6008
BT 138-60060012
BT 138-80080012
BT 139-50050016
BT 139-60060016
BT 139-80080016
BTA 140-60060025
BTF 140-80080025
BT 151-650R65012
BT 151-800R80012
BT 169D40012
BTA/BTB 04-600S6004
BTA/BTB 06-600C6006
BTA/BTB 08-600B6008
BTA/BTB 08-600C6008
BTA/BTB 10-600B60010
BTA/BTB 12-600B60012
BTA/BTB 12-600C60012
BTA/BTB 12-800B80012
BTA/BTB 12-800C80012
BTA/BTB 16-600B60016
BTA/BTB 16-600C60016
BTA/BTB 16-600S60016
BTA/BTB 16-800B80016
BTA/BTB 16-800S80016
BTA/BTB 24-600B60025
BTA/BTB 24-600C60025
BTA/BTB 24-800B80025
BTA/BTB 25-600В60025
BTA/BTB 26-600A60025
BTA/BTB 26-600B60025
BTA/BTB 26-700B70025
BTA/BTB 26-800B80025
BTA/BTB 40-600B60040
BTA/BTB 40-800B80040
BTA/BTB 41-600B60041
BTA/BTB 41-800B80041
MAC8M6008
MAC8N8008
MAC9M6009
MAC9N8009
MAC12M60012
MAC12N80012
MAC15M60015
MAC12N80015

Симисторы с обозначение BTA отличаются от других наличием изолированного корпуса.
Падение напряжения на открытом симисторе составляет примерно 1-2 В и мало зависит от протекающего тока.

Обозначение и принцип действия симистора: объяснение для «чайников»

Полупроводниковые элементы применяются для создания различных устройств и техники. Некоторые из них выполняют функции электронных ключей, например, симисторы. Большинство радиолюбителей сталкивается с ремонтом различной техники, в которой он применяется. Для выполнения качественного ремонта следует получить подробную информацию о детали, выяснить ее структуру и принцип работы.

Общие сведения

Симистор (триак) является одним из видов тиристора и обладает большим количеством переходов p-n-типа. Его целесообразно применять в цепях переменного тока для электронного управления. Чтобы понять принцип работы симистора «чайникам» в этом вопросе, следует рассмотреть его структуру, функцию и сферы применения.

Информация о ключах

Ключи — устройства, которые применяются для коммутации или переключения в электрических цепях. Существует три их вида, и каждый из них обладает своими достоинствами и недостатками. Классифицируются ключи по типу переключения:

  1. Механические.
  2. Электромеханические.
  3. Электронные.

К механическим ключам относятся выключатели и рубильники. Применяются они в случаях необходимости ручной коммутации для замыкания одного или нескольких групп контактов. К виду электромеханических ключей следует отнести реле (контакторы). Электромагнитное реле состоит из магнита, представляющего катушку с подвижным сердечником. При подаче питания на катушку она притягивает сердечник с группой контактов: одни контакты замыкаются, а другие — размыкаются.

Среди достоинств применения электромеханических ключей можно выделить следующие: отсутствие падения напряжения и потери мощности на контактах, а также изолирование цепей нагрузки и коммутации. У этого типа ключей есть и недостатки:

  1. Число переключений ограниченно, поскольку контакты изнашиваются.
  2. При размыкании возникает электрическая дуга, которая приводит к разрушению контактов (электроэрозии). Невозможно применять во взрывоопасных средах.
  3. Очень низкое быстродействие.

Электронные ключи бывают на разной базе полупроводниковых элементов: транзисторах, управляемых диодах (тиристорах) и симметричных управляемых диодах (симисторах). Простейшим электронным ключом является транзистор биполярного типа с коллектором, эмиттером и базой, состоящего из 2 p-n-переходов. По структуре они бывают 2 типов: n-p-n и р-n-p.

Поскольку транзистор состоит из 2 p-n-переходов, то в зависимости от состояния, в которых они находятся, различают 4 режима работы: основной, инверсный, насыщения и отсечки. При активном режиме открыт коллекторный переход, а при инверсном — эмиттерный. При двух открытых переходах транзистор работает в режиме насыщения. При условии, что закрыты оба перехода, он будет работать в режиме отсечки.

Для использования транзистора необходимо всего 2 его состояния. Режим отсечки происходит при отсутствии тока базы, следовательно, при этом ток коллектора равен 0. При подаче достаточного значения тока на базу полупроводниковый прибор будет работать в режиме насыщения, т. е. в открытом состоянии.

Если рассматривать ключи на полевых транзисторах, то появляется возможность менять его проводимость при изменении величины напряжения на затворе, выполняющего функцию управляющего электрода. Управляя его работой при помощи воздействия на затвор, можно получить два состояния: открытое и закрытое. Ключи на полевых транзисторах обладают высоким быстродействием, чем на биполярных.

Электронные ключи, выполненные на тиристорах, обладают некоторыми особенностями. Тиристор является полупроводниковым радиоэлементом с p-n-p-n или n-p-n-p переходам и имеет 3, а иногда и 4 вывода. Состоит он из p-слоя (катода), n-слоя (анода) и управляющего электрода (базы). Его можно заменить 2 транзисторами разной структуры. Он представляет 2 ключа транзисторного типа, которые включены встречно. База одного транзистора подключается к коллектору другого.

При подаче на базу отпирающего тока управляемый диод откроется и останется в этом состоянии, пока величина тока не будет снижена до нулевого значения. При большом значении тока базы тиристор является обыкновенным полупроводниковым диодом, проводящим ток в одном направлении.

Он может функционировать в цепях переменного тока, но только на половину мощности. Для этих целей необходимо применять симистор.

Принцип работы симистора

Основным отличием симистора от тиристора является проводимость сразу в двух направлениях. Симистор можно заменить 2 тиристорами, которые имеют встречно-параллельное подключение на рисунке 1. На нем представлено условное графическое обозначение триака на электрических принципиальных схемах. В некоторой литературе можно встретить и другие названия: триак и симметричный управляемый диод.

Рисунок 1. Симистор (схема включения 2 тиристоров) и его графическое обозначение

Существует простой пример, который позволит понять даже «чайникам», как работает симистор. Дверь в гостинице можно открывать в двух направлениях, причем в нее могут войти и выйти сразу 2 человека. Этот простой пример показывает, что триак может пропускать ток сразу в двух направлениях (прямом и обратном), поскольку он состоит из 5 p-n-переходов. Управление его работой осуществляется при помощи базы.

Слои симисторного ключа, изготовленные из полупроводника, похожи на переход транзистора, но имеют еще 3 дополнительных области n-типа. Четвертый слой находится возле катода и является разделенным, поскольку анод и катод при движении тока выполняют некоторые функции, а при обратном направлении движения — меняются местами. Пятый слой находится возле базы.

При подаче сигнала на управляющий вывод произойдет отпирание симметричного управляющегося диода, поскольку его анод будет иметь положительный потенциал. В этом случае по верхнему тиристору потечет ток. При изменении полярности ток будет течь по нижнему тиристору (рисунок 1). Об этом свидетельствует его вольт-амперная характеристика (ВАХ) на рисунке 2. Она состоит из двух кривых, повернутых на 180 градусов.

Рисунок 2. ВАХ триака

Литерой «А» обозначено его закрытое состояние, а «В» — открытое. Urrm и Udrm — допустимые значения прямого и обратного напряжений. Idrm и Irrm — прямой и обратный токи.

Виды и сферы применения

Поскольку симистор является видом тиристора, то основным их отличием является параметры управляющего электрода (базы). Кроме того, они классифицируются по другим признакам:

  1. Конструкция.
  2. Величина тока, при которой наступает перегрузка.
  3. Характеристики базы.
  4. Значения прямых и обратных токов.
  5. Величина прямого и обратного напряжений.
  6. Тип электрической нагрузки. Бывают силовыми и обычными.
  7. Параметр силы тока, необходимой для открытия затвора.
  8. Коэффициент dv/dt или скорость, с которой происходит переключение.
  9. Производитель.
  10. Мощность.

Благодаря особенности пропускания тока в двух направлениях, их используют в цепях переменного тока, поскольку тиристор не может работать на полную мощность. Симметричные тиристоры получили широкое применение в таких устройствах:

  1. Приборах для регулировки яркости света или диммерах.
  2. Регуляторах оборотов для различного инструмента (лобзики, шуруповерты и т. д.).
  3. Электронной регулировке температур для индукционных плит.
  4. Холодильной аппаратуре для плавного запуска двигателя.
  5. Бытовой технике.
  6. Промышленности для освещения, плавного пуска приводов машин и механизмов.

Среди достоинств симисторов можно выделить незначительную стоимость, надежность и они не генерируют помехи (не используются контакты механического типа), а также длительный срок эксплуатации. К основным недостаткам следует отнести следующие: необходимость в дополнительном теплоотводе, невозможность использования на высоких частотах, а также влияние помех и шумов различного рода.

Для подавления помех следует подсоединить параллельно триаку, между катодом и анодом, цепочку из конденсатора и резистора с номиналами от 0,02 до 0,3 мкФ и от 45 до 500 Ом соответственно. Для применения в какой-либо схеме или устройстве следует знать основные технические характеристики, поскольку владение этой информацией поможет избежать множества трудностей перед начинающим радиолюбителем.

Технические характеристики

У триаков существуют характеристики, позволяющие применять их в какой-либо схеме. Кроме того, они отличаются также и производителем — бывают отечественные и импортные. Основное отличие импортных состоит в том, что нет необходимости подстраивать их работу при помощи дополнительных радиоэлементов, т. е. собирать дополнительную схему управления симистором. У симисторов существуют следующие характеристики:

  1. Величина максимального обратного и импульсного значений напряжений, на которые он рассчитан.
  2. Минимальное и максимальное значения тока, при котором происходит открытие его перехода, а также значение максимального импульсного тока, необходимого для его открытия.
  3. Период включения и выключения.
  4. Коэффициент dv/dt.

Характеристики в основном определяются по маркировке триаков с использованием справочника. В справочной информации имеется информация о том, как он выглядит, и дается его распиновка. При использовании триака следует учитывать такую характеристику, как dv/dt. Она показывает значения коэффициента, при котором не происходит самопроизвольное включение из-за скачков напряжения. Причинами такого включения могут служить помехи импульсного происхождения и падение напряжения при коммутации ключа. Кроме того, чтобы избежать последствий, следует применять RC-цепочку, а также ограничивающие диоды или варистор. Эта цепочка подсоединяется к эмиттеру и коллектору симистора.

При выборе триака следует обратить внимание на все характеристики, поскольку не имеет смысла использовать высоковольтный тип в схемах с низким напряжением. Например, если устройство работает от напряжения 36 В, то зарубежный симистор Zo607 с напряжением 600 В (его аналог — вта41600в) не следует применять.

Кроме того, в некоторых источниках можно встретить понятие бесснабберного симистора. Это тип, который применяется при индуктивных нагрузках. Примером такой модели являются m10lz47, mac12n и tg35c60.

Диагностика в схемах

В некоторых случаях радиолюбитель сталкивается с проверкой симистора, однако не всегда может ее корректно произвести. В случае выхода триака из строя его желательно выпаять из платы и произвести его проверку. Обычный цифровой мультиметр для этой цели не подойдет, поскольку его ток слишком мал, чтобы открыть переход детали. Для этого подойдет обыкновенный стрелочный омметр. Вариантов проверки всего два: использовать стрелочный прибор или собрать спецсхему для этой операции. Для осуществления проверки по первому варианту необходимо руководствоваться следующим алгоритмом:

  1. Включить прибор в режим измерения величины сопротивления.
  2. Подключить щупы тестера к эмиттеру и коллектору. Если прибор показывает бесконечное сопротивление, то деталь исправна. Остальные случаи указывают на ее неисправность.
  3. Соединить базу и вывод Т2. В этом случае сопротивление будет в пределах от 40 до 250 Ом. Если поменять местами щупы, то прибор снова покажет бесконечность. Это свидетельствует об исправности симистора.

Однако первый метод диагностики в некоторых случаях дает не совсем нужные и верные результаты. Очень часто проверенная таким способом деталь в схеме не работает. Это связано с тем, что герметичность ее корпуса нарушена. Недостаток метода — неточная диагностика. Для более точной диагностики следует проверить триак в работе (схема 1). Для этого необходимо использовать лампу накаливания и аккумулятор.

Схема 1. Проверка симметричного тиристора при помощи лампы накаливания и источника питания

В этой схеме симистор будет проверен под нагрузкой. При касании управляющего электрода, лампочка загорится и будет гореть некоторое время, пока не пропадет питание на аноде или ток на базе не будет малой величины. Недостаток метода — простая конструкция, при которой неудобно осуществлять проверку, поскольку следует напаивать провода на выводы триака. После проверки при неисправной детали следует произвести замену.

Таким образом, симисторы используются в управляемых устройствах в качестве электронных ключей, способных пропускать ток в двух направлениях. Их несложно проверить и желательно использовать специальную схему для этой операции.

Что такое симистор (триак), характеристики, схемы

В данной статье мы подробно разберем что такое симистор (триак), рассмотрим его схему и символ на схеме, кривые характеристики триака, а так же фазовый контроль симистора.

Введение

Будучи твердотельным устройством, тиристоры могут использоваться для управления лампами, двигателями или нагревателями и т.д. Однако одна из проблем использования тиристора для управления такими цепями заключается в том, что, подобно диоду, «тиристор» является однонаправленным устройством, что означает, что он пропускает ток только в одном направлении, от анода к катоду .

Для цепей переключения постоянного тока эта «однонаправленная» характеристика переключения может быть приемлемой, поскольку после запуска вся мощность постоянного тока подается прямо на нагрузку. Но в синусоидальных цепях переключения переменного тока это однонаправленное переключение может быть проблемой, поскольку оно проводит только в течение одной половины цикла (например, полуволнового выпрямителя), когда анод является положительным, независимо от того, что делает сигнал затвора. Затем для работы от переменного тока тиристором подается нагрузка только на половину мощности.

Чтобы получить двухволновое управление мощностью, мы могли бы подключить один тиристор внутри двухполупериодного мостового выпрямителя, который срабатывает на каждой положительной полуволне, или соединить два тиристора вместе в обратной параллели (спина к спине), как показано ниже. но это увеличивает как сложность, так и количество компонентов, используемых в схеме переключения.

Тиристорные конфигурации

Существует, однако, другой тип полупроводникового устройства, называемый «Триодный выключатель переменного тока» или «Триак» для краткости. Триаки также являются членами семейства тиристоров, и, как и кремниевые выпрямители, управляемые кремнием, они могут использоваться в качестве полупроводниковых переключателей питания, но что более важно, триаки являются «двунаправленными» устройствами. Другими словами, симистор может быть запущен в проводимость как положительными, так и отрицательными напряжениями, приложенными к его аноду, и положительными и отрицательными импульсами запуска, приложенными к его клемме затвора, что делает его двухквадрантным коммутирующим устройством, управляемым затвором.

Симистор ведет себя так же, как два обычных тиристоров, соединенных вместе в обратной параллельно (спина к спине) по отношению друг к другу и из — за этой конструкции два тиристоры имеют общий терминал Gate все в пределах одного трехтерминальной пакета.

Поскольку триак проводит в обоих направлениях синусоидальной формы волны, концепция анодной клеммы и катодной клеммы, используемая для идентификации главных силовых клемм тиристора, заменена обозначениями: MT 1 для главной клеммы 1 и MT 2 для главной клеммы 2.

В большинстве устройств переключения переменного тока клемма симисторного затвора связана с клеммой MT 1, аналогично взаимосвязи затвор-катод тиристора или взаимосвязи база-эмиттер транзистора. Конструкция, легирование PN и условные обозначения, используемые для обозначения триака, приведены ниже.

Схема и символ симистора

Теперь мы знаем, что «триак» — это четырехслойное PNPN в положительном направлении и NPNP в отрицательном направлении, трехполюсное двунаправленное устройство, которое блокирует ток в своем состоянии «ВЫКЛ», действующее как выключатель разомкнутой цепи, но в отличие от обычного тиристора, симистор может проводить ток в любом направлении при срабатывании одним импульсом затвора. Тогда симистор имеет четыре возможных режима срабатывания следующим образом.

  • Mode + Mode = положительный ток MT 2 (+ ve), положительный ток затвора (+ ve)
  • Mode — Mode = положительный ток MT 2 (+ ve), отрицательный ток затвора (-ve)
  • Mode + Mode = MT 2 отрицательный ток (-ve), положительный ток затвора (+ ve)
  • Mode — Mode = отрицательный ток MT 2 (-ve), отрицательный ток затвора (-ve)

И эти четыре режима, в которых может работать триак, показаны с использованием кривых характеристик триака IV.

Кривые характеристики триака IV

В квадранте tri триак обычно запускается в проводимость положительным током затвора, обозначенным выше как режим Ι +. Но это также может быть вызвано отрицательным током затвора, режим Ι–. Аналогичным образом, в квадранте Использование симистора

Симистор наиболее часто используется в полупроводниковых устройствах для коммутации и управления мощностью систем переменного тока, как симистор может быть включен «ON» либо положительным или отрицательным импульсом Gate, независимо от полярности питания переменного тока в то время. Это делает триак идеальным для управления лампой или нагрузкой двигателя переменного тока с помощью базовой схемы переключения триака, приведенной ниже.

Схема переключения симистора

Приведенная выше схема показывает простую схему переключения симистора с триггером постоянного тока. При разомкнутом переключателе SW1 ток не поступает в затвор симистора, и поэтому лампа выключена. Когда SW1 замкнут, ток затвора подается на триак от батареи V G через резистор R, и триак приводится в полную проводимость, действуя как замкнутый переключатель, и полная мощность потребляется лампой от синусоидального источника питания.

Поскольку батарея подает положительный ток затвора на триак всякий раз, когда переключатель SW1 замкнут, триак постоянно находится в режимах g + и ΙΙΙ + независимо от полярности клеммы MT 2 .

Конечно, проблема с этой простой схемой переключения симистора состоит в том, что нам потребовался бы дополнительный положительный или отрицательный источник питания затвора, чтобы запустить триак в проводимость. Но мы также можем активировать триак, используя фактическое напряжение питания переменного тока в качестве напряжения срабатывания затвора. Рассмотрим схему ниже.

Схема показывает триак, используемый как простой статический выключатель питания переменного тока, обеспечивающий функцию «ВКЛ» — «ВЫКЛ», аналогичную в работе предыдущей схеме постоянного тока. Когда переключатель SW1 разомкнут, триак действует как разомкнутый переключатель, и лампа пропускает нулевой ток. Когда SW1 замкнут, триак отключается от «ВКЛ» через токоограничивающий резистор R и самоблокируется вскоре после начала каждого полупериода, таким образом переключая полную мощность на нагрузку лампы.

Поскольку источник питания является синусоидальным переменным током, триак автоматически отключается в конце каждого полупериода переменного тока в качестве мгновенного напряжения питания, и, таким образом, ток нагрузки кратковременно падает до нуля, но повторно фиксируется снова, используя противоположную половину тиристора в следующем полупериоде, пока выключатель остается замкнутым. Этот тип управления переключением обычно называется двухполупериодным управлением, поскольку контролируются обе половины синусоидальной волны.

Поскольку симистор фактически представляет собой две SCR, подключенные друг к другу, мы можем продолжить эту схему переключения симистора, изменив способ срабатывания затвора, как показано ниже.

Модифицированная цепь переключения симистора

Как и выше, если переключатель SW1 разомкнут в положении A, то ток затвора отсутствует, а лампа выключена. Если переключатель находится в положении B, то ток затвора протекает в каждом полупериоде так же, как и раньше, и лампа получает полную мощность, когда триак работает в режимах Ι + и ΙΙΙ–.

Однако на этот раз, когда переключатель подключен к положению C, диод предотвратит срабатывание затвора, когда MT 2 будет отрицательным, так как диод имеет обратное смещение. Таким образом, симистор работает только в положительных полупериодах, работающих только в режиме I +, и лампа загорается при половине мощности. Затем, в зависимости от положения переключателя, нагрузка выключена при половине мощности или полностью включена .

Фазовый контроль симистора

Другой распространенный тип схемы симистической коммутации использует управление фазой для изменения величины напряжения и, следовательно, мощности, подаваемой на нагрузку, в данном случае на двигатель, как для положительной, так и для отрицательной половин входного сигнала. Этот тип управления скоростью двигателя переменного тока обеспечивает полностью переменное и линейное управление, поскольку напряжение можно регулировать от нуля до полного приложенного напряжения, как показано на рисунке.

Эта базовая схема запуска фазы использует триак последовательно с двигателем через синусоидальный источник переменного тока. Переменный резистор VR1 используется для управления величиной фазового сдвига на затворе симистора, который, в свою очередь, управляет величиной напряжения, подаваемого на двигатель, путем его включения в разное время в течение цикла переменного тока.

Вызывание напряжение симистора является производным от VR1 — C1 комбинации через Диак (Диак является двунаправленным полупроводниковым устройством , которое помогает обеспечить резкий триггер импульс тока, чтобы полностью включение симистора).

В начале каждого цикла C1 заряжается через переменный резистор VR1. Это продолжается до тех пор, пока напряжение на С1 не станет достаточным для запуска диака в проводимость, что, в свою очередь, позволяет конденсатору С1 разрядиться в затвор симистора, включив его.

Как только триак запускается в проводимость и насыщается, он эффективно замыкает цепь управления фазой затвора, подключенную параллельно ему, и триак берет на себя управление оставшейся частью полупериода.

Как мы видели выше, триак автоматически отключается в конце полупериода, и процесс запуска VR1-C1 снова запускается в следующем полупериоде.

Однако, поскольку для триака требуются разные величины тока затвора в каждом режиме переключения, например, Ι + и ΙΙΙ–, поэтому триак является асимметричным, что означает, что он не может запускаться в одной и той же точке для каждого положительного и отрицательного полупериода.

Эта простая схема управления скоростью симистора подходит не только для управления скоростью двигателя переменного тока, но и для диммеров ламп и управления электронагревателем, и на самом деле очень похожа на регулятор симистора, используемый во многих домах. Однако коммерческий симисторный диммер не должен использоваться в качестве регулятора скорости двигателя, так как, как правило, симисторные диммеры предназначены для использования только с резистивными нагрузками, такими как лампы накаливания.

Мы можем закончить эту про симистор, суммировав его основные пункты следующим образом:

  • «Триак» — это еще одно 4-слойное 3-контактное тиристорное устройство, аналогичное SCR.
  • Симистор может быть запущен в любом направлении.
  • Есть четыре возможных режима запуска для симистора, из которых 2 являются предпочтительными.

Управление электрическим переменным током с использованием симисторачрезвычайно эффективно при правильном использовании для управления нагрузками резистивного типа, такими как лампы накаливания, нагреватели или небольшие универсальные двигатели, обычно используемые в переносных электроинструментах и ​​небольших приборах.

Но помните, что эти устройства можно использовать и подключать непосредственно к источнику переменного тока, поэтому проверка цепи должна выполняться, когда устройство управления питанием отключено от источника питания. Пожалуйста, помните о безопасности!

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Что такое симистор (триак) и как он работает. Проверка мультиметром

Современные тенденции в технике любого типа и вида — замена механических и электромеханических элементов на электронные или полупроводниковые. Они имеют более миниатюрные размеры, работают надежнее, позволяют реализовать более широкую функциональность. Во многих электронный устройствах применяется тиристор, или его подвид — симистор. О том, что это за прибор, как он работает и для чего используется и будем говорить.

Что это за устройство, его обозначение

Симистор — это симметричный тиристор. В англоговорящих странах используется название triak, встречается и у нас транслитерация этого названия — триак. Понять принцип его работы несложно, если знаете как работает тиристор. Если коротко, тиристор пропускает ток только в одном направлении. И в этом он похож на диод, но ток проходит только при появлении сигнала на управляющем выводе. То есть, ток проходит только при определенных условиях. Прекращается его «подача» при снижении силы тока ниже определенного значения или разрывом цепи (даже кратковременным). Так как симистор, по сути, двусторонний тиристор, при появлении управляющего сигнала он пропускает ток в обоих направлениях направления.

В открытом состоянии симистор проводит ток в обоих направлениях.

На схеме он изображается как два включенных навстречу друг на другу тиристора с общим управляющим выводом.

Внешний вид симистора и его обозначение на схемах

Симистор имеет три вывода: два силовых и один управляющий. Через силовые выводы можно пропускать ток высокого напряжение, на управляющий подаются низковольтные сигналы. Пока на управляющем выводе не появится потенциал, ток не будет протекать ни в одном направлении.

Где используется и как выглядит

Чаще всего симистор используется для коммутации в цепях переменного тока (подачи питания на нагрузку). Это удобно, так как при помощи напряжения малого номинала можно управлять высоковольтным питанием. В некоторых схемах ставят симистор вместо обычного электромеханического реле. Плюс очевиден — нет физического контакта, что делает включение питания более надежным. Второе достоинство — относительно невысокая цена. И это при значительном времени наработки и высокой надежности схемы.

Минусы тоже есть. Приборы могут сильно нагреваться под нагрузкой, поэтому необходимо обеспечить отвод тепла. Мощные симисторы (называют обычно «силовые») монтируются на радиаторы. Еще один минус — напряжение на выходе симистора пилообразное. То есть подключаться может только нагрузка, которая не предъявляет высоких требований к качеству электропитания. Если нужна синусоида, такой способ коммутации не подходит.

Заменить симистор можно двумя тиристорами. Но надо правильно подобрать их по параметрам, да и схему управления придется переделывать — в таком варианте управляющих вывода два

По внешнему виду отличить тиристор и симистор нереально. Даже маркировка может быть похожей — с буквой «К». Но есть и серии, у которых название начинается с «ТС», что означает «тиристор симметричный». Если говорить о цоколевке, то это то, что отличает тиристор от симистора. У тиристора есть анод, катод и управляющий вывод. У симистора названия «анод» и «катод» неприменимы, так как вывод может быть и катодом, и анодом. Так что их обычно называют просто «силовой вывод» и добавляют к нему цифру. Тот который левее — это первый, который правее — второй. Управляющий электрод может называться затвором (от английского слова Gate, которым обозначается этот вывод).

Принцип работы симистора

Давайте разберем, как работает симистор на примере простой схемы, в которой переменное напряжение подается на нагрузку через электронный ключ на базе этого элемента. В качестве нагрузки представим лампочку — так удобнее будет объяснять принцип работы.

Схема реле на симисторе (триаке)

В исходном положении прибор находится в запертом состоянии, ток не проходит, лампочка не горит. При замыкании ключа SW1 питание подается на на затвор G. Симистор переходит в открытое состояние, пропускает через себя ток, лампочка загорается. Поскольку схема работает от сети переменного напряжения, полярность на контактах симистора постоянно меняется. Вне зависимости от этого, лампочка горит, так как прибор пропускает ток в обоих направлениях.

При использовании в качестве питания источника переменного напряжения, ключ SW1 должен быть замкнуть все время, пока необходимо чтобы нагрузка была в работе. При размыкании контакта во время очередной смены полярности цепь разрывается, лампочка гаснет. Зажжется она снова только после замыкания ключа.

Если в той же схеме использовать источник постоянного тока, картина изменится. После того как ключ SW1 замкнется, симистор откроется, потечет ток, лампочка загорится. Дальше этот ключ может возвращаться в разомкнутое состояние. При этом цепь питания нагрузки (лампочки) не разрывается, так как симистор остается в открытом состоянии. Чтобы отключить питание, надо либо понизить ток ниже величины удержания (одна из технических характеристик), либо кратковременно разорвать цепь питания.

Сигналы управления

Управляется симистор не напряжением, а током. Для открытия на затвор надо подать ток определенного уровня. В характеристиках указан минимальный ток открывания — вот это и есть нужная величина. Обычно ток открывания совсем небольшой. Например, для коммутации нагрузки на 25 А, подается управляющий сигнал порядка 2,5 мА. При этом, чем выше напряжение, подаваемое на затвор, тем быстрее открывается переход.

Схема подачи напряжения для управления симистором

Чтобы перевести симистор в открытое состояние, напряжение должно подаваться между затвором и условным катодом. Условным, потому что в разные моменты времени, катодом является то один силовой выход, то другой.

Полярность управляющего напряжения, как правило, должна быть либо отрицательной, либо должна совпадать с полярностью напряжения на условном аноде. Поэтому часто используется такой метод управления симистором, при котором сигнал на управляющий электрод подаётся с условного анода через токоограничительный резистор и выключатель. Управлять симистором часто удобно, задавая определённую силу тока управляющего электрода, достаточную для отпирания. Некоторые типы симисторов (так называемые четырёхквадрантные симисторы) могут отпираться сигналом любой полярности, хотя при этом может потребоваться больший управляющий ток (а именно, больший управляющий ток требуется в четвёртом квадранте, то есть когда напряжение на условном аноде имеет отрицательную полярность, а на управляющем электроде — положительную).

Как проверить симистор

Привычка проверять все элементы пред пайкой приходит с годами. Проверить симистор можно при помощи мультиметра и при помощи небольшой проверочной схемы с батарейкой и лампочкой. В любом случае надо сначала разобраться, как располагаются выводы на вашем приборе. Сделать это можно по цоколевке каждой конкретной серии. Для этого в поисковик забиваем маркировку, которая есть на корпусе. В некоторых случаях можно добавить «цоколевка». Если есть русскоязычные описания, будет несколько проще. Если на русском информации нет, придется искать в интернете. Заменяем слово «цоколевка» словом «datasheet». Иногда можно ввести русскими буквами «даташит». В переводе это «техническая спецификация». По имеющимся в описании таблицам и рисункам легко понять, где расположены силовые выходы (T1 и T2), а где затвор (G).

Пример цоколевки. Все можно понять и без знания языка

С мультиметром

Проверка мультиметром симистора основана на принципе его работы. Берем обычный мультиметр, ставим его в положение прозвонки. Силовые выходы между собой должны звониться в обоих направлениях. Прикасаемся щупами к выходам Т1 и Т2. На экране должны высвечиваться цифры. Это сопротивление перехода. Если поменять щупы местами, сопротивление может измениться, но ни обрыва, ни короткого быть не должно.

Зато между затвором и силовыми выходами должен быть «обрыв» (бесконечно большое сопротивление). То есть, «звониться» они не должны при любом расположении щупов. Проверив сопротивление между разными выводами, можно сделать вод о работоспособности симистора.

С лампочкой и батарейкой

Для проверки симистора без мультиметра придется собрать простенькую проверочную схему с питанием от девятивольтовой батарейки «Крона». Нужны будут три провода длиной около 20 см. Провода желательно гибкие, многожильные. Проще, если они будут разных цветов. Лучше всего красный, синий и любой другой. Пусть будет желтый. Синий разрезаем пополам, припаиваем лампочку накаливания на 9 В (или смотрите по напряжению, которое выдает ваша батарейка). Один кусок провода на резьбу, другой — на центральный вывод с нижней части цоколя. Чтобы работать было удобнее, на каждый провод лучше припаять «крокодилы» — пружинные зажимы.

Как проверить симистор без мультиметра

Собираем схему. Подключаем провода в таком порядке:

  • Красный одним концом на плюс кроны, вторым — на вывод Т1.
  • Синий — на минус кроны и на Т2.
  • Желтый провод одним краем цепляем к затвору G.

После того как собрали схему, лампочка не должна гореть. Если она горит, симистор пробит. Если не горит, проверяем дальше. Свободным концом желтого провода кратковременно прикасаемся к Т2. Лампочка должна загореться. Это значит, что симметричный тиристор открылся. Чтобы его закрыть, надо коснуться проводом вывода Т1. Если все работает, прибор исправен.

Как избежать ложных срабатываний

Так как для срабатывания симистора достаточно небольшого потенциала, возможны ложные срабатывания. В некоторых случаях они не страшны, но могут привести и к поломке. Поэтому лучше заранее принять меры. Есть несколько способов уменьшить вероятность ложных включений:

  • Уменьшить длину линии к затвору, соединять цепь управления — затвор и Т1 — напрямую. Если это невозможно, использовать экранированный кабель или витую пару.
  • Снизить чувствительность затвора. Для этого параллельно ставят сопротивление (до 1 кОм).

Практически во всех схемах с симисторами в цепи затвора есть резистор, уменьшающий чувствительность прибора

Как уже говорили, симистор управляется током. Это дает возможность подключать его напрямую к выходам микросхем. Есть одно ограничение — ток не должен превышать максимально допустимый. Обычно это 25 мА.

Особенности монтажа

Так же как и тиристоры, симисторы при работе греются, поэтому при сборке необходимо обеспечивать отвод тепла. Если нагрузка маломощная или питание импульсное (кратковременное подключение на промежуток менее 1 сек) допускается монтаж без радиатора. В остальных случаях необходимо обеспечить качественный контакт с охлаждающим устройством.

Есть три способа фиксации симистора на радиаторе: клепка, на винте и на зажиме. Первый вариант при самостоятельном монтаже не рекомендуется, так как существует высокая вероятность повреждения корпуса. Наиболее простой способ монтажа в домашних условиях — винтовой.

Порядок монтажа симистора

Перед тем, как начинают монтаж, осматривают корпус прибора и радиатора (охладителя) на предмет царапин и сколов. Их быть не должно. Затем поверхность протирают от загрязнений чистой ветошью, обезжиривают, накладывают термопасту. После чего вставляют в отверстие с резьбой в радиаторе и зажимают шайбу. Крутящий момент должен быть 0.55Nm- 0.8Nm. То есть, необходимо обеспечить должный контакт, но перетягивать тоже нельзя, так как есть риск повредить корпус.

Схема регулятора мощности для индуктивной нагрузки на симисторе

Обратите внимание, что монтаж симистора производится до пайки. Это снижает механическую нагрузку на отводы прибора. И еще: при установке следите за тем, чтобы корпус плотно прижимался к охладителю.

Симистор

Симметричный тиристор

Если проанализировать путь развития полупроводниковой электроники, то почти сразу становится понятно, что все полупроводниковые приборы созданы на переходах или слоях (n-p, p-n).

Простейший полупроводниковый диод имеет один переход (p-n) и два слоя.

У биполярного транзистора два перехода и три слоя (n-p-n, p-n-p). А что будет, если добавить ещё один слой?

Тогда мы получим четырёхслойный полупроводниковый прибор, который называется тиристор. Два тиристора включенные встречно-параллельно и есть симистор, то есть симметричный тиристор.

В англоязычной технической литературе можно встретить название ТРИАК (TRIAC – triode for alternating current).

Вот таким образом симистор изображается на принципиальных схемах.

У симистора три электрода (вывода). Один из них управляющий. Обозначается он буквой G (от англ. слова gate – “затвор”). Два остальных – это силовые электроды (T1 и T2). На схемах они могут обозначаться и буквой A (A1 и A2).

А это эквивалентная схема симистора выполненного на двух тиристорах.

Следует отметить, что симистор управляется несколько по-другому, нежели эквивалентная тиристорная схема.

Симистор достаточно редкое явление в семье полупроводниковых приборов. По той простой причине, что изобретён и запатентован он был в СССР, а не в США или Европе. К сожалению, чаще бывает наоборот.

Как работает симистор?

Если у тиристора есть конкретные анод и катод, то электроды симистора так охарактеризовать нельзя, поскольку каждый электрод является и анодом, и катодом одновременно. Поэтому в отличие от тиристора, который проводит ток только в одном направлении, симистор способен проводить ток в двух направлениях. Именно поэтому симистор прекрасно работает в сетях переменного тока.

Очень простой схемой, характеризующей принцип работы и область применения симистора, может служить электронный регулятор мощности. В качестве нагрузки можно использовать что угодно: лампу накаливания, паяльник или электровентилятор.


Симисторный регулятор мощности

После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение. На электрод, который является управляющим, с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется, и ток пойдёт в нагрузку. В тот момент, когда напряжение на входе симистора поменяет полярность, он закроется. Потом процесс повторяется.

Чем больше уровень управляющего напряжения, тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше. После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса. В данном случае, изменяя управляющее напряжение, мы можем регулировать яркость электрической лампочки или температуру жала паяльника.

Симистор управляется как отрицательным, так и положительным током. В зависимости от полярности управляющего напряжения рассматривают четыре, так называемых, сектора или режима работы. Но этот материал достаточно сложен для одной статьи.

Если рассматривать симистор, как электронный выключатель или реле, то его достоинства неоспоримы:

По сравнению с электромеханическими приборами (электромагнитными и герконовыми реле) большой срок службы.

Отсутствие контактов и, как следствие, нет искрения и дребезга.

К недостаткам можно отнести:

Симистор весьма чувствителен к перегреву и монтируется на радиаторе.

Не работает на высоких частотах, так как просто не успевает перейти из открытого состояния в закрытое.

Реагирует на внешние электромагнитные помехи, что вызывает ложное срабатывание.

Для защиты от ложных срабатываний между силовыми выводами симистора подключается RC-цепочка. Величина резистора R1 от 50 до 470 ом, величина конденсатора C1 от 0,01 до 0,1 мкф. В некоторых случаях эти величины подбираются экспериментально.

Основные параметры симистора.

Основные параметры удобно рассмотреть на примере популярного отечественного симистора КУ208Г. Будучи разработан и выпущен достаточно давно, он продолжает оставаться востребованным у любителей сделать что-то своими руками. Вот его основные параметры.

Максимальное обратное напряжение – 400V. Это означает, что он прекрасно может управлять нагрузкой в сети 220V и ещё с запасом.

В импульсном режиме напряжение точно такое же.

Максимальный ток в открытом состоянии – 5А.

Максимальный ток в импульсном режиме – 10А.

Наименьший постоянный ток, необходимый для открытия симистора – 300 мА.

Наименьший импульсный ток – 160 мА.

Открывающее напряжение при токе 300 мА – 2,5 V.

Открывающее напряжение при токе 160 мА – 5 V.

Время включения – 10 мкс.

Время выключения – 150 мкс.

Как видим, для открывания симистора необходимым условием является совокупность тока и напряжения. Больше ток, меньше напряжение и наоборот. Следует обратить внимание на большую разницу между временем включения и выключения (10 мкс. против 150 мкс.).

Оптосимистор.

Современная и перспективная разновидность симистора – это оптосимистор. Название говорит само за себя. Вместо управляющего электрода в корпусе симистора находится светодиод, и управление осуществляется изменением напряжения на светодиоде. На изображении показан внешний вид оптосимистора MOC3023 и его внутреннее устройство.


Оптосимистор MOC3023


Устройство оптосимистора

Как видим, внутри корпуса смонтирован светодиод и симистор, который управляется за счёт излучения светодиода. Выводы, отмеченные как N/C и NC, не используются, и не подключаются к элементам схемы. NC – это сокращение от Not Connect, которое переводится с английского как “не подключается”.

Самое ценное в оптосимисторе это то, что между цепью управления и силовой цепью осуществлена полная гальваническая развязка. Это повышает уровень электробезопасности и надёжности всей схемы.

Как подобрать симистор по мощности

Все полупроводниковые приборы основаны на переходах, и если трехпереходный прибор — это тиристор, то два трехпереходных прибора, включенных встречно-параллельно внутри одного общего корпуса, – это уже симистор, то есть симметричный тиристор. В англоязычной литературе он именуется «TRIAC» – триод для переменного тока.

Так или иначе, у симистора есть три вывода, два из которых силовые, а третий — управляющий или затвор (англ. GATE). При этом у симистора нет конкретных анода и катода, ибо каждый из силовых электродов в разные моменты времени может выступать как в роли анода, так и в роли катода.

В силу этих особенностей симисторы весьма широко применяются в цепях переменного тока. Кроме того, симисторы недорого стоят, имеют продолжительный строк службы, и не вызывают искрения, по сравнению с механическими коммутационными реле, чем и обеспечивают себе неугасающую востребованность.

Давайте же рассмотрим основные характеристики, то есть основные технические параметры симисторов, и разъясним, что каждый из них обозначает. Рассматривать будем на примере довольно распространенного симистора BT139-800, часто применяемого в разного рода регуляторах. Итак, основные характеристики симистора:

Максимальное повторяющееся импульсное напряжение в закрытом состоянии;

Максимальный, средний за период, ток в открытом состоянии;

Максимальный кратковременный импульсный ток в открытом состоянии;

Максимальное падение напряжения на симисторе в открытом состоянии;

Минимальный постоянный ток управления, необходимый для включения симистора;

Отпирающее напряжение управления, соответствующее минимальному постоянному отпирающему току;

Критическая скорость нарастания напряжения в закрытом состоянии;

Критическая скорость нарастания тока в открытом состоянии;

Рабочий диапазон температур;

Для нашего примера оно составляет 800 вольт. Это то напряжение, которое будучи приложено к силовым электродам симистора теоретически еще не вызовет его выхода из строя. Практически же это максимально допустимое рабочее напряжение для коммутируемой данным симистором цепи, в условиях рабочей температуры, попадающей в допустимый температурный диапазон.

Даже кратковременное превышение этого значения не гарантирует дальнейшей работоспособности полупроводникового прибора. Следующий параметр пояснит данное положение.

Максимальное повторяющееся импульсное напряжение в закрытом состоянии

Данный параметр всегда указывается в документации, и обозначает он как раз критическое значение напряжения, являющееся предельным для данного симистора.

Это то напряжение, которое в пике нельзя превышать. Даже если симистор закрыт и не открывается, будучи установлен в цепи с постоянно действующим переменным напряжением, симистор не будет пробит, если амплитуда прикладываемого напряжения не превышает для нашего примера 800 вольт.

Если же к запертому симистору окажется приложено напряжение хоть чуть-чуть выше, хоть на долю периода переменного напряжения, его дальнейшая работоспособность производителем не гарантируется. Данное положение опять же относится к условиям допустимого температурного диапазона.

Максимальный, средний за период, ток в открытом состоянии

Так называемый максимальный среднеквадратичный (RMS – root mean square) ток, для тока синусоидальной формы это его среднее значение, в условиях приемлемой рабочей температуры симистора. Для нашего примера это максимум 16 ампер при температуре симистора до 100 °C. Пиковый ток может быть и выше, об этом сообщает следующий параметр.

Максимальный кратковременный импульсный ток в открытом состоянии

Это пиковый ток, который указывается в документации на симистор обязательно с приведением максимально допустимой продолжительности действия тока данной величины в миллисекундах. Для нашего примера это 155 ампер в течение максимум 20 мс, что означает практически, что время действия такого большого тока должно быть еще меньше.

Обратите внимание, что среднеквадратичный ток по прежнему не должен быть превышен ни при каких условиях. Это связано с максимальной рассеиваемой корпусом симистора мощностью и с максимально допустимой температурой кристалла менее 125 °C.

Максимальное падение напряжения на симисторе в открытом состоянии

Данный параметр указывает на максимальное напряжение (для нашего примера оно составляет 1,6 вольт), которое установится между силовыми электродами симистора в открытом состоянии, при указанном в документации токе в его рабочей цепи (для нашего примера — при токе в 20 ампер). Обычно чем выше ток — тем больше падение напряжения на симисторе.

Данная характеристика необходима при тепловых расчетах, ибо она косвенно сообщает разработчику о максимальной потенциальной величине рассеиваемой корпусом симистора мощности, что важно при подборе радиатора. Также с ее помощью предоставляется возможность оценить эквивалентное сопротивление симистора в заданных температурных условиях.

Минимальный постоянный ток управления, необходимый для включения симистора

Минимальный ток управляющего электрода симистора, измеряется в миллиамперах, зависит от полярности включения симистора в текущий момент времени, а так же от полярности управляющего напряжения.

Для нашего примера данный ток лежит в диапазоне от 5 до 22 мА в зависимости от полярности напряжения в управляемой симистором цепи. При разработке схемы управления симистором лучше приблизить величину управляющего тока к максимальному значению, для нашего примера это 35 или 70 мА (в зависимости от полярности).

Отпирающее напряжение управления, соответствующее минимальному постоянному отпирающему току

Чтобы установить минимальный ток в цепи управляющего электрода симистора, необходимо к этому электроду приложить определенное напряжение. Оно зависит от напряжения, приложенного в данный момент в силовой цепи симистора, а еще от температуры симистора.

Так, для нашего примера, при напряжении 12 вольт в силовой цепи, для гарантированной установки тока управления в 100 мА, необходимо приложить минимум 1,5 вольт. А при температуре кристалла в 100 °C, при напряжении в рабочей цепи 400 вольт, требуемое для цепи управления напряжение составит 0,4 вольта.

Критическая скорость нарастания напряжения в закрытом состоянии

Данный параметр измеряется в вольтах за микросекунду. Для нашего примера критическая скорость нарастания напряжения на силовых электродах составляет 250 вольт за микросекунду. Если эту скорость превысить, то симистор может ошибочно открыться невпопад даже без подачи на его управляющий электрод какого-либо управляющего напряжения.

Чтобы этого не случилось, необходимо обеспечить такие рабочие условия, чтобы напряжение на аноде (катоде) изменялось медленнее, а также исключить любые помехи, динамика которых превышает данный параметр (всякие импульсные помехи и т.д).

Критическая скорость нарастания тока в открытом состоянии

Измеряется в амперах за микросекунду. Если превысить эту скорость, то симистор будет пробит. Для нашего примера максимальная скорость нарастания тока в открытом состоянии составляет 50 ампер за микросекунду.

Для нашего примера это время составляет 2 микросекунды. Это то время, которое проходит от момента достижения током затвора 10% его пикового значения до момента, когда напряжение между анодом и катодом симистора упало до 10% его первоначального значения.

Рабочий диапазон температур

Обычно этот диапазон таков — от -40°C до +125°C. Для данного диапазона температур в документации приводятся динамические характеристики симистора.

В нашем примере корпус to220ab, он удобен тем, что допускает крепление симистора к небольшому радиатору. Для тепловых расчетов в документации на симистор приводится таблица зависимости рассеиваемой мощности от среднего тока симистора.

Полупроводниковый прибор, имеющий 5 p-n переходов и способный пропускать ток в прямом и обратном направлениях, называется симистором. Из-за неспособности работы на высоких частотах переменного тока, высокой чувствительности к электромагнитным помехам и значительного тепловыделения при коммутации больших нагрузок, в настоящее время широкого применения в мощных промышленных установках они не имеют.

Сегодня схемы на симисторах можно найти во многих бытовых приборах от фена до пылесоса, ручном электроинструменте и электронагревательных устройствах – там, где требуется плавная регулировка мощности.

Принцип работы

Регулятор мощности на симисторе работает подобно электронному ключу, периодически открываясь и закрываясь, с частотой, заданной схемой управления. При отпирании симистор пропускает часть полуволны сетевого напряжения, а значит потребитель получает только часть номинальной мощности.

Делаем своими руками

На сегодняшний день ассортимент симисторных регуляторов в продаже не слишком велик. И, хотя цены на такие устройства невелики, зачастую они не отвечают требованиям потребителя. По этой причине рассмотрим несколько основных схем регуляторов, их назначение и используемую элементную базу.

Схема прибора

Простейший вариант схемы, рассчитанный для работы на любую нагрузку. Используются традиционные электронные компоненты, принцип управления фазово-импульсный.

Основные компоненты:

  • симистор VD4, 10 А, 400 В;
  • динистор VD3, порог открывания 32 В;
  • потенциометр R2.

Ток, протекающий через потенциометр R2 и сопротивление R3, каждой полуволной заряжает конденсатор С1. Когда на обкладках конденсатора напряжение достигнет 32 В, произойдёт открытие динистора VD3 и С1 начнёт разряжаться через R4 и VD3 на управляющий вывод симистора VD4, который откроется для прохождения тока на нагрузку.

Длительность открытия регулируется подбором порогового напряжения VD3 (величина постоянная) и сопротивлением R2. Мощность в нагрузке прямо пропорциональна величине сопротивления потенциометра R2.

Дополнительная цепь из диодов VD1 и VD2 и сопротивления R1 является необязательной и служит для обеспечения плавности и точности регулировки выходной мощности. Ограничение тока, протекающего через VD3, выполняет резистор R4. Этим достигается необходимая для открытия VD4 длительность импульса. Предохранитель Пр.1 защищает схему от токов короткого замыкания.

Подбирать симисторы следует по величине нагрузке, исходя из расчёта 1 А = 200 Вт.

Используемые элементы:

  • Динистор DB3;
  • Симистор ТС106-10-4, ВТ136-600 или другие, требуемого номинала по току 4-12А.
  • Диоды VD1, VD2 типа 1N4007;
  • Сопротивления R1100 кОм, R3 1 кОм, R4 270 Ом, R5 1,6 кОм, потенциометр R2 100 кОм;
  • Конденсатор С1 0,47 мкФ (рабочее напряжение от 250 В).

Отметим, что схема является наиболее распространённой, с небольшими вариациями. Например, динистор может быть заменён на диодный мост или может быть установлена помехоподавляющая RC цепочка параллельно симистору.

Более современной является схема с управлением симистора от микроконтроллера – PIC, AVR или другие. Такая схема обеспечивает более точную регулировку напряжения и тока в цепи нагрузки, но является и более сложной в реализации.

Схема симисторного регулятора мощности

Сборка

Сборку регулятора мощности необходимо производить в следующей последовательности:

  1. Определить параметры прибора, на который будет работать разрабатываемое устройство. К параметрам относятся: количество фаз (1 или 3), необходимость точной регулировки выходной мощности, входное напряжение в вольтах и номинальный ток в амперах.
  2. Выбрать тип устройства (аналоговый или цифровой), произвести подбор элементов по мощности нагрузки. Можно проверить своё решение в одной из программ для моделирования электрических цепей – Electronics Workbench, CircuitMaker или их онлайн аналогах EasyEDA, CircuitSims или любой другой на ваш выбор.
  3. Рассчитать тепловыделение по следующей формуле: падение напряжения на симисторе (около 2 В) умножить на номинальный ток в амперах. Точные значения падения напряжения в открытом состоянии и номинальный пропускаемый ток указаны в характеристиках симистора. Получаем рассеиваемую мощность в ваттах. Подобрать по рассчитанной мощности радиатор.
  4. Закупить необходимые электронные компоненты, радиатор и печатную плату.
  5. Произвести разводку контактных дорожек на плате и подготовить площадки для установки элементов. Предусмотреть крепление на плате для симистора и радиатора.
  6. Установить элементы на плату при помощи пайки. Если нет возможности подготовить печатную плату, то можно использовать для соединения компонентов навесной монтаж, используя короткие провода. При сборке особое внимание уделить полярности подключения диодов и симистора. Если на них нет маркировки выводов, то прозвонить их при помощи цифрового мультиметра или «аркашки».
  7. Проверить собранную схему мультиметром в режиме сопротивления. Полученное изделие должно соответствовать изначальному проекту.
  8. Надёжно закрепить симистор на радиатор. Между симистором и радиатором не забыть проложить изолирующую теплопередающую прокладку. Скрепляющий винт надёжно заизолировать.
  9. Поместить собранную схему в пластиковый корпус.
  10. Вспомнить о том, что на выводах элементов присутствует опасное напряжение.
  11. Выкрутить потенциометр на минимум и произвести пробное включение. Измерить напряжение мультиметром на выходе регулятора. Плавно поворачивая ручку потенциометра следить за изменением напряжения на выходе.
  12. Если результат устраивает, то можно подключать нагрузку к выходу регулятора. В противном случае необходимо произвести регулировки мощности.

Симисторный радиатор мощности

Регулировка мощности

За регулировку мощности отвечает потенциометр, через который заряжается конденсатор и разрядная цепь конденсатора. При неудовлетворительных параметрах выходной мощности следует подбирать номинал сопротивления в разрядной цепи и, при малом диапазоне регулировки мощности, номинал потенциометра.

Полупроводниковый прибор, имеющий 5 p-n переходов и способный пропускать ток в прямом и обратном направлениях, называется симистором. Из-за неспособности работы на высоких частотах переменного тока, высокой чувствительности к электромагнитным помехам и значительного тепловыделения при коммутации больших нагрузок, в настоящее время широкого применения в мощных промышленных установках они не имеют.

Сегодня схемы на симисторах можно найти во многих бытовых приборах от фена до пылесоса, ручном электроинструменте и электронагревательных устройствах – там, где требуется плавная регулировка мощности.

Принцип работы

Регулятор мощности на симисторе работает подобно электронному ключу, периодически открываясь и закрываясь, с частотой, заданной схемой управления. При отпирании симистор пропускает часть полуволны сетевого напряжения, а значит потребитель получает только часть номинальной мощности.

Делаем своими руками

На сегодняшний день ассортимент симисторных регуляторов в продаже не слишком велик. И, хотя цены на такие устройства невелики, зачастую они не отвечают требованиям потребителя. По этой причине рассмотрим несколько основных схем регуляторов, их назначение и используемую элементную базу.

Схема прибора

Простейший вариант схемы, рассчитанный для работы на любую нагрузку. Используются традиционные электронные компоненты, принцип управления фазово-импульсный.

Основные компоненты:

  • симистор VD4, 10 А, 400 В;
  • динистор VD3, порог открывания 32 В;
  • потенциометр R2.

Ток, протекающий через потенциометр R2 и сопротивление R3, каждой полуволной заряжает конденсатор С1. Когда на обкладках конденсатора напряжение достигнет 32 В, произойдёт открытие динистора VD3 и С1 начнёт разряжаться через R4 и VD3 на управляющий вывод симистора VD4, который откроется для прохождения тока на нагрузку.

Длительность открытия регулируется подбором порогового напряжения VD3 (величина постоянная) и сопротивлением R2. Мощность в нагрузке прямо пропорциональна величине сопротивления потенциометра R2.

Дополнительная цепь из диодов VD1 и VD2 и сопротивления R1 является необязательной и служит для обеспечения плавности и точности регулировки выходной мощности. Ограничение тока, протекающего через VD3, выполняет резистор R4. Этим достигается необходимая для открытия VD4 длительность импульса. Предохранитель Пр.1 защищает схему от токов короткого замыкания.

Подбирать симисторы следует по величине нагрузке, исходя из расчёта 1 А = 200 Вт.

Используемые элементы:

  • Динистор DB3;
  • Симистор ТС106-10-4, ВТ136-600 или другие, требуемого номинала по току 4-12А.
  • Диоды VD1, VD2 типа 1N4007;
  • Сопротивления R1100 кОм, R3 1 кОм, R4 270 Ом, R5 1,6 кОм, потенциометр R2 100 кОм;
  • Конденсатор С1 0,47 мкФ (рабочее напряжение от 250 В).

Отметим, что схема является наиболее распространённой, с небольшими вариациями. Например, динистор может быть заменён на диодный мост или может быть установлена помехоподавляющая RC цепочка параллельно симистору.

Более современной является схема с управлением симистора от микроконтроллера – PIC, AVR или другие. Такая схема обеспечивает более точную регулировку напряжения и тока в цепи нагрузки, но является и более сложной в реализации.

Схема симисторного регулятора мощности

Сборка

Сборку регулятора мощности необходимо производить в следующей последовательности:

  1. Определить параметры прибора, на который будет работать разрабатываемое устройство. К параметрам относятся: количество фаз (1 или 3), необходимость точной регулировки выходной мощности, входное напряжение в вольтах и номинальный ток в амперах.
  2. Выбрать тип устройства (аналоговый или цифровой), произвести подбор элементов по мощности нагрузки. Можно проверить своё решение в одной из программ для моделирования электрических цепей – Electronics Workbench, CircuitMaker или их онлайн аналогах EasyEDA, CircuitSims или любой другой на ваш выбор.
  3. Рассчитать тепловыделение по следующей формуле: падение напряжения на симисторе (около 2 В) умножить на номинальный ток в амперах. Точные значения падения напряжения в открытом состоянии и номинальный пропускаемый ток указаны в характеристиках симистора. Получаем рассеиваемую мощность в ваттах. Подобрать по рассчитанной мощности радиатор.
  4. Закупить необходимые электронные компоненты, радиатор и печатную плату.
  5. Произвести разводку контактных дорожек на плате и подготовить площадки для установки элементов. Предусмотреть крепление на плате для симистора и радиатора.
  6. Установить элементы на плату при помощи пайки. Если нет возможности подготовить печатную плату, то можно использовать для соединения компонентов навесной монтаж, используя короткие провода. При сборке особое внимание уделить полярности подключения диодов и симистора. Если на них нет маркировки выводов, то прозвонить их при помощи цифрового мультиметра или «аркашки».
  7. Проверить собранную схему мультиметром в режиме сопротивления. Полученное изделие должно соответствовать изначальному проекту.
  8. Надёжно закрепить симистор на радиатор. Между симистором и радиатором не забыть проложить изолирующую теплопередающую прокладку. Скрепляющий винт надёжно заизолировать.
  9. Поместить собранную схему в пластиковый корпус.
  10. Вспомнить о том, что на выводах элементов присутствует опасное напряжение.
  11. Выкрутить потенциометр на минимум и произвести пробное включение. Измерить напряжение мультиметром на выходе регулятора. Плавно поворачивая ручку потенциометра следить за изменением напряжения на выходе.
  12. Если результат устраивает, то можно подключать нагрузку к выходу регулятора. В противном случае необходимо произвести регулировки мощности.

Симисторный радиатор мощности

Регулировка мощности

За регулировку мощности отвечает потенциометр, через который заряжается конденсатор и разрядная цепь конденсатора. При неудовлетворительных параметрах выходной мощности следует подбирать номинал сопротивления в разрядной цепи и, при малом диапазоне регулировки мощности, номинал потенциометра.

принцип действия, применение, устройство и управление ими

Из статьи вы узнаете о том, что такое симистор, принцип работы этого прибора, а также особенности его применения. Но для начала стоит упомянуть о том, что симистор – это то же, что и тиристор (только симметричный). Следовательно, не обойтись в статье без описания принципа функционирования тиристоров и их особенностей. Без знания основ не получится спроектировать и построить даже простейшую схему управления.

Тиристоры

Тиристор является переключающим полупроводниковым прибором, который способен пропускать ток только в одном направлении. Его нередко называют вентилем и проводят аналогии между ним и управляемым диодом. У тиристоров имеется три вывода, причем один – это электрод управления. Это, если выразиться грубо, кнопка, при помощи которой происходит переключение элемента в проводящий режим. В статье будет рассмотрен частный случай тиристора – симистор — устройство и работа его в различных цепях.

Тиристор – это еще выпрямитель, выключатель и даже усилитель сигнала. Нередко его используют в качестве регулятора (но только в том случае, когда вся электросхема запитывается от источника переменного напряжения). У всех тиристоров имеются некоторые особенности, о которых нужно поговорить более подробно.

Свойства тиристоров

Среди огромного множества характеристик этого полупроводникового элемента можно выделить самые существенные:

  1. Тиристоры, подобно диодам, способны проводить электрический ток только в одном направлении. В этом случае они работают в схеме, как выпрямительный диод.
  2. Из отключенного во включенное состояние тиристор можно перевести, подав на управляющий электрод сигнал с определенной формой. Отсюда вывод – у тиристора как у выключателя имеется два состояния (причем оба устойчивые). Таким же образом может функционировать и симистор. Принцип работы ключа электронного типа на его основе достаточно прост. Но для того чтобы произвести возврат в исходное разомкнутое состояние, необходимо, чтобы выполнялись определенные условия.
  3. Ток сигнала управления, который необходим для перехода кристалла тиристора из запертого режима в открытый, намного меньше, нежели рабочий (буквально измеряется в миллиамперах). Это значит, что у тиристора есть свойства усилителя тока.
  4. Существует возможность точной регулировки среднего тока, протекающего через подключенную нагрузку, при условии, что нагрузка включена с тиристором последовательно. Точность регулировки напрямую зависит от того, какая длительность сигнала на электроде управления. В этом случае тиристор выступает в качестве регулятора мощности.

Тиристор и его структура

Тиристор – это полупроводниковый элемент, который имеет функции управления. Кристалл состоит из четырех слоев р и п типа, которые чередуются. Так же точно построен и симистор. Принцип работы, применение, структура этого элемента и ограничения в использовании рассмотрены детально в статье.

Описанную структуру еще называют четырехслойной. Крайнюю область р-структуры с подключенным к ней положительной полярности выводом источника питания, называют анодом. Следовательно, вторая область п (тоже крайняя) – это катод. К ней приложено отрицательное напряжение источника питания.

Какими свойствами обладает тиристор

Если провести полный анализ структуры тиристора, то можно найти в ней три перехода (электронно-дырочных). Следовательно, можно составить эквивалентную схему на полупроводниковых транзисторах (полярных, биполярных, полевых) и диодах, которая позволит понять, как ведет себя тиристор при отключении питания электрода управления.

В том случае, когда относительно катода анод положительный, диод закрывается, и, следовательно, тиристор тоже ведет себя аналогично. В случае смены полярности оба диода смещаются, тиристор также запирается. Аналогичным образом функционирует и симистор.

Принцип работы на пальцах, конечно, объяснить не очень просто, но мы попробуем сделать это далее.

описание принципа работы и сборки устройства

Симисторами называют полупроводниковый прибор, на котором присутствуют 5 р-н переходов. Важнейшее его качество, это способность пропускать сигнал, как в прямом, так и обратном направлениях.

Краткое содержимое статьи:

Принцип работы симисторного регулятора мощности

Их применяют только в небольших электроприборах из-за того, что они крайне чувствительны к электромагнитным волнам, выделяют много тепла и неспособны работать на высоких частотах переменного тока. Их не используют в крупных промышленных агрегатах.

Прибор прост в изготовлении, не требует больших денежных затрат и обладает долгим сроком эксплуатации. Его можно легко применять в сферах и приборах, где описанные выше недостатки не играют большой роли.

Многие не знают, для чего нужны симисторные регуляторы мощности. Но они присутствуют в большинстве домашних бытовых приборах, таких как: фен, пылесос, электроинструменты и нагревательные приборы.

Регулятор мощности позволяет пропускать электрический сигнал, с частотой заданной пользователем.

Инструкция, как сделать симисторный регулятор своими руками

На сегодняшний день не так легко найти подходящий регулятор мощности, несмотря на невысокую цену крайне проблематично достать полностью подходящий по параметрам симистор.


Поэтому не остается другого выбора, кроме как сделать его самостоятельно. Для этого нужно рассмотреть несколько простых основных схем регуляторов, чем они отличаются друг от друга и разберем элементарную базу каждой.

Устройство и схемы простых регуляторов

Простейшая схема, которая может работать под любой нагрузкой. Комплектующие простейшие электронные компоненты, а управление осуществляется по фазово-импульсному принципу.

Основные элементы схемы:

  • симистор VD4 10 А, 400 В
  • динистор VD3 32 В
  • потенциометр R2

По R2 и R3 протекает ток, который накапливает заряд на конденсаторе С1. После того, как на заряд достигнет значения 32 В, откроется динистор VD3 и конденсатор С1 начнет разряжаться через R4 и VD3. Энергия пойдет на симистор VD4, он откроется и даст току протекать через нагрузку.

Регулировка мощности происходит при помощи симистора VD3 и нагрузки R2. Значения воздействия симистора постоянное и изменяться не может, регулировка мощности осуществляется путем изменения сопротивления нагрузки R2.

Элементы VD1, VD2, R1 являются не обязательными в данной схеме, но они позволяют обеспечивать плавность и точность изменения выходной мощности.

Для того, чтобы правильно рассчитать симисторный регулятор мощности нужно отталкиваться от используемой нагрузки, симистор подбирается по соотношению 1А=200 Вт.

Какие элементы понадобятся

  • Динистор DB3;
  • Симистор ТС106-10-4, ВТ136-600, 4-12А.
  • Диоды VD1, VD2 1N4007;
  • Сопротивления R1100 кОм, R3 1 кОм, R4 270 Ом, R5 1,6 кОм, потенциометр R2 100 кОм;
  • Конденсатор С1 0,47 мкФ (рабочее напряжение от 250 В).

Данная схема наиболее распространена и универсальна, существует множество ее вариаций.

Сборка

Используя данный план по сборке, вы сэкономите свое время. Вам нужны точные параметры устройства, для которого будет изготавливаться прибор.


Нужно знать:

Обратите внимание!
  • Количество фаз. Их может быть одна или три;
  • Наличие необходимости точной регулировки выходной мощности;
  • Входное напряжение и ток потребляемый нагрузкой. Значения должны быть в Вольтах и Амперах.

Необходимо выбрать тип устройства, либо аналоговый либо цифровой. Подобрать комплектующие по мощности прибора. В сети можно найти различный софт, который поможет с расчетами.

Выполнить расчет тепловыделений. Это делается довольно просто: Падение напряжения на симисторе умножается на номинальный ток. Необходимые данные должны быть указаны в характеристике симистора.

Приобрести необходимые элементы, печатную плату и радиатор. Произвести разводку дорожек на печатной плате при помощи растворителя. Нельзя забывать о креплении симистора и радиатора. Припаять все элементы так, как показано на схеме. Уделить особое внимание полярности подключения диодов и симистора.

Осуществить проверку готового прибора при помощи мультиметра в режиме сопротивления. Характеристика должна быть идентична изначальному проекту.

Установить симистор почти вплотную к радиатору, но нужно обеспечить тепловую изоляцию между ними. Винт, которым будет произведено закрепления нужно качественно заизолировать. Изготовить пластиковый корпус для прибора.

Обратите внимание!

Поместить полученную установку в защитный корпус. Поставить значения потенциометра на минимальные значения и осуществить пробный запуск. Мультиметром измеряем напряжения на выходе, при этом плавно поворачиваем ручку регулятора;


Если полученный результат не соответствует требуемым производим регулировку мощности. Если прибор работает как надо, можно подключать нагрузку к выходу регулятора.

Заключение

Правильно изготовленный симисторный регулятор мощности будет надежно служить и потребует небольших денежных вложений. Долговечность порадует самых скептически настроенных специалистов. Можно ознакомиться с фото самодельных симисторных регуляторов мощности в сети и убедиться в целесообразности изготовления данного прибора.

Фото симисторного регулятора мощности

Обратите внимание!

Также рекомендуем просмотреть:

Помогите проекту, поделитесь в соцсетях 😉  

Как проверить TRIAC с помощью мультиметра

Как проверить TRIAC цифровым мультиметром ИЛИ омметром?

В этом посте мы обсудим, как тестировать симистор. Введение в симистор:

  1. TRIAC = TRI ode для A lternating C urrent.
  2. TRIAC — это 5-слойный, 3-контактный силовой полупроводниковый прибор.
  3. Он имеет пару тиристоров с регулируемой фазой, подключенных обратно параллельно на одной микросхеме.
  4. Это двунаправленное устройство, что означает, что оно может проводить ток в обоих направлениях.

Пошаговая процедура проверки симистора:

  1. Перевести цифровой мультиметр в режим омметра.
  2. С помощью переходного диода определите, какой вывод омметра положительный, а какой отрицательный. Омметр покажет целостность цепи только тогда, когда положительный провод подсоединен к аноду, а отрицательный вывод подсоединен к катоду.
  3. Подключите положительный провод омметра к MT2, а отрицательный провод к MT1. Омметр должен показать отсутствие обрыва цепи через симистор.
  4. С помощью перемычки подключите затвор симистора к MT2. Мультиметр должен показать , прямой диодный переход .
  5. Подсоедините симистор так, чтобы MT1 был подключен к положительному проводу омметра, а MT2 — к отрицательному выводу. Мультиметр должен показать , отсутствие непрерывности через симистор.
  6. С помощью перемычки снова подключите затвор к MT2. Омметр должен показать , прямой диодный переход .
Engineering Tutorial Ключевые слова:
  • как проверить симистор
  • испытать симистор
  • испытать симистор с помощью мультиметра
  • испытать симистор
  • как испытать симистор с помощью цифрового мультиметра
  • как проверить симистор
  • как испытать симистор с помощью мультиметра
  • как проверить симистор
  • испытать симистор омметром
  • как проверить симистор с помощью измерителя

определение triac и синонимов triac (английский)

Условное обозначение TRIAC

TRIAC , от Triode for Alternating Current , представляет собой обобщенное торговое название электронного компонента, который может проводить ток в любом направлении при срабатывании (включении), и формально называется двунаправленным триодным тиристором или двухсторонним . Тиристор триодный .

TRIAC относятся к семейству тиристоров и тесно связаны с кремниевыми выпрямителями (SCR). Однако, в отличие от тиристоров, которые являются однонаправленными устройствами (т.е. могут проводить ток только в одном направлении), тиристоры являются двунаправленными, поэтому ток может течь через них в любом направлении. Еще одно отличие от SCR заключается в том, что TRIAC могут запускаться либо положительным, либо отрицательным током, приложенным к его электроду затвора , тогда как SCR могут запускаться только токами, идущими в затвор.Чтобы создать ток срабатывания, к затвору должно быть приложено положительное или отрицательное напряжение относительно клеммы A1 (также известной как MT1).

После срабатывания устройство продолжает работать до тех пор, пока ток не упадет ниже определенного порога, называемого током удержания.

Двунаправленность делает TRIAC очень удобными переключателями для цепей переменного тока, а также позволяет им управлять очень большими потоками мощности с помощью токов затвора миллиамперного масштаба. Кроме того, применение триггерного импульса под контролируемым фазовым углом в цикле переменного тока позволяет контролировать процентную долю тока, протекающего через симистор-интегратор к нагрузке (фазовое управление), что обычно используется, например, для управления скоростью маломощные асинхронные двигатели, в диммирующих лампах и в управляющих резисторах переменного тока.

Физика устройства

Рисунок 1: Режимы срабатывания.

Рисунок 2: Конструкция полупроводника TRIAC.

Чтобы объяснить, как работают TRIAC, нужно индивидуально проанализировать запуск в каждом из четырех квадрантов. Четыре квадранта показаны на рисунке 1 в соответствии с напряжением на затворе и клеммах A2 по отношению к клемме A1.Клеммы A1 и A2 иногда обозначаются как MT1 и MT2 соответственно. [1]

Относительная чувствительность зависит от физической структуры конкретного симистора, но, как правило, квадрант I является наиболее чувствительным (требуется наименьший ток затвора), а квадрант IV наименее чувствителен (требуется наибольший ток затвора). [ требуется уточнение Почему Q-IV наименее чувствителен? См. Обсуждение ]

В квадрантах 1 и 2, A2 положительный, и ток течет от A2 к A1 через слои P, N, P и N.Область N, прикрепленная к A2, не участвует существенно. В квадрантах 3 и 4 A2 отрицательный, и ток течет от A1 к A2, а также через слои P, N, P и N. Область N, прикрепленная к A2, активна, но область N, прикрепленная к A1, участвует только в начальном запуске, а не в потоке объемного тока.

В большинстве приложений ток затвора исходит от A2, поэтому квадранты 1 и 3 являются единственными рабочими режимами.

Срабатывание в квадранте I

Рисунок 3: Работа в квадранте I

Рисунок 4: Эквивалентная электрическая схема для симистора в режиме работы Q-I.

Работа в квадранте I происходит, когда вентиль и A2 / MT2 положительны по отношению к A1 / MT1. Рисунок 1

Точный механизм показан на рисунке 3. Ток затвора включает эквивалентный NPN-транзистор, который, в свою очередь, потребляет ток от базы эквивалентного PNP-транзистора, включая его. Часть тока затвора (пунктирная линия) теряется через омический путь через p-кремний, протекая непосредственно в MT1, не проходя через базу транзистора NPN.В этом случае введение дырок в p-кремний заставляет уложенные n, p и n слои под MT1 вести себя как NPN-транзистор, который включается из-за наличия тока в его базе. Это, в свою очередь, заставляет слои p, n и p на MT2 вести себя как PNP-транзистор, который включается, потому что его база n-типа становится смещенной в прямом направлении вместе с эмиттером (MT2). Таким образом, схема запуска такая же, как и в SCR, а эквивалентная схема показана на рисунке 4.

Однако структура отличается от SCR.В частности, в TRIAC всегда есть небольшой ток, протекающий непосредственно от затвора к MT1 через p-кремний, не проходя через p-n переход между базой и эмиттером эквивалентного NPN-транзистора. Этот ток обозначен на Рисунке 3 пунктирной красной линией, и это причина, по которой TRIAC требует больше тока затвора для включения, чем тиристор с сопоставимым номиналом. [2]

Как правило, этот квадрант является наиболее чувствительным из четырех; это потому, что это единственный квадрант, в котором ток затвора вводится непосредственно в базу одного из транзисторов основного устройства. [ требуется уточнение Почему Q-I самый чувствительный? См. Обсуждение ]

Срабатывание в квадранте II

Рис. 5: Работа в квадранте II.

Работа в квадранте II происходит, когда вентиль отрицательный, а A2 / MT2 положительный по отношению к A1 / MT1. Рисунок 1

На рис. 5 дано графическое объяснение процесса запуска.Включение устройства трехкратное и начинается, когда ток от MT1 течет в затвор через p-n переход под затвором. Это включает структуру, состоящую из транзистора NPN и транзистора PNP, затвор которого используется в качестве катода (включение этой структуры обозначено цифрой «1» на рисунке). По мере увеличения тока в затворе потенциал левой стороны p-кремния под затвором повышается в сторону MT1, поскольку разность потенциалов между затвором и MT2 имеет тенденцию к снижению: это устанавливает ток между левой стороной и правой сторона p-кремния (обозначена цифрой 2 на рисунке), которая, в свою очередь, включает транзистор NPN под выводом MT1 и, как следствие, также транзистор pnp между MT2 и правой стороной верхнего кремния p-типа.Таким образом, в конечном итоге структура, через которую проходит большая часть тока, аналогична работе в квадранте I («3» на рисунке 5). [2]

Срабатывание в квадранте III

Рисунок 6: Работа в квадранте III.

Работа в квадранте III происходит, когда вентиль и A2 / MT2 отрицательны по отношению к MT1. Рисунок 1

Весь процесс показан на Рисунке 6.Здесь тоже есть несколько этапов. На первом этапе pn-переход между выводом MT1 и затвором становится смещенным в прямом направлении (этап 1). Поскольку прямое смещение подразумевает инжекцию неосновных носителей в два слоя, соединяющих переход, электроны инжектируются в p-слой под затвором. Некоторые из этих электронов не рекомбинируют и уходят в нижележащую n-область (шаг 2). Это, в свою очередь, снижает потенциал n-области, действующей как база pnp-транзистора, который включается (включение транзистора без прямого понижения потенциала базы называется удаленным управлением затвором ).Нижний p-слой работает как коллектор этого PNP-транзистора и имеет повышенное напряжение: на самом деле этот p-слой также действует как база NPN-транзистора, состоящего из трех последних слоев над выводом MT2, который в очередь, активируется. Таким образом, красная стрелка, обозначенная цифрой «3» на рисунке 6, показывает конечный путь прохождения тока. [2]

Срабатывание в квадранте IV

Рисунок 7: Работа в квадранте IV.

Работа в квадранте IV происходит, когда вентиль положительный, а A2 / MT2 отрицательный по отношению к MT1. Рисунок 1

Запуск в этом квадранте аналогичен запуску в квадранте III. В процессе используется дистанционное управление затвором и показано на рисунке 7. Поскольку ток течет из p-слоя под затвором в n-слой под MT1, неосновные носители в форме свободных электронов вводятся в p-область, а некоторые из них собираются нижележащим np-переходом и переходят в прилегающую n-область без рекомбинации.Как и в случае запуска в Квадранте III, это снижает потенциал n-слоя и включает PNP-транзистор, образованный n-слоем и двумя соседними p-слоями. Нижний p-слой работает как коллектор этого PNP-транзистора и имеет повышенное напряжение: на самом деле этот p-слой также действует как база NPN-транзистора, состоящего из трех последних слоев над выводом MT2, который в очередь, активируется. Таким образом, красная стрелка, обозначенная цифрой «3» на рисунке 6, показывает конечный путь прохождения тока. [2]

Как правило, этот квадрант наименее чувствителен из четырех. [требуется уточнение Почему Q-IV наименее чувствителен? См. Обсуждение ] Кроме того, некоторые модели TRIAC не могут запускаться в этом квадранте, а только в трех других.

Типичные проблемы

Есть некоторые недостатки, которые следует знать при использовании TRIAC в схеме. В этом разделе кратко излагаются некоторые из них.

Пороговый ток затвора, ток фиксации и ток удержания

TRIAC начинает проводить, когда ток, текущий в его затвор или из него, достаточен для включения соответствующих переходов в квадранте работы.Минимальный ток, способный сделать это, называется пороговым током затвора и обычно обозначается I GT . В типичном TRIAC пороговый ток затвора обычно составляет несколько миллиампер, но следует также учитывать, что:

  • I GT зависит от температуры: действительно, чем выше температура, тем выше обратные токи в блокированных переходах. Это подразумевает наличие большего количества свободных носителей в области затвора, что снижает необходимый ток затвора.
  • I GT зависит от квадранта работы, поскольку другой квадрант подразумевает другой способ запуска, как объяснено в разделе «Физика устройства». Как правило, первый квадрант является наиболее чувствительным (т.е. требует наименьшего тока для включения), тогда как четвертый квадрант наименее чувствителен.
  • При включении из выключенного состояния I GT зависит от напряжения, приложенного к двум основным клеммам MT1 и MT2. Более высокое напряжение между МТ1 и МТ2 вызывает большие обратные токи в заблокированных переходах, требуя меньшего тока затвора, как при работе при высоких температурах.Обычно в технических данных I GT приводится для указанного напряжения между МТ1 и МТ2.

Когда ток затвора прекращается, если ток, протекающий между двумя основными выводами, больше, чем так называемый ток фиксации , устройство продолжает проводить, иначе устройство может выключиться. Ток фиксации — это минимум, который может восполнить недостающий ток затвора, чтобы удерживать внутреннюю структуру устройства в фиксации. Значение этого параметра варьируется в зависимости от:

  • Импульс тока затвора (амплитуда, форма и ширина)
  • температура
  • Схема управления (резисторы или конденсаторы между затвором и MT1 увеличивают ток фиксации, потому что они отбирают некоторый ток от затвора, прежде чем он сможет помочь полному включению устройства)
  • Квадрант работы

В частности, если ширина импульса тока затвора достаточно велика (обычно несколько десятков микросекунд), TRIAC завершает процесс запуска, когда сигнал затвора прекращается и ток фиксации достигает минимального уровня, называемого удерживающим током .Ток удержания — это минимально необходимый ток, протекающий между двумя основными клеммами, который сохраняет устройство включенным после того, как оно достигнет коммутации в каждой части его внутренней структуры.

В технических данных ток фиксации обозначен как I L , а ток удержания обозначен как I H . Обычно они порядка нескольких миллиампер.

Статический дв / дт

A high d v / d t между A2 / MT2 и A1 / MT1 может включать TRIAC, когда он выключен.Типичные значения критического статического напряжения d v / d t находятся в десятках вольт в микросекунду.

Включение происходит из-за паразитной емкостной связи вывода затвора с выводом A2 / MT2, что позволяет токам течь в затвор в ответ на большую скорость изменения напряжения на A2 / MT2. Один из способов справиться с этим ограничением — разработать подходящую демпферную сеть RC или RCL. во многих случаях этого достаточно для понижения импеданса затвора в сторону A1 / MT1. При установке резистора или небольшого конденсатора (или обоих параллельно) между этими двумя выводами емкостной ток, генерируемый во время переходного процесса, вытекает из устройства, не активируя его.Необходимо внимательно прочитать инструкции по применению, предоставленные производителем, и протестировать конкретную модель устройства для проектирования правильной сети. Типичные значения для конденсаторов и резисторов между затвором и A1 / MT1 могут составлять до 100 нФ и от 10 Ом до 1 кОм. [3] . Обычные TRIAC, за исключением маломощных типов, которые продаются как чувствительный вентиль [4] , уже имеют такой встроенный резистор для защиты от ложного срабатывания dv / dt. Следует отметить, что это замаскирует предполагаемое поведение затвора диодного типа при тестировании TRIAC с помощью мультиметра.

В таблицах данных статический d v / d t обычно обозначается как и, как упоминалось ранее, относится к тенденции TRIAC включать из выключенного состояния после большой скорости нарастания напряжения. даже без подачи тока на ворота.

Критический di / dt

Высокая скорость нарастания тока, протекающего между A1 / MT1 и A2 / MT2 (в любом направлении) при включении устройства может повредить или разрушить TRIAC, даже если длительность импульса очень короткая.Причина в том, что во время коммутации рассеиваемая мощность неравномерно распределяется по устройству. При включении устройство начинает проводить ток до того, как проводимость прекращается и распространяется по всему соединению. Обычно устройство начинает проводить ток, наложенный внешней схемой, через несколько наносекунд или микросекунд, но полное включение всего перехода занимает гораздо больше времени, поэтому слишком быстрое повышение тока может вызвать локальные горячие точки, которые могут необратимо повредить симистор. .

В технических описаниях этот параметр обычно обозначается как и обычно составляет порядка десятков ампер на микросекунду. [1]

Коммутирующие dv / dt и di / dt

Коммутирующий номинал d v / d t применяется, когда TRIAC проводил и пытается отключиться с частично реактивной нагрузкой, такой как индуктор. Ток и напряжение не в фазе, поэтому, когда ток уменьшается ниже удерживаемого значения, симистор пытается выключиться, но из-за фазового сдвига между током и напряжением между двумя основными клеммами происходит резкий скачок напряжения, который снова включает устройство.

В технических описаниях этот параметр обычно обозначается как и обычно имеет порядок до нескольких вольт на микросекунду.

Причина, по которой коммутируемый d v / d t меньше статического d v / d t , заключается в том, что незадолго до того, как устройство попытается выключиться, в его внутренние слои в результате предыдущей проводки. Когда TRIAC начинает отключаться, эти заряды изменяют внутренний потенциал области около затвора и A1 / MT1, поэтому для емкостного тока из-за d v / d t легче снова включить устройство .

Другой важный фактор при переключении из включенного состояния в выключенное — это d i / d t тока от A1 / MT1 к A2 / MT2. Это похоже на восстановление в штатных диодах: чем выше d i / d t , тем больше обратный ток. Поскольку в TRIAC есть паразитные сопротивления, высокий обратный ток в p-n переходах внутри него может спровоцировать падение напряжения между областью затвора и областью A1 / MT1, что может привести к тому, что TRIAC останется включенным.

В таблице данных коммутирующий d i / d t обычно обозначается как и обычно составляет порядка нескольких ампер в микросекунду.

Коммутирующий d v / d t очень важен, когда TRIAC используется для управления нагрузкой с фазовым сдвигом между током и напряжением, такой как индуктивная нагрузка. Предположим, кто-то хочет выключить катушку индуктивности: когда ток достигает нуля, если на затвор не подается питание, TRIAC пытается выключиться, но это вызывает скачок напряжения на нем из-за вышеупомянутого фазового сдвига.Если коммутируемый номинал d v / d t превышен, устройство не выключится.

Приложение

ТРИАК малой мощности используются во многих приложениях, таких как диммеры, регуляторы скорости для электрических вентиляторов и других электродвигателей, а также в современных компьютеризированных схемах управления многих малых и крупных бытовых приборов.

Однако при использовании с индуктивными нагрузками, такими как электрические вентиляторы, необходимо следить за тем, чтобы TRIAC корректно отключался в конце каждого полупериода подачи питания переменного тока.Действительно, TRIAC могут быть очень чувствительны к высоким значениям dv / dt между A1 / MT1 и A2 / MT2, поэтому фазовый сдвиг между током и напряжением (как в случае индуктивной нагрузки) приводит к внезапному скачку напряжения, который может сделать устройство включается нежелательным образом. [2]

Нежелательных включений можно избежать, используя демпферную цепь (обычно типа RC или RCL) между A1 / MT1 и A2 / MT2. Демпферные цепи также используются для предотвращения преждевременного срабатывания, вызванного, например, скачками напряжения в сети.

Поскольку включение вызывается внутренними емкостными токами, протекающими в затвор как следствие высокого напряжения d v / d t , резистор затвора или конденсатор (или оба параллельно) могут быть подключены между затвором и A1 / MT1 для обеспечения низкоомного пути к A1 / MT1 и дальнейшего предотвращения ложного срабатывания. Однако это увеличивает требуемый ток запуска или увеличивает задержку из-за зарядки конденсатора. С другой стороны, резистор между затвором и A1 / MT1 помогает отводить токи утечки из устройства, тем самым улучшая производительность TRIAC при высокой температуре, где максимально допустимое значение d v / d t ниже.Для этой цели обычно подходят резисторы менее 1 кОм и конденсаторы 100 нФ, хотя точная настройка должна выполняться на конкретной модели устройства. [3]

Для более мощных и требовательных нагрузок можно использовать два тиристора, включенных в обратную параллель, вместо одного тиристора. Поскольку к каждому тиристору будет приложен полный полупериод напряжения обратной полярности, отключение тиристоров гарантировано независимо от характера нагрузки. Однако из-за отдельных вентилей надлежащий запуск SCR более сложен, чем запуск TRIAC.

В дополнение к коммутации, TRIAC может также не включаться надежно с нерезистивными нагрузками, если фазовый сдвиг тока препятствует достижению тока удержания во время запуска. Чтобы преодолеть это, можно использовать последовательности импульсов, чтобы неоднократно пытаться запустить TRIAC, пока он, наконец, не включится. Преимущество состоит в том, что ток затвора не нужно поддерживать по всему углу проводимости, что может быть выгодно, когда доступны только ограниченные возможности возбуждения.

Пример данных

Трехквадрантный TRIAC

TRIAC, который может работать только в квадрантах с I по III и не может срабатывать в квадранте IV, имеет улучшенные характеристики отключения (коммутации).

Эти устройства созданы специально для улучшенной коммутации при управлении высокоиндуктивной нагрузкой, такой как двигатель или соленоид, в приложении, где у обычных симисторов возникают проблемы из-за высоких углов напряжения / тока; как только они отключаются из-за падения тока до нуля, они испытывают скачок напряжения, который может снова включить их. Коммутация большинства симисторов с индуктивными нагрузками может быть улучшена за счет использования демпфирующей сети, но эти компоненты спроектированы таким образом, чтобы часто можно было обойтись без такой схемы.Это улучшение достигается за счет возможности запуска устройства в 4-м квадранте (отрицательное напряжение и положительный ток затвора). Однако обычно это не проблема, потому что этот режим триггера используется редко, так как даже обычные симисторы в этом случае наименее чувствительны.

Первые продавались Thomson Semiconductors (ныне ST Microelectronics) под названием Alternistor , а сейчас продаются дополнительные модели под торговой маркой «SNUBBERLESS».

Littelfuse также использует название «Альтернристор». «STMicroelectronics T3035H, T3050H Высокотемпературные симисторы 30 A без амортизатора». http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/CD00263568.pdf. st.com 100922

Внешние ссылки

Коммутатор на базе TRIAC

| Hackaday.io

Изображение проекта — это схема специй. Файл spice также загружается в раздел файлов вместе с требуемой моделью TRIAC.

Концепция: Схема переключается между основным (V1, электросеть) и альтернативным (V2) источниками питания.Нагрузка L + получает питание от альтернативного источника всякий раз, когда она находится под напряжением. Оба источника переменного тока должны быть подключены к общей (заземленной) обратной линии.

Работа: идентичных отрицательных емкостных источника используются как для первичной, так и для альтернативной цепей управления. Питание первичной обмотки состоит из D5, C2, D3, C1 и R10. Полуволновое выпрямление и фильтрация выполняются D3 и C2. D5 — стабилитрон для регулирования напряжения питания. C1 — делитель напряжения, а R10 обеспечивает ограничение тока.

Как первичный, так и альтернативный триак запускаются во втором и третьем квадрантах.

Первичный источник: , когда альтернативный выключен, первичный источник питания смещает Q1, чтобы потреблять ток от затвора U1, и нагрузка питается от первичного.

Альтернативный источник: , когда питание подается на альтернативный, оптопара U2 немедленно активируется и заряжает затвор M4, который выключает Q1. TRIAC U1 отключится при следующем переходе через ноль тока.Постоянная времени C16 и R16 вставляет задержку включения / выключения. Примечание: U2 требуется, поскольку p +/- и a +/- работают с разными потенциалами.

Одновременно C15 начинает зарядку, а Q3 включается, когда его база смещена вперед. U4 подключается. Постоянная времени R7 / R1 / C15 должна быть значительно больше, чем R16 / C16, чтобы предотвратить одновременное включение обоих TRIAC.

Когда альтернативное питание пропадает, R16 / C16 определяют задержку перед тем, как основной источник возобновит питание нагрузки.

Вывод: первоначальная конструкция предназначена для переключения нагрузок менее 100 Вт, поэтому радиаторы не требуются. Демпферы не включены в модель Spice, но будут использоваться в построенном прототипе, хотя их целью является переключение емкостных (SMPS) или легких индуктивных нагрузок.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *