Опрессовка рвд: Инструкция по изготовлению и обжиму РВД

Содержание

Инструкция по изготовлению и обжиму РВД

Производство рукавов высокого давления как и арматуры к ним подчинено международным  стандартам, например, SAEJ1273 и DIN2066.2002-10. Данные стандарты дают общие рекомендации о конструкции фитингов и утверждают присоединительные размеры фитингов, определяют возможные варианты сопряжений. В своем большинстве шланги, фитинги и обжимные муфты  разных производителей не являются взаимозаменяемыми. Они имеют практически одинаковую конструкцию и размеры, но максимальное качество готового РВД производители гарантируют только при использовании комплектующих одной марки и соответствующей серии. В некоторых случаях производители допускают перекрестное использование арматуры других компаний после проведения соответствующих тестов.

Следующие рекомендации помогут Вам произвести правильный обжим РВД.

Подбор шланга для изготовления РВД

Основные определения, типы и маркировка рукавов высокого давления, а также методы подбора гидравлических шлангов Вы можете найти на странице Правильный выбор и установка рукавов высокого давления

Выбор фитингов для РВД

На выбор фитингов влияют порты, к которым будет подключаться шланг, и страна происхождения. Несмотря на многочисленные попытки стандартизации и рационализации типов соединений, все еще существует множество систем соединений благодаря национальным и международным стандартам, и даже в силу индивидуальных требований конкретных клиентов или сегментов рынка. Обычно для гидравлических систем используются пять основных систем фитингов, хотя полный их список намного длиннее.

Основные системы сопряжений:

  • Германия – (DIN)
  • Великобритания – (BSP)
  • Франция – (GAS и метрическая)
  • Северная Америка – (SAE)
  • Япония – (JIS)

Чтобы обеспечить долгую службу и работу без утечек, при проектировании необходимо учитывать модель фитинга и тип уплотнения. Обычно фитинги идентифицируются по внешнему виду, поверхности/типу уплотнения или по типу/форме резьбы. Руководство по идентификации фитингов, которое поможет Вам также идентифицировать тип резьбы и уплотнения можно найти на нашем сайте Идентификация типа фитинга.

Настоятельно рекомендуется использовать фитинги и пресс-втулки одного производителя и типа, соответствующего данному шлангу. Информацию о применяемых типах шлангов и соответствующей им арматуре можно найти в каталогах производителей шлангов и арматуры. Кроме того у любого производителя арматуры можно получить Таблицы обжима РВД. В таблицах указано, какие пресс-втулки и фитинги необходимо применять для той или иной серии шланга, а также рекомендуемый размер обжима пресс-втулки, т.е. наружный диаметр втулки после опрессовки. Таблицы обжима некоторых производителей вы можете найти на нашем сайте или запросить в офисе компании Дизель-сервис Петрозаводск.

Определение необходимой длины отреза шланга

Определение длины шланга в сборе производится в зависимости от типа установленных фитингов:

Для вычисления необходимой длины отреза шланга производим замер длины «С» фитингов. «С» — это размер от точки измерения длины рукава в сборе до упорного буртика на фитинге.

Также при расчете длины отреза шланга необходимо учитывать величину «L3» — удлинение готового РВД за счет удлинения пресс-втулок в процессе обжима. Данная величина эмпирическая и определяется опытным путем. Обычно общее удлинение РВД в сборе для 1- и 2-оплеточных шлангов лежит в пределах 0,5Dу – 1,5Dу, а для 3- и 4-оплеточных шлангов 0,3Dу – 1Dу, где Dу – условный проход шланга.

Таким образом, длина отреза шланга рассчитывается по формуле:

Lh = L-C1-C2-L3, где:

  • Lh – длина отреза шланга,
  • L – длина РВД в сборе по каталогу,
  • С1 – длина плеча фитинга 1,
  • С2 – длина плеча фитинга 2,
  • L3 – удлинение, которое образуется при обжиме втулок.

Для производственных линий по изготовлению рукавов высокого давления стандартом DIN2066.2002-10 установлены следующие предельные отклонения длин РВД в сборе:

Длина шланга в сборе, мм

Отклонение длины в мм для размеров РВД

До 25 мм

Свыше 25 мм

До 630

+ 7
— 3

+ 12
— 4

Свыше 630 до 1250

+ 12
— 6

+ 20
— 6

Свыше 1250 до 2500

+ 20
— 6

+ 25
— 6

Свыше 2500 до 8000

+ 1,5%
— 0,5%

Свыше 8000

+ 3%
— 1%

Отрезание необходимой длины шланга

Любые шланги обычно хранятся в бухтах. Для хранения и разматывания гидравлических и пневматических рукавов удобно применять стойки с вращающимися корзинами типа CR-6 CR-7 D-Hydro OY. Такие стойки удобны тем, что в непосредственной близости от мастера и от отрезного станка могут быть расположены сразу несколько наиболее распространенных шлангов. Корзины располагаются друг над другом, что способствует максимальной экономии рабочего пространства. www.dhydro.com.ru

Для отрезания гидравлических шлангов используются специальные отрезные станки типа CM-70 CM-100 с ротационным лезвием (гладким или зубчатым).

Перед тем как отрезать необходимую длину шланга убедитесь, что шланг в начале бухты имеет ровный срез, металлические оплетки не поржавели и внутренняя трубка не имеет повреждений.

! Важно: При отрезании шланга необходимо контролировать, чтобы срез был строго перпендикулярен оси шланга, при этом достигается максимальная площадь контакта пресс-втулка – шланг.

При отрезании происходит местный нагрев металлических оплеток и внутренней трубки шланга с оседанием резиновый пыли на стенках внутренней трубки. Всю грязь необходимо удалить. При работе необходимо контролировать, чтобы лезвие отрезного станка было острым, притупленное лезвие дает больший местный нагрев.

! Нельзя применять абразивные круги для отрезания РВД, прежде всего это связано с большим количеством абразивных частиц, попадающих в шланг.

Зачистка наружного и внутреннего слоя резины на шланге

Обычно 3-х, 4-х, 6-и навивочные шланги требуют зачистки наружного, а иногда и внутреннего слоя резины, в зависимости от применяемых типов фитингов. Необходимость зачистки указывается в каталогах на продукцию, а также в таблицах обжима. Также для навивочных шлангов существуют так называемые «No-Skive» системы, когда втулка имеет специальную конфигурацию, не требующую предварительной зачистки РВД, например некоторые серии фитингов Tieffe и Parker.

При необходимости производите зачистку наружного слоя шланга при помощи специального окорочного станка HS-50 с соответствующим рабочим органом. Длина зачистки наружного слоя указана в Таблицах обжима. Зачистка по глубине производится до металлических оплеток насколько это возможно без повреждения оплеток.

При установке фитингов с двойным замком типа Interlock аналогичным образом производится зачистка внутреннего слоя резины с использованием соответствующего рабочего органа для HS-50. Длина зачистки внутреннего слоя также указана в Таблицах обжима. Направление вращения ножа при зачистке спиральных (навивочных) РВД всегда должно совпадать с направлением навивки, в противном случае произойдет повреждение металлического корда. Не забывайте менять напраление вращения ножа при переходе от зачистки наружного слоя к зачистке внутреннего слоя.

! Важно. Аккуратно и постепенно производите регулировку ножей рабочих органов HS-50, чтобы не произошло «закусывание» шланга. Будьте особенно бдительны при зачистке РВД из Юго-Восточной Азии, они не отличаются стабильностью размеров, поэтому «закусывание» шланга может происходить при зачистке шлангов, нарезанных с одной бухты.

! Недопустимо использование абразивных и зубчатых инструментов для зачистки наружных и внутренних слоев РВД. После зачистки наружных и внутренних слоев необходимо обязательно очистить рукав от остатков резиновой стружки.

Нужно помнить, что неправильно выбранная длина зачистки может привести к преждевременному выходу РВД из строя:

  • если длина зачистки меньше рекомендуемой, то возможно вырывание фитинга из шланга вследствие уменьшенной площади контакта втулка-шланг;
  • если длина зачистки больше рекомендуемой, то происходит повреждение металлических оплеток вследствие действия окружающей среды.

Установка обжимных втулок на шланг

На шланги, не требующие зачистки (NO-Skive), пресс-втулка устанавливается до упорного буртика. На шланги, требующие зачистки (Skive), пресс-втулка устанавливается до замка так, чтобы оставался зазор равный по ширине замку фитинга. Если арматура и шланг правильно подобраны, и соответствуют заявленным стандартам, то сборка не требует чрезмерных усилий.

Некоторые рукава высокого давления, произведенные по ГОСТ, имеют больший наружный диаметр по сравнению с РВД стандарта DIN. Такие шланги не рекомендуется применять совместно со втулками DIN. В случаях крайней необходимости использования рукавов ГОСТ, необходимо произвести частичную зачистку наружнего слоя на глубину минимальную, но достаточную для установки втулки DIN.

Кроме того необходимо соответствующим образом скорректировать размер обжима РВД из таблицы. Для сочетаний шланг ГОСТ и втулка DIN желательно использовать метод контроля калибрами, т.к. метод контроля измерением даст большую погрешность.

Установка фитингов

При установке фитинга всегда контролируйте, чтобы замок пресс-втулки строго совпадал с пазом замка на фитинге.

Фитинги с пластиковым стопорным кольцом необходимо собирать аккуратно, чтобы не повредить кольцо. Поврежденное стопорное кольцо необходимо заменить и проконтролировать, чтобы после установки фитинга в шланг оно плотно прилегало к пресс-втулке, препятствуя ее перемещению до момента обжима шланга.

Для упрощения процесса установки фитингов хвостовую часть фитинга – ниппель можно смазывать мыльным раствором или специальным маслом, химически совместимым с материалом внутренней трубки шланга. Старайтесь использовать минимально необходимое количество смазки для сборки РВД.

При сборке РВД с фитингами Interlock необходимо также внимательно контролировать положение втулки на шланге и взаимное расположение замков на пресс-втулке и фитинге. Сборка некоторых РВД с фитингами Interlock вручную без использования пневмотолкателя может быть достаточно трудоемкой и есть риск установить фитинг не до конца. Чтобы избежать этого используйте простой прием:

  • установите втулку до конца без фитинга и отметьте положение ее края, поставив точку на поверхности шланга
  • установите фитинг и проконтролируйте, чтобы положение втулки на шланге не изменилось, замки втулки и фитинга полностью совпадали

При больших объемах производства рукавов высокого давления желательно использовать пневмотолкатель для установки фитингов, он увеличивает скорость сборки РВД и качество обжима, т.к. при сборке РВД воздействует на внутреннюю трубку шланга с минимальным, но достаточным усилием без ударных нагрузок.

Важно! Всегда контролируйте, чтобы втулка с фитингом были установлены на шланг до конца. При неполной установке уменьшается площадь контакта сопряжений втулка-шланг и фитинг-шланг, что может привести к вырыванию фитинга из шланга или прорыву рабочей жидкости между ниппелем фитинга — «ершиком» и внутренней трубкой шланга.

Если Вы используете арматуру азиатского происхождения, то проверяйте совместимы ли фитинг и втулка до установки их на шланг. Бывают ситуации, когда диаметр замка на фитинге больше диаметра отверстия замка на втулке. В этом случае придется вынимать установленный фитинг из шланга для его замены, а эта операция может быть затруднительной.

Нельзя использовать РВД, если после обжима замок фитинга и втулки не совпадают – это приведет к вырыванию фитинга из шланга в процессе его работы под нагрузкой и создаст опасность для окружающих. Такой шланг должен быть отбракован. www.dhydro.com.ru

Для многих рукавов высокого и низкого давления производителем техники предусматривается установка защиты на шланг, препятствующей его разрушению от внешних воздействий: абразивного трения, высокой температуры и огня, химических веществ и действия окружающей среды. В зависимости от назначения защита может быть выполнена в виде спиралей металлических или пластмассовых, силиконовых или тканевых чехлов. Здесь надо отметить, что спирали и силиконовые рукава устанавливаются на готовый РВД, а вот некоторые виды текстильной защиты необходимо устанавливать перед процессом обжима РВД, так как край защиты зажимается под пресс-втулку. При данном способе установки очень важно, чтобы край защиты заходил под втулку только до первого ободка на втулке. Нарушение этого правила снижает срок службы РВД. Для упрощения процесса сборки РВД удобнее устанавливать текстильную защиту на готовый РВД при помощи дополнительных обжимных колец из алюминия, которые устанавливаются поверх основной пресс-втулки.

Иногда производителем техники предусмотрена установка специальных шлангов с особыми свойствами, например серия РВД Parker Tough Cover и Super Tough абразивная стойкость их верхнего слоя в сотни раз может превышать стойкость обычных шлангов при одинаковом наружном диаметре. Замена таких рукавов на обычные РВД с внешней защитой не всегда возможна.

Определение углов установки фитингов

В случае, когда оба фитинга на рукаве высокого давления имеют угол искривления отличный от нуля, необходимо определить их взаимное расположение по отношению друг к другу. В соответствии с DIN2066.2002-10 угол между фитингами определяется следующим образом: Если дальний от Вас фитинг расположить изгибом строго вверх, то при повороте ближнего к Вам фитинга по часовой стрелке получится угол взаимного расположения фитингов, который и указывается в технических заданиях на изготовление РВД.

Необходимо помнить, что от правильности установки угла зависит срок службы РВД, т.к. отклонение угла установки приводит к возникновению дополнительных нагрузок на шланг – скручиванию, а навивочные шланги довольно плохо работают на скручивание. При сборке РВД также желательно, чтобы направление и плоскость рабочего изгиба РВД совпадали с естественным направлением и плоскостью изгиба шланга. Шланг хранится в бухтах и имеет естественный изгиб, а совпадение плоскостей и направлений рабочего и естественного изгибов способствует более долговечной работе РВД.www.dhydro.com.ru

Максимальное отклонение установки угла между фитингами не должно превышать ±5° в соответствии с DIN2066.2002-10

Выбор и установка обжимных кулачков

Выбираем и устанавливаем необходимые обжимные кулачки в станок в соответствии с инструкцией к обжимному оборудованию. Выбор комплекта кулачков производится исходя из необходимого размера обжима, который указан в таблицах обжима. Таблицы обжима можно получить у производителей или продавцов арматуры. Каждый производитель выпускает свои таблицы обжима, их схожесть условна, поэтому желательно использовать данные из таблиц именного того производителя, чью арматуру Вы используете.

Размер кулачка, его номер, указан на торце. После определения размера обжима выбирается ближайший номер кулачков меньше необходимого размера обжима. Например, размер обжима по таблице 23,7 мм, ближайший размер кулачков будет 22 (Yeong Long) или 23 (D-Hydro OY) в зависимости от производителя оборудования, тогда для получения заданного размера обжима на дисплее необходимо установить следующие значения: www.dhydro.com.ru

  • Yeong Long: 22 (номер кулачка) + 1,7 (значение на дисплее) = 23,7 мм
  • D-Hydro OY: 23 (номер кулачка) + 0,7 (значение на дисплее) = 23,7 мм

После установки комплекта кулачков и настройки размера обжима устанавливаем конец РВД с фитингом и втулкой в станок и производим обжим. При установке фитинга в кулачки необходимо контролировать, чтобы пресс-втулка была полностью покрыта кулачками и установлена глубже торца кулачков на несколько миллиметров. В противном случае при обжиме втулка удлиняется и на торце втулки образуется наплыв, при этом замок не полностью закрывается. Также в процессе установки нужно быть внимательным, чтобы не зажать гайку фитинга.

Отдельно необходимо отметить особенности обжима одночастных фитингов производства Parker и Manuli, это связано с тем, что у данных производителей втулка и фитинг представляют собой одно целое. Такие фитинги устанавливаются в кулачки так, чтобы линия на втулке совпадала с передним торцом обжимных кулачков. После правильного обжима на границе этой линии образуется наплыв как показано на рисунке.

Неправильный выбор размера обжимных кулачков может привести к раскалыванию втулки. Если размер установленных кулачков меньше чем это необходимо, то на поверхности пресс-втулки возникают большие продольные наплывы металла с высокой концентрацией напряжений, по которым втулка может расколоться в процессе дальнейшего обжима или уже в процессе эксплуатации. Раскалывание втулки в процессе эксплуатации приводит к вырыванию фитинга из шланга, потере масла и возможным травмам для окружающих. При правильном подборе кулачков продольные наплывы ровные и имеют малую высоту.

При неправильном подборе арматуры, размера обжима или некачественном шланге (арматуре) в процессе обжима может быть слышен хруст в шланге, который хорошо ощущается на ощупь. Наличие хруста свидетельствует о перерезании оплеток внутренними гранями втулки. В этом случае необходимо проверить качество комплектующих, особенно шланга и размеры обжима.

Такие РВД должны быть отбракованы оператором станка по косвенному признаку (хруст) еще на стадии обжима до выяснения причины брака.


Контроль правильности обжима измерением

После обжима измерьте диаметр втулки в двух плоскостях посредине ее длины так чтобы губки штангенциркуля или микрометра не касались наплывов на поверхности втулки. Диаметры втулки в ее начале, ближе к фитингу, середине или в конце могут незначительно отличаться, поэтому в качестве среднего значения диаметра принимают диаметр посредине длины втулки.

Предельные отклонения диаметра обжатой втулки от табличного +0….-0,2 мм. Если табличное значение не достигнуто, повторите обжим, уменьшая диаметр обжима с шагом 0,1 мм до достижения заданного значения.

После получения необходимого размера произведите операцию обжима второго фитинга и также произведите замер полученного диаметра. Возможно, потребуется дополнительная корректировка размера обжима. Далее можно обжимать серию РВД с выборочным контролем размеров втулок.

Не обжимайте повторно пресс-втулку по наплывам от первого обжима.

Правильный выбор размера обжима обеспечивает максимальную силу сцепления втулки и шланга, а также лучшее уплотнение между внутренней трубкой шланга и ниппелем фитинга. На рисунках видно, что в процессе обжима шланга происходит уменьшение внутреннего диаметра ниппеля на фитинге. Изменение внутреннего диаметра ниппеля в определенных пределах также является косвенным подтверждением правильности обжима.

При контроле правильности обжима методом изменения необходимо помнить, что у всех составных частей шланга и арматуры есть собственные допуски на каждый размер. В таблице представлены значения предельных отклонений параметров одного из итальянских производителей РВД и арматуры:www.dhydro.com.ru

ПараметрПредельные отклонения
Внутренняя трубка (наруж. диаметр)±0,2 мм
Металлическая оплетка (наруж. диаметр)±0,4 мм
Наружный слой резины (наруж. диаметр)±0,5 мм
Втулка (толщина стенки)±0,1 мм
Ниппель фитинга (наруж. диаметр)±0,1 мм
Диаметр обжима+0,0 -0,2 мм

Из таблицы понятно, что суммарный допуск для цепи размеров может быть больше предельных отклонений для табличных значений диаметра обжима, поэтому предпочтительнее пользоваться методом контроля с помощью проходных и непроходных калибров для проверки правильности обжима.

Контроль правильности обжима калибрами

Метод контроля основан на изменении внутреннего диаметра ниппеля в процессе обжима, что является косвенным доказательством достаточного усилия в сопряжении втулка-шланг-ниппель. Используйте калибры соответствующего типа в зависимости от типа фитинга мультиспиральные и Intrlock, в зависимости от типа РВД оплеточные и навивочные. Каждый производитель рекомендует использовать свои калибры, т.к. они могут отличаться по размерам. При этом все калибры имеют сходную конструкцию: рукоятку, проходную и непроходную части для контроля внутреннего диаметра ниппеля. Размеры калибров для контроля обжима РВД некоторых производителей можно найти на нашем сайте www.dhydro.com.ru.

После обжима РВД в соответствии с рекомендациями и достижении табличного размера обжима проверьте его правильность при помощи калибра. Вставьте «Непроходной» калибр в ниппель как показано на рисунке. Конец непроходной части калибра должен остановиться приблизительно на середине длины ниппеля, в таком случае необходимое сжатие достигнуто. Если непроходная часть калибра не задерживается, то произведите повторный обжим, уменьшая диаметр с шагом 0,1 мм до достижения необходимого размера.

Далее вставьте «Проходной» калибр в ниппель, он должен без усилий входить в ниппель до конца. Это свидетельствует, что размер обжима оптимален и ниппель фитинга не «пережат». Далее можно продолжать изготавливать серию РВД с выборочным контролем необходимой частоты.

Если «Проходной» калибр задерживается внутри ниппеля, то это свидетельствует, что фитинг «пережат». В таком случае сильно уменьшается внутренний диаметр ниппеля, что вызывает перепад давления в этой области, а также изменение расхода рабочей жидкости (дросселирование), а это может неблагоприятно сказаться на работе исполнительных механизмов.



Если один из компонентов: фитинг, втулка, шланг изменен (другая партия или другой производитель), то необходимо обязательно повторно проверить правильность обжима измерением и «проходным» и «непроходным» калибрами.

Необходимо отметить, что метод контроля калибрами успешно можно применять в основном при использовании фитингов европейского производства. Это связано с тем, что многие азиатские производители фитингов не регламентируют предельные отклонения на внутренний диаметр ниппеля или намеренно делают слишком большую толщину стенки ниппеля. Таким образом, большинство европейских калибров просто не влезают в отверстие ниппеля азиатских фитингов.

Испытание РВД

Испытание готовых РВД под давлением может быть обусловлено требованиями заказчика с целью проверки качества компонентов и соответствия РВД заявленным рабочим характеристикам.

Испытания производятся в соответствии со стандартом ISO 1402:2009 «Рукава рукава в сборе резиновые и пластмассовые. Гидравлические испытания», а также ISO 7751 1991/2011. Проверочное давление при испытаниях должно в два раза превышать максимальное рабочее давление, указанное на шланге. Испытания проводятся на специально оборудованных стендах с защитными экранами и системой контроля давления.

Необходимо помнить, что на шлангах указано как рабочее давление, так и разрывное. При подборе РВД по давлению необходимо руководствоваться только рабочим давлением. Разрывное давление является справочной величиной. Испытания разрывным давлением являются разрушающими и использовать РВД после таких испытаний нельзя.

Очистка внутренней трубки РВД

В процессе отрезания шланга, а также после установки фитинга с использованием смазки, внутри шланга могут оставаться частицы резиновой и металлической пыли, стружки и смазки. Данное явление неблагоприятно сказывается на работе гидравлических компонентов и может вызвать их преждевременный выход из строя.

Для очистки готовых РВД используются специальные пыжи, которые проталкиваются по внутренней трубке шланга при помощи сжатого воздуха, а также активная пена и специальные растворители. После очистки концы готового РВД должны быть закрыты пластмассовыми пробками или термоусадочными полиэтиленовыми заглушками.

Объемы выборки для контроля качества партии РВД

При серийном производстве нет возможности проверять все изготовленные РВД, поэтому в зависимости от объема партии производится выборка и полная проверка на соответствие всем требованиям для следующего количества готовых РВД:

Объем партииВыборка для проверкиДефекты для принятия партииДефекты для отказа партии
5 и менеевсе01
от 6 до 8501
от 9 до 15801
от 16 до 1501301
от 151 до 2802001

Например: если партия 150 шт., то необходимо проверить 13 случайных РВД из всей партии. Если дефектов не обнаружено, то принимается вся партия, если обнаружен хотя бы один дефект, то вся партия проверяется полностью. Отбракованные РВД должны храниться отдельно с последующим уничтожением или переработкой в зависимости от сложности дефекта.

Получить консультацию наших специалистов по любым вопросам вы можете по телефону +7 (8142) 78-04-08, 76-48-33, 76-41-50


Станок для опрессовки гидравлических шлангов высокого давления (РВД)

Содержание статьи:

Для изготовления шлангов высокого давления применяют особый тип оборудования — опрессовочные станки. С их помощью происходит формирование надежного соединения компонентов конструкции РВД.

Принцип работы опрессовочных станков

Обжимной станок

Общий принцип работы станка основан на прессовании фитингов различной конфигурации на торцевые части рукава. Выполнение этой работы требует точного расчета оптимальной степени прижима, сохранение целостности шланга высокого давления.

Конструктивно обжимной центр состоит из гнезда для кулачков, блока увеличения давления (механического, электрического или гидравлического), устройства управления. Предварительно на заготовку РВД устанавливается требуемый фитинг. Важно контролировать глубину его монтажа. В случае надобности выполняется обработка торца рукава – выравнивание плоскости, обезжиривание и снятие технологической кромки. Это не должно сказаться на качестве соединения.

Порядок выполнения работы на обжимном оборудовании для изготовления или ремонта рукавов высокого давления.

  1. Выбор плашки, соответствующей диаметру шланга и фитинга.
  2. Установка ее в гнездо, проверка надежности.
  3. Монтаж соединительного элемента на рукав.
  4. Проверка величины опрессовочного воздействия.
  5. Установка заготовки в станок для опрессовки и его активация.

Длительность воздействия определяется размерами детали и характеристиками оборудования. Эти данные можно взять из технического паспорта.

Во время выполнения процедуры нельзя проворачивать или иным способом изменять положение рукава. Это может сказаться на качестве обжима.

Классификация опрессовочного оборудования

Выполнение опрессовки

Станки для подобной обработки востребованы во всех типах производства, автомобилестроения, химической и пищевой промышленности. Они отличаются техническими и эксплуатационными характеристиками, а также конструкцией.

Важно изначально определиться с планируемым объемом производства. Если оборудование предназначено для ремонта гидравлических шлангов высокого давления автомобильной техники – можно выбрать недорогой станок, но с минимумом функций. Для постоянной эксплуатации потребуется модель с большей производительностью.

Существует определенная классификация, знание которой поможет выбрать оптимальный вариант:

  • стационарный или переносной. Первые используются для комплектации производственной линии. Переносные предназначены для проведения оперативных ремонтных или профилактических работ;
  • производительность. Учитывается время смены плашки, скорость изготовления одного РВД;
  • тип привода. Для небольших объемов работ по изготовлению РВД используют ручные модели. Электрические отличаются высокой надежностью, но для их работы необходимо подключение к сети. Гидравлические чаще всего имеют большие размеры, так как для создания воздействия в их комплектации присутствует компрессор или баллоны со сжатым воздухом.

Главным является тип задачи, которую должно выполнять это оборудование. Учитывается не только производительность, но и эксплуатационные качества.

Для стационарных моделей потребуется обустроить монтажную площадку, так как их масса достаточно велика.

Совет по выбору станка

Ручной опрессовщик

Промышленное или ремонтное оборудование имеет определенные технические характеристики. Они являются основным критерием выбора. Поэтому предварительно необходимо изучить параметры готового изделия и подобрать обжимной станок, который бы соответствовал им.

Основные параметры выбора:

  • усилие опрессовки, тонн;
  • максимальный и минимальный диаметр РВД. Учитывается количество слоев оплетки;
  • для электрических моделей – напряжение в сети;
  • максимальное значение раскрытия кулачков, мм;
  • габариты и вес;

Важное значение придается плашкам. Они могут быть как опрессовочные, так и маркировочные. В некоторых случаях потребуются специальные конструкции для ограниченного обжима изделия. Они изготавливаются под заказ.

Преимуществом опрессовочного станка является его универсальность. С его помощью можно не только изготавливать качественные РВД, но и делать обжим любых изделий. Важно, чтобы они соответствовали параметрам оборудования.

Обзор и сравнение опрессовочных станков для РВД

АртикулS1MPaketS2APaketS10PaketHM220HM375HM665
Сила сжатия, т7590280140315450
4 навивки1″1″2″1 1/4″»3″3″
Промышленные рукава1 1/4″1 1/4″4″2″4″10″
max Ø опрессовки, мм526313970165380
Раскрытие кулачков, max, ммØ + 10Ø + 22Ø + 45Ø + 35Ø + 70120
Вес, кг154124.янв2857504200
Тип используемых кулачков261263239/237239239/237237/239/247

Ремонт и опрессовка РВД — производство шлангов РВД

РВД (рукав высокого давления) — это плотный и довольно гибкий трубопровод. Его обычно используют для транспортировки масляных жидкостей под высоким давлением. РВД состоит из двух(иногда более) резиновых шлангов, которые помещены один в другой. Шланг армирован металлической оплеткой. РВД шланг способен выдержать температурный диапазон от -40 до 100 градусов. Есть ряд компаний производящие рукава высокого давление, которые способны работать в экстремальных условиях от -50 до 155 градусов. Радиус измеряется со внутренней стороны шланга. Очень важно, чтоб уплощение не превышало 10% от внешнего диаметра. Прочность шланга должна выдерживать 500 атмосфер или 50 МПа.

РВД активно используются в подавляющем числе промышленных предприятий. Многие производственные механизмы работают с гидравлическими системами, тут и необходимо использование рукавов внутреннего давления. Там где простые шланги не в состоянии выдержать высокого давления, на помощь приходит РВД. Перед тем как разобрать как делается ремонт и опрессовка рукавов высокого давления, а также производство шлангов рвд. Немного теории. Существует два вида армирования шланга:

  1. Оплеточный
  2. Навивочный

Оплеточная конструкция является практически самой популярной и востребованной на рынке РВД шлангов. Чем большим количеством оплётки армирован шланг, тем больше давления он способен выдержать.

Ремонт и опрессовка РВД

В этой статье мы снова упомянем наших хороших друзей из компании C-Агросервис. Помимо всего прочего компания занимается производством, ремонтом и опрессовкой рукавов высокого давления. К тому же они являются лидерами на рынке услуг по работе с РВД, благодаря своему высокотехнологичному оборудованию по прессовке и ремонту РВД.

Обычно на производство поступает «голая» заготовка. Для полной готовности к использованию, необходимо приготовить фитинги и муфты. Муфта надевается на рукав, следом вставляется фитинг в конец шланга. Муфта подтягивается к фитингу и прессовщик РВД намертво спрессовывает муфту со шлангом, максимально прочно фиксируя фитинг. Плотный металлический наконечник обеспечивает максимальную герметичность и прочность всего РВД шланга. Наконечники как для РВД так и любые другие метизы можно преобресити по ссылке. Вам доставят всё точно в срок, а это значит, что не нужно беспокоится о времени. Компания заботиться о своих клиентах. Огромный выбор фитингов под любой РВД шланг и не только. Сами шланги РВД можно заказать по ссылке.

На каком оборудовании происходит опрессовка

Компания C-Агросервис использует станок по опрессовке РВД, модель станка YL-32.

Их станок рассчитан на изготовление и опрессовку шлангов для моечного оборудования, а также опрессовка промышленных, термопластиковых труб и рукавов высокого давления.

Модель разработана с целью ускорить и упростить ремонт и опрессовку РВД шлангов.

Применение РВД

РВД шланги нашли свое применение практически в каждой сфере производственной деятельности.
Рукава высокого давления применяются:

  • Дорожно строительная техника. Краны, бульдозеры, автогрейдеры.
  • Буровые установки и техника
  • Лесозаготовительные установки и техника
  • Сельскохозяйственная техника. Комбайны, тракторы, прицепы
  • ЖД транспорт
  • Производственные предприятия
  • Автотранспорт

Заключение

Рукав высокого давления довольно примитивная на вид штука. Но это только на вид. Визуально шланг представляет собой трубку разных размеров и металлический фитинг на конце. Внутри всё намного сложнее. РВД шланг сделан из двух труб которые вставлены одна в другую, внутри каждого шланга текстильная или металлическая оплетка. Чем больше оплётка тем, больше давление выдержит шланг. По ГОСТу шланг выдерживает до 50 мегапаскалей (МПа). Вот мы и разобрали как происходит ремонт и опрессовка рукавов высокого давления и производство шлангов рвд. Статья написанна при поддержеки компании ООО C-Агросервис.

Качество опрессовки рукавов высокого давления

Рукава высокого давления — очень важный элемент гидравлической системы и, к сожалению, мы очень часто слышим о таких ситуациях, когда речь заходит о поездках за запасными частями из зон лесодобычи и в том числе, за рукавами высокого давления. И не всегда выходит из строя старая деталь, порой заменять необходимо только что приобретенный товар.

Случаи, когда механики едут за 200-250 км от леспромхоза, покупают рукав высокого давления, устанавливают его на технику и, не проходит и нескольких часов работы, а он начинает течь, нередки, особенно в этом году, в условиях сильных морозов на всей территории страны. Почему происходит так, что при работе на качественном импортном оборудовании возможны такие сбои? Можно ли избежать простоя техники, потери масла, времени и денег? В результате чего могут быть изготовлены бракованные рукава при их изготовлении на высококачественном импортном оборудовании? Попробуем разобраться в этой статье.

Руководители современных и успешных сервисных предприятий уделяют огромное внимание качеству закупаемых запасных частей. Неудивительно, ведь репутация завоевывается годами, а теряется за один миг. Именно поэтому, первое, на что следует обратить внимание, это то, что даже импортные рукава высокого давления не однородны по своему качеству. Рукав, произведенный в странах Юго-Восточной Азии, Индии и странах Восточной Европы, при всей своей дешевизне, во многом уступает рукаву, произведенному в западной Европе. Перечислим основные различия: рукав не всегда способен выдерживать температуру ниже -25°С, наружные и внутренние диаметры рукавов не выдерживают требований стандартов, а если и выдерживают, то с отклонениями по крайним значениям (как это сказывается на опрессовке рукавов, скажем ниже), металлическая оплетка или навивка при отрезе даже на высокотехнологичном оборудовании «распушается», а учитывая, что в большинстве малых сервисных предприятий, ремонтных баз и леспромхозов рукав отрезают и вовсе «болгаркой» — качественно опрессовать такой рукав не удастся. Важным является и состав сырья при производстве рукавов высокого давления — невозможность полноценного контроля за процессом его производства в Азии и Восточной Европе, приводит к изменению в конечном итоге правильных пропорций состава резины. Кроме того, рукав в этих регионах производится на, как правило, бывшем в употреблении оборудовании, что не позволяет выдерживать современные европейские стандарты DIN EN.

ООО «Гидравия» рекомендует к использованию только рукав, произведенный на высококачественном оборудовании в Европе. И пусть его цена на 5-10% выше аналогов из Азии и Восточной Европы истина «скупой платит дважды» проявляется в этом случае, как нельзя лучше, и, поэтому экономия при покупке рукава приводит только к возрастанию расходов на его замену. Использование более качественного итальянского рукава позволит уменьшить простои, т. к. рукав полностью соответствует российским и западным стандартам, что позволяет облегчить работу по сборке рукава, сохраняет эластичность при температурах до -35-40°С. Кроме того, огромные территории России каждую зиму переживают период длительных морозов и применение морозостойкого рукава просто необходимо. Наша компания предлагает не только стандартный рукав (до -40°С), но и морозостойкий, который сохраняет свои параметры и при -55°С. Преимущества такого рукава очевидны — можно работать при очень низких температурах, не боясь повредить гидравлическую систему. Кроме того, он не теряет своих качеств и при высоких летних температурах, так что использовать его можно круглый год.

Вторым важным нюансом, после использования высококачественного рукава, является необходимость использования при опрессовке рукава фитингов и обжимных муфт одного производителя. Только в этом случае, возможно, обеспечение надежной и качественной опрессовки, в результате соответствия пазов на фитинге и муфте. Если используются фитинги и обжимные муфты разных производителей, при пиковых нагрузках плотность обжима снижается в несколько раз, что приводит к протеканию рукава. Кроме того, в сертификате западного образца на рукава высокого давления всегда указывается фирма-производитель фитингов, с которыми проводились испытания при сертификации рукава. Применение фитингов указанного в сертификате производителя гарантирует качество сборки и увеличивает срок службы готового рукава. ООО «Гидравия» заключило долгосрочные международные контракты на поставку в Россию рукавов высокого давления и фитингов, руководствуясь не только ценой, а соответствием основных параметров при изготовлении готовых рукавов. Мы всегда предоставляем клиентам основные параметры нашей продукции и рекомендованные значения при опрессовке рукавов. При этом, наши специалисты всегда помогут подобрать эти значения при использовании с нашей продукцией продукции других компании.

Существует несколько способов контроля качества опрессовочных работ. Выбор каждого из этих вариантов зависит от технического оснащения производства. Первый способ касается исключительно небольших мастерских, не имеющих возможности изготовить даже калибры и проверяющих рукава, что называется «на глаз».

Выбор диаметра опрессовки, в зависимости от диаметра рукава и фитингов.

В связи с большим количеством производителей фитингов и отсутствием стандартизации этой продукции (существующие стандарты касаются исключительно резьбы фитингов, а не присоединительной части — так называемой хвостовой части ниппеля, непосредственно участвующей в опрессовке, которая не стандартизируется, и каждый производитель волен сам разрабатывать свои варианты) возникают проблемы при опрессовке фитингов, муфт и рукавов разных производителей. Самый простой пример: диаметр хвостовиков импортного производства для рукава 1/2 обычно находится в промежутке 13,2-13,5 мм, фитинги российского или украинского производства обычно не превышают 12,5. Соответственно при обжиме импортной муфтой импортного рукава на такой фитинг требуется к рекомендованному производителем диаметру обжима прибавлять не менее 0,8 мм для того, чтобы добиться качественного обжима. Такие же требования предъявляются и к рукаву — разрешенные ГОСТ и DIN расхождения внутреннего диаметра колеблются для рукава 1/2 от 13,2 до 12 мм. В данном случае надо учитывать несколько факторов: диаметр фитинга и внутренний диаметр рукава. Приняв за базовую единицу внутреннего диаметра 12,7 (DIN EN853) для рукава 1/2, рекомендуем при превышении внутреннего диаметра рукава на 0,3 мм и отсутствии калибров для проверки качества обжима (об этом рассказ ниже) поджимать рукав на величину расхождения диаметра. При этом надо помнить о том, что внутренний диаметр рукава измеряют цилиндрическими калибрами, а не штангенциркулем, при этом проходная сторона калибра должна проходить в рукав на расстояние не менее 50 мм от конца рукава. ООО «Гидравия» предлагает свою помощь клиентам в приобретении калибров для проверки внутреннего диаметра рукава.

Второй способ рекомендован специалистами нашей компании и называется «КОНТРОЛЬ ВНУТРЕННЕГО ДИАМЕТРА НИППЕЛЯ». Контроль внутреннего диаметра ниппеля служит для измерения так называемой «деформации отверстия ниппеля». Деформация отверстия ниппеля — это локализованное уменьшение диаметра отверстия ниппеля в зоне эффективного уплотнения фитинга из-за сил сжатия, приложенных к стенке рукава в процессе опрессовки. Представление сборки рукава в терминах ее сопротивлению разрыву и протечке, определяется уровнем сжатия стенки рукава и трубы, достигнутом при опрессовке. Деформация отверстия ниппеля дает косвенное подтверждение степени сжатия стенки шланга. Очень большое сдавливание ниппеля указывает на пережатое состояние с чрезмерным сдавливанием трубы и стенок шланга, которое может привести к риску преждевременного разрушения рукава и фитинга. Также чрезмерное сжатие отверстия может привести к дополнительному падению давления в этих зонах сужения по пути потока жидкости, таким образом, снижая эффективность высокого давления в гидравлических контурах с высокими уровнями потоков. Очень слабая деформация ниппеля может указывать на слабое сдавливание стенок рукава и трубы, которое может повысить риск утечки в фитингах и отрыва фитинга, особенно если рукав “постарел” в процессе работы. Правильное измерение и эффективный контроль нарушений отверстия в ниппелях в процессе изготовления способствует достижению постоянства качественных и эксплуатационных характеристик продукции и может значительно снизить риск преждевременного разрушения рукава.

Контроль внутреннего диаметра ниппеля осуществляется специальными калибрами. Здесь стоит сказать о том, что каждый производитель фитингов, рекомендует свои размеры калибров. Диаметры калибров и размеры деформации необходимо запрашивать у поставщиков фитингов. Калибр выбирается в зависимости от размера, типа рукава (проволочная спираль или проволочная оплетка) и типа ниппеля (обычный тип или Interlock), который надо обжать.

После опрессовки до заявленной величины необходимо вставить непроходной конец калибра в ниппель. Калибр должен остановиться на половине пути к концу ниппеля. Это означает, что достигнут минимальный уровень деформации.

После проверки непроходным калибром следует вставить проходной конец калибра в ниппель — калибр должен проходить через хвостовик ниппеля.

При положительных результатах проверки продолжайте опрессовывать партию, используя текущую установку обжима, контролируйте деформацию с частотой, статистически удобной.

Если проверка дала отрицательный результат следует изменить установку обжима и провести повторный обжим и повторную проверку. Деформация ниппеля должна перепроверяться в случае изменения партии рукавов, ниппелей или обжимных муфт.

Третий и последний фактор, о котором необходимо помнить при изготовлении рукавов высокого давления — это фактор качественного опрессовочного оборудования.

Советы от Гидравии

3 правила, которыми мы руководствуемся при производстве рукавов высокого давления:

  1. Мы используем в своем производстве только высококачественный рукав из Европы. Используйте качественный рукав и Вы.
  2. Мы используем только высококачественные фитинги и обжимные муфты из Италии, которые полностью соответствуют друг другу и требованиям международных стандартов. Каждый фитинг и обжимная муфта в нашей компании промаркированы фирменным лейблом, что облегчает идентификацию рукава в процессе эксплуатации.
  3. Мы опрессовываем рукава высокого давления на высококачественном оборудовании из Италии, применяя при этом самые современные способы контроля за качеством изготавливаемых изделий.

С другой полезной информацией по рукавам высокого давления, фитингам, опрессовочному оборудованию, а также информацией по гидравлическим компонентам вы можете ознакомиться на нашем сайте www.hydravia.ru или по телефонам:

+7 (812) 702-12-41, 702-12-42, 702-12-44


Таблица обжима рукавов высокого давления

Опрессовочная таблица
Рукав Тип РВД 1SN 2SN 4SP 4SH   Калибры по Vitillo, мм
производитель FB VITILLO Китай FB VITILLO Китай FB VITILLO Китай FB VITILLO Китай проходит стопор
дюйм мм DASH код муфты BUN(DN) B12(DN)N 00330-(DN) BUN(DN) B12(DN)N 00330-(DN) B4P(DN) B9R(DN)N 00400-(DN) B4H(DN) B4SH(DN) 00400-(DN)
1/4 6 04 диаметр обжима, мм 18 18 17.9 18.7 19 19 19.3 19.2 18.3       3.3 3.75
длина снятия наружного слоя, если предусмотрено, мм 21 25      
5/16 8 05   18,5 18,6 18,7 19,3 19,6 19,7             4.7 5.2
3/8 10 06 диаметр обжима, мм 20,8 20,5 20,6 21,7 21,3 21,4 23,5 23,2 22,8       6.05 6.55
длина снятия наружного слоя, если предусмотрено, мм 23 27      
1/2 12 08 диаметр обжима, мм 23,6 23,4 23,5 24,5 24,4 24,5 26,6 26,3 25,8     25,5 8,35 8,75
длина снятия наружного слоя, если предусмотрено, мм 27 28     28
5/8 16 10 диаметр обжима, мм 27,2 27 27 28,3 28,2 28,3 30,3 30,2 28,8       10,85 11,4
длина снятия наружного слоя, если предусмотрено, мм 31 33      
3/4 20 12 диаметр обжима, мм 30,5 30,8 30,9 31,4 32 32,1 34,3 34,6 33,6 34,4 33,9 33,7 13,5 13,8
длина снятия наружного слоя, если предусмотрено, мм 36 32 36 32
1 25 16 диаметр обжима, мм 38,5 39,1 39,2 39,7 40,3 40,4 41,5 42,2 41,5 41,8 41,5 41,5 18,5 19,2
длина снятия наружного слоя, если предусмотрено, мм 48 42 48 42
1 1/4 32 20 диаметр обжима, мм 48 48,5 48,6 51 51 51 51,3 51,6 51 48,5 (B4H) 50,2 50,2 23,05 23,9
длина снятия наружного слоя, если предусмотрено, мм 54 48 54 48
1 1/2 38 24 диаметр обжима, мм 57,3 57 57 58,3 59,3 59,8 58,6 59,2 59,5 57,0 (B4H) 58   29,8 30,7
длина снятия наружного слоя, если предусмотрено, мм 62 60 62  
2 50 32 диаметр обжима, мм 69,5 69,4 69,5 71,7 72,4 72,5 73,7 74,6 72,5   74,2   41,6 42,6
длина снятия наружного слоя, если предусмотрено, мм 64 61 64  

Требования к гидростатическим и пневматическим испытаниям

Испытания под давлением — это неразрушающий способ гарантировать целостность оборудования, такого как сосуды под давлением, трубопроводы, водопроводные линии, газовые баллоны, котлы и топливные баки. Нормы трубопроводов требуют подтверждения того, что система трубопроводов способна выдерживать номинальное давление и не имеет утечек.

Наиболее широко используемый код для испытаний под давлением и утечек — это ASME B31, код для напорных трубопроводов. Среди нескольких его разделов требованиям и процедурам, перечисленным в кодах ниже, следует ARANER:

.

ASME B31 Pressure Piping Code

  • ASME B31.1 силовой трубопровод
  • ASME B31.3 Технологические трубопроводы
  • ASME B31.5 Холодильный трубопровод

Испытания под давлением могут проводиться либо с жидкостью , обычно с водой (гидростатическая), , либо с газом , обычно с сухим азотом (пневматическим).

Общие требования к испытаниям под давлением

  1. Напряжение, превышающее предел текучести: испытательное давление может быть уменьшено до максимального давления, которое не превышает предела текучести при температуре испытания.
  2. Расширение испытательной жидкости: Если испытательное давление должно поддерживаться в течение определенного периода времени и жидкость в системе подвержена тепловому расширению, необходимо принять меры, чтобы избежать чрезмерного давления.
  3. Предварительное пневматическое испытание: Предварительное испытание с использованием воздуха при избыточном давлении не более 170 кПа (25 фунтов на квадратный дюйм) может быть выполнено перед гидростатическим или пневматическим испытанием для определения основных утечек.
  4. Проверка на утечки: испытание на утечку должно проводиться не менее 10 минут, и все соединения и соединения должны быть проверены на утечки.
  5. Термическая обработка: Испытания на герметичность должны проводиться после завершения любой термообработки.
  6. Низкая температура испытания: При проведении испытаний на герметичность при температурах металла, близких к температуре вязко-хрупкого перехода, необходимо учитывать возможность хрупкого разрушения.
  7. Защита персонала: Необходимо принять соответствующие меры предосторожности в случае разрыва системы трубопроводов, чтобы исключить опасность для персонала вблизи проверяемых линий.
  8. Ремонт или дополнения после испытания на герметичность: Если после испытания на герметичность были произведены ремонтные работы или дополнения, затронутые трубопроводы должны быть протестированы повторно.
  9. Протоколы испытаний: Записи должны вестись по каждой системе трубопроводов во время испытаний, включая:
    • Дата испытания
    • Обозначение испытанной системы трубопроводов
    • Тестовая жидкость
    • Испытательное давление
    • Заверение результатов экзаменатором

Подготовка к испытаниям

  1. Открытие стыков: все стыки, включая сварные швы, ранее не испытанные под давлением, должны оставаться неизолированными и открытыми для проверки во время испытания.
  2. Добавление временных опор: системы трубопроводов , предназначенные для пара или газа, должны быть снабжены дополнительными временными опорами, если необходимо, чтобы выдержать вес испытательной жидкости.
  3. Ограничение или изоляция компенсационных швов: компенсационные швы должны быть снабжены временными ограничителями, если это требуется для дополнительной испытываемой нагрузки давления.

Изоляция оборудования и трубопроводов, не подвергнутых испытанию под давлением: Оборудование, которое не должно подвергаться испытанию под давлением, должно быть либо отключено от системы, либо изолировано заглушкой или аналогичными средствами.

Isolation of piping

Рисунок 1: Изоляция трубопровода

Гидростатические испытания

  1. Испытательная жидкость: Жидкость должна быть водой, если нет возможности повреждения из-за замерзания или неблагоприятного воздействия воды на трубопровод или технологический процесс. В этом случае можно использовать другую нетоксичную жидкость.
  2. Обеспечение вентиляционных отверстий в высоких точках : Вентиляционные отверстия должны быть предусмотрены в высоких точках системы трубопроводов для удаления воздушных карманов во время заполнения системы.
  3. Давление и процедура: Пределы давления отличаются для ASME B31.1 и ASME B31.3.

ASME B31.1

Гидростатическое испытательное давление в любой точке трубопроводной системы не должно быть меньше, чем в 1,5 раза проектного давления, но не должно превышать максимально допустимое испытательное давление любого неизолированного компонента, а также не должно превышать пределы расчетных напряжений из-за случайные нагрузки.

ASME B31.3

Испытательное давление должно быть не менее чем в 1,5 раза больше расчетного давления. Если расчетная температура выше, чем температура испытания, минимальное давление рассчитывается по формуле.P T = 1,5 P S T / S, где = допустимое напряжение при температуре испытания, S = допустимое напряжение при расчетной температуре компонента, P = расчетное избыточное давление.

Испытательное давление может быть уменьшено до максимального давления, которое не превышает нижнего из предела текучести или 1,5-кратного номинального значения компонента при температуре испытания.

Давление должно непрерывно поддерживаться в течение минимального времени 10 минут , а затем может быть снижено до расчетного давления и удерживаться в течение времени, которое может потребоваться для проведения проверок на утечку.Все стыки и соединения должны быть проверены на утечку.

Hydrostatic Test

Пневматические испытания

  1. Меры предосторожности: Пневматические испытания связаны с опасностью высвобождения энергии, накопленной в сжатом газе. Необходимо соблюдать особую осторожность. Его рекомендуется использовать только в том случае, если трубопроводные системы спроектированы таким образом, что они не могут быть заполнены водой, то есть системы хладагента; или когда трубопроводные системы должны использоваться в тех службах, где нельзя допускать следов испытательной среды.
  2. Испытательная жидкость: Газ, используемый в качестве испытательной жидкости, если не воздух, должен быть негорючим и нетоксичным, например азот.
  3. Давление и процедура: пределы давления и методология различны для кодов, упомянутых выше.

ASME B3.1

Пневматическое испытательное давление должно быть не менее 1,2 и не более чем в 1,5 раза больше расчетного давления в трубопроводной системе. Оно не должно превышать максимально допустимое испытательное давление любого неизолированного компонента.

Давление в системе должно постепенно увеличиваться не более чем до 1/2 испытательного давления, после чего давление должно увеличиваться с шагом примерно 1/10 испытательного давления до тех пор, пока не будет достигнуто требуемое испытательное давление. Давление должно непрерывно поддерживаться в течение минимум 10 мин.

Затем оно должно быть уменьшено до до нижнего значения расчетного давления или 100 фунтов на кв. Дюйм [700 кПа (манометрическое)] и выдерживаться в течение времени, которое может потребоваться для проведения проверки на утечку.Все стыки и соединения необходимо проверить на предмет утечки мыльным пузырем или аналогичным методом.

ASME B31.3

Давление при испытании не должно быть менее 1,1 проектного давления и не должно превышать нижнее значение из 1,33 расчетного давления или давления, которое может вызвать номинальное напряжение давления или продольное напряжение, превышающее 90% предела текучести. любого компонента при температуре испытания.

Давление должно увеличиваться на до манометрического давления , которое является меньшим из 0.5-кратное испытательное давление или 170 кПа (25 фунтов на кв. Дюйм), при этом должна быть проведена предварительная проверка. После этого давление должно постепенно увеличиваться ступенчато, пока давление не будет достигнуто, поддерживая давление на каждом этапе до тех пор, пока деформации трубопроводов не уравняются.

Затем давление должно быть снижено до расчетного до проверки на утечку. Во время испытания должно быть предусмотрено устройство сброса давления с установленным давлением не выше испытательного давления плюс меньшее из 345 кПа (50 фунтов на кв. Дюйм) или 10% испытательного давления.

ASME B31.5

Давление испытания должно быть не менее 1,1 и не должно превышать 1,3 расчетного давления любого компонента системы . Давление в системе должно постепенно увеличиваться до 0,5-кратного испытательного давления, после чего давление должно увеличиваться с шагом примерно 1/10 испытательного давления до тех пор, пока не будет достигнуто требуемое испытательное давление.

Испытательное давление должно поддерживаться не менее 10 минут. Затем его можно снизить до расчетного давления и провести проверку на утечку.Во время испытания должно быть предусмотрено устройство сброса давления с установленным давлением выше испытательного, но достаточно низким, чтобы предотвратить необратимую деформацию любого из компонентов системы.

Pneumatic Test

ARANER, эксперты в области промышленного охлаждения

Мы являемся экспертами в проектировании, производстве и установке индивидуальных решений для промышленного охлаждения с положительным экономическим эффектом. Мы работали по всему миру в разработке систем охлаждения воздуха на входе в турбину, централизованного охлаждения и накопления тепловой энергии.Свяжитесь с нашими экспертами, если вас интересует какое-либо из наших решений или вам нужен технический совет. Мы будем рады помочь!

Испытание под давлением: Требования к гидростатическим и пневматическим испытаниям2017-11-152019-08-13 https://www.araner.com/wp-content/uploads/2016/03/araner-logo.pngAranerhttps: //www.araner.com/ wp-content / uploads / 2017/11 / pressure-test.jpg200px200px

.

испытательное давление — это … Что такое испытательное давление?

  • Осмос с замедленным давлением — (PRO) — это энергия градиента солености, получаемая из разницы в концентрации соли в морской и речной воде. В PRO водный потенциал между пресной и морской водой соответствует давлению 26 бар. Это давление…… Википедия

  • Измерение давления — Конструкция манометра с трубкой Бурдона, элементы конструкции изготовлены из латуни. Для измерения давления и вакуума было разработано множество методов.Инструменты, используемые для измерения давления, называются манометрами или вакуумметрами. А…… Википедия

  • Сосуд под давлением — Вертикальные сосуды под давлением, установленные в конструкции Сосуд под давлением — это закрытый контейнер, предназначенный для хранения газов или жидкостей под давлением, существенно отличающимся от давления окружающей среды. Перепад давления опасен и многие смертельны…… Wikipedia

  • Датчик давления — Цифровой датчик давления воздуха Компактный цифровой датчик атмосферного давления Датчик давления… Википедия

  • Диаграмма давление-объем — Термодинамика… Википедия

  • Неразрушающий контроль — или Неразрушающий контроль (NDT) — это широкая группа аналитических методов, используемых в науке и промышленности для оценки свойств материала, компонента или системы без причинения ущерба.[1] Термины неразрушающий контроль (NDE),…… Wikipedia

  • НАТО Испытания EPVAT — Слева направо: 7,62 мм боеприпасы НАТО, 5,56 мм НАТО и 9 мм боеприпасы НАТО. Испытания НАТО EPVAT — это один из трех признанных классов процедур, используемых в мире для контроля безопасности и качества боеприпасов для огнестрельного оружия. Кроме этого…… Википедия

  • Подземные ядерные испытания — Подготовка к подземным ядерным испытаниям на полигоне в Неваде в 1990-е годы.Ядерное оружие… Википедия

  • Национальный совет инспекторов котлов и сосудов высокого давления — Национальный совет инспекторов котлов и сосудов высокого давления состоит из главных инспекторов котлов и сосудов высокого давления, представляющих штаты, города и провинции, обеспечивающие соблюдение законов и правил, касающихся оборудования, работающего под давлением. Создан для предотвращения смерти, травм…… Wikipedia

  • Проверка герметичности воздуховодов — Тестер герметичности воздуховодов — это диагностический прибор, предназначенный для измерения герметичности воздуховодов для систем обогрева, вентиляции и кондиционирования воздуха (HVAC).Тестер герметичности воздуховода состоит из откалиброванного вентилятора для измерения расхода воздуха и…… Wikipedia

  • Дымовое испытание — термин, используемый в сантехнике, ремонте деревянных духовых инструментов, электронике, разработке компьютерного программного обеспечения и индустрии развлечений. Это относится к первому тесту, проведенному после ремонта или первой сборки, чтобы обеспечить некоторую уверенность в том, что тестируемая система будет…… Wikipedia

  • .

    JFD | Опрессовка и испытания

    В основе Национального гипербарического центра находится комплекс глубокого моделирования, способный проводить испытания с участием человека и без него. Камера для гидростатических испытаний может моделировать подводные условия окружающей среды на глубине до 1 000 мВт и на высоте до 55 000 футов при температуре окружающей среды.

    Загрузить технический чертеж:

    Камера 800 бар

    Глубокая камера для оборудования Национального гипербарического центра снова похожа на другие камеры, но имеет гораздо более высокое номинальное давление, вплоть до впечатляющих 8000 м, и снова идеально подходит для источников питания, кабельных сборок, небольших электрических корпусов, подводных камер и освещения во влажной среде. , сухая или газовая среда.

    Загрузить технический чертеж:

    Камера 220 бар

    Национальный гипербарический центр

    также имеет несколько камер меньшего размера, в том числе нашу камеру на 220 бар, способную испытывать давление до 2200 м. Эта камера с внутренним доступом шириной 860 мм и глубиной 1800 мм идеально подходит для клапана, привода, насоса, расходомера и кабельных сборок, включая соединения и пенетраторы.

    Загрузить технический чертеж:

    Камера 200 бар

    Эта камера среднего размера для оборудования имеет рабочее давление 200 бар и идеально подходит для испытаний под давлением источников питания, кабельных сборок, небольших электрических корпусов, подводных камер и осветительных приборов.Одной из особенностей этой камеры является наличие 6 многосторонних портов проникновения, которые обеспечивают легкий доступ для мониторинга тестирования оборудования.

    Загрузить технический чертеж:

    Приспособление для тестирования окна просмотра

    Приспособление для проверки под высоким давлением акриловых смотровых окон, используемых в водолазных комплексах и подводных лодках, доступно в NHC.


    Использование акриловых пластиковых иллюминаторов было стандартом в течение многих лет, однако развитие испытаний в поляризованном свете показало, что существуют различные заблуждения о них.Акриловые смотровые окна, которые используются под давлением, подвергаются повышенному пределу текучести, что придает им небольшую остаточную деформацию и внутреннее напряжение. Принято считать, что акриловые смотровые окна следует заменять после 10 лет эксплуатации.


    Ссылаясь на руководство IMCA D047, перед использованием необходимо сертифицировать окна просмотра:


    «Перед установкой смотровые окна должны пройти испытание под нагрузкой и соответствующую сертификацию
    ».
    «Все видовые потребности системы давления должны быть рассчитаны на расчетное давление системы.»
    « Не следует использовать видовые окна, которые не отмечены или не задокументированы должным образом ».

    Все тесты в области просмотра независимо наблюдаются классовым обществом. Несмываемыми чернилами отмечены успешно протестированные области просмотра — дата проверки.


    Объекты

    Просмотреть полное изображение

    • Гидравлические испытания смотровых окон

    • Принимает плоские или конические акриловые смотровые окна, используемые для водолазных камер и подводных лодок.

    • Разработан со сменным ядром, что позволяет тестировать различные размеры и формы области просмотра

    • 150 бар / 1500 мсв

    .

    Вам может понравится

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *