Как подключить магнетрон: Микроволновая печь витек. Как проверить магнетрон

Содержание

Микроволновая печь витек. Как проверить магнетрон

Друзья, приветствую вас! Сегодняшняя статья будет посвящена ремонту микроволновых печей. На примере микроволновки Vitek мы разберем, как диагностировать, а затем и заменить магнетрон.Ни для кого не секрет что у любого сложного устройства, каким является микроволновая печь, есть свой срок эксплуатации. Рано или поздно мы замечаем, что наша любимая печка стала медленно разогревать, а может и совсем перестать греть. Хотя видимых причин в отказе не наблюдается, все также она включается, работает вентилятор и крутится тарелка. В 90 процентах неисправность связана с отказом в работе магнетрона.

Сегодня в качестве подопытного выступит микроволновая печь Vitek VT-1655. Это одна из самых простых моделей. Она имеет всего два органа управления, при помощи одного из которых можно выставить мощность микроволн, другим устанавливается продолжительность разогрева. Максимальная потребляемая мощность равняется 1300 Вт.
Магнетрон работает на частоте 2450 МГц и способен развить мощность 800 Вт.

Как проверить магнетрон в микроволновке

Итак, давайте ближе к делу. Так как стоимость магнетрона не такая уж маленькая, нам нужно убедиться, действительно ли неисправен именно он. Отключаем печь от питающей сети, открываем крышку и осматриваем все внутренности на наличие оплавлений, отгораний, ну и других видимых неисправностей. В моем случае был сгоревший высоковольтный предохранитель, неисправность которого была видна невооружённым взглядом.

На следующем этапе нам придется воспользоваться измерительными приборами, мультиметром или тестером. Нужно убедиться в исправности некоторых элементов микроволновой печи. Следует начать проверку с основной печатной платы, на которой расположены керамические резисторы, диоды, варистор, и другие. Выпаивать их не нужно, прозваниваем прямо так:

Затем следует обратить внимание на термопредохранитель. В моем случае стоит экземпляр на ток 10 ампер и температуру срабатывания 160 градусов. При обычной комнатной температуре он должен прозваниваться накоротко:

Высоковольтный конденсатор мы можем проверить при помощи мультиметра только на пробой, он должен показать бесконечность, если прибор покажет сопротивление близко к нулю, то, скорее всего конденсатор пробит, его нужно заменить. Также вы можете получить сопротивление около одного мегаома, это может произойти из-за того что в некоторых моделей конденсаторов внутри встроен резистор для разряда этого конденсатора. Если это так значит конденсатор целый:

Осталось проверить высоковольтный диод. Так как он состоит из нескольких диодов соединенных последовательно, проверить его исправность нам не получится, так как внутреннее сопротивление велико для мультиметра. Нам главное убедиться, чтобы он не был пробит. Удостовериться в целостности диода можно применив прибор под названием мегомметр. Скорее всего, он не найдется в домашнем хозяйстве:

В моем случае все детали были исправны, за исключением высоковольтного предохранителя. Соответственно подозрения пали на вышедший из строя магнетрон. Проверка магнетрона следует начать с прозвонки накала. Достаточно коснуться шупами тестера, в режиме измерения сопротивления, к клеммам магнетрона:

Прибор должен показать сопротивление единицы Ома. Если прибор покажет сопротивление бесконечность, то высокая вероятность что накал в магнетроне отгорел. Чтобы убедиться на сто процентов в этом, нам придется открыть крышку, под которой мы увидим два дросселя. Нужно удостовериться в нормальном контакте этих деталей с выводами. Также эти клеммы нужно проверить с корпусом магнетрона, прибор должен показать бесконечность.

В идеале магнетрон лучше всего проверить отдельно от микроволновой печи на стенде. Но в домашних условиях это сделать проблематично. Напряжение накала в 3,3 вольта мы еще где-то можем найти. А вот напряжение анода достигает 4000 Вольт, в домашних условиях это сложно реализовать.

Если все цепи питания исправны, то методом исключения мы удостоверились, что неисправен именно магнетрон. Поэтому придется приобретать новый. Я так и поступил. Был приобретён магнетрон фирмы LG 2M214, стоимость которого не превышает 30 долларов:

Установить новую запчасть, думаю, не составит большого труда. Может оказаться, так что будет отсутствовать оригинал в магазине. Поэтому придется подобрать аналог. Следует обратить внимание на мощность магнетрона, а также на крепежные отверстия и конфигурацию расположения разъёма контактов. Если высохла термопроводящая паста на термопредохранителе, её следует заменить новой:

 Как правильно подключить магнетрон в микроволновке

Хотя и клемный разъем магнетрона имеет всего 2 контакта, у некоторых возникает сложность подключения магнетрона. В идеальном варианте конечно лучше сразу пометить расположение выводов. Ну, допустим, Вы забыли пометить, в магазине не оказалось подходящего аналога, прошло много времени и вы забыли, как правильно подключить магнетрон в микроволновке. Как раз это мой случай. Дело в том, что у нас в магазине купить магнетрон просто невозможно. Пришлось его заказывать через интернет. Поэтому прошло много времени. Но мне помогла нижеприведенной схема подключения магнетрона:

На самом магнетроне отчётливо выбиты буквы FA и F, так что перепутать просто невозможно:

Принципиальная схема выглядит вот так:

В заключение хотелось бы дать несколько рекомендаций как продлить жизнь магнетрону. Очень часто при работе микроволновой печи можно расслышать потрескивание и искренне в районе магнетрона. В этом случае лучше прекратить использование микроволновки и разобраться в чем дело. Ведь на ранней стадии лучше предотвратить неисправность, чем менять дорогостоящие запчасти. Скорее всего, будет виноват прогоревший колпачок:

Такая неисправность достаточно частая. Колпачок стоит копейки. Заменив его можно продлить жизнь магнетрона.

Также следует обратить внимание на слюдяную перегородку, которая располагается между излучателем и той частью, где находится разогреваемая еда:

В результате прогорания колпачка она также может пострадать что недопустимо. Слюдяную перегородку следует держать в идеальной чистоте. На ней очень часто накапливается слой жира. При низких напряжениях жир является диэлектриком, но при высоких напряжение жир может выступить в роли проводника, из-за чего слюдяная перегородка сильно будет нагреваться и может разрушиться.

На этом буду завершать свой рассказ. Надеюсь, что эта статья будет полезна, и Вы сможете самостоятельно отремонтировать микроволновую печь.

Цепи питания магнетрона | yourmicrowell.ru

Для нормальной работы магнетрона необходимо: наличие эмитирующего элемента и присутствие электрического и магнитного полей. Магнитное поле магнетрона создается магнитной системой состоящей из двух кольцевых магнитов, которые входят в конструкцию магнетрона. Электрическое поле возникает в результате подачи высокого напряжения на катод магнетрона. Другими словами, давайте рассмотрим подробнее, что и как, обеспечивает питание магнетрона в микроволновой печи. Схема питания магнетрона изображена на рисунке ниже.

Источник питания состоит из следующих элементов: высоковольтный — силовой трансформатор – «THV», предохранитель – “FHV”, конденсатор – “CHV” (с резистором в одном корпусе) и высоковольтный диод – “DHV”. Высоковольтный — силовой трансформатор содержит три обмотки. Обмотка «1» — является первичной и запитывается от переменного напряжения сети номиналом 220 вольт. Обмотка «2» — накальная обмотка. Эта обмотка представляет собой 2 – 3 витка обычного монтажного провода, довольно большого сечения, ведь цепь накала потребляет весьма большой ток, в районе 10 – ти ампер. С накальной обмотки снимается напряжение порядка трех вольт, необходимое для питания нити накала магнетрона. Обмотка «3» — эту обмотку принято называть анодной. Анодная обмотка – является повышающей, с ее выводов снимается высокое напряжение, порядка 2 – х киловольт, необходимое для основного питания магнетрона. Один из выводов анодной обмотки выводится под клемму, а второй соединен с корпусом трансформатора. Параметры конкретного высоковольтного трансформатора, как правило, расчитываются под параметры конкретной модели магнетрона, то есть, трансформатор и магнетрон образуют пару. Сердечник трансформатора состоит из набора «Ш — образных» пластин, изготовленных из, электротехнической стали, которые соединены в пакет посредством сварки. Высоковольтный трансформатор, без сомнения – является самым тяжелым элементом в конструкции микроволновой печи.

Высоковольтные конденсатор и диод, в совокупности образуют умножитель и выпрямитель напряжения. На схеме питания видно, что анод магнетрона “M1”, являющийся положительным электродом, соединяется с корпусом печи (далее с землей). Следовательно, анодное напряжение подается на катод магнетрона, но в отрицательной полярности. На графике видно, что напряжение, снимаемое с анодной обмотки, представляет собой синусоиду, содержащую положительные и отрицательные полупериоды переменного напряжения. Высоковольтный диод в схеме включен таким образом, что при поступлении с обмотки положительного полупериода, он открывается, и положительная полуволна не проходит к катоду магнетрона. А в цепи высоковольтного конденсатора начинает протекать ток, и конденсатор заряжается по цепи: правая обкладка конденсатора – диод – земля – анодная обмотка — высоковольтный предохранитель – левая обкладка конденсатора. Затем с анодной обмотки поступает отрицательный полупериод напряжения, диод закрывается, и отрицательная полуволна беспрепятственно проходит к катоду. В этот момент, через магнетрон, начинает разряжаться конденсатор. Напряжение, поступившее с анодной обмотки трансформатора и напряжение, снятое с конденсатора складываются, в результате на выходе умножителя мы получаем удвоенное напряжение отрицательной полярности порядка 4кВ. Это напряжение поступает на катод и благодаря этому, между электродами магнетрона возникает необходимое для его работы, электрическое поле. Таким образом, можно сказать, что магнетрон микроволновой печи, питается импульсным напряжением отрицательной полярности.

В цепь анодной обмотки, включен высоковольтный предохранитель, который предназначен для защиты высоковольтного трансформатора от перегрузок, в случае выхода из строя элементов умножителя или магнетрона. Если предположить, что высоковольтный диод или проходной конденсатор фильтра магнетрона пробиты, то в цепи питания магнетрона возникнет короткое замыкание и через анодную обмотку трансформатора начнет протекать повышенный ток, что может привести к выходу из строя высоковольтного трансформатора. В этом случае и должен сработать предохранитель. Разорвав цепь питания магнетрона, он тем самым, разгружает анодную обмотку трансформатора. Нечто подобное произойдет, если вы включите печь в режиме «микроволны» с пустой камерой. В этом случае, потребление энергии магнетроном возрастет в разы, перегрузке подвергнуться все элементы источника питания и если не сработает предохранитель, то из строя может выйти, в первую очередь, сам магнетрон, а затем любой из элементов цепи его питания.

что это, принцип работы, история изобретения, устройство

Магнетрон – это электронный прибор, преобразующий колебания со сверхвысокой частотой используя принцип модуляцию электронов в потоке. В магнетроне происходит взаимодействие магнитных и электрических полей со сверх большой силой. Самая распространенная форма магнетрона – это многорезонаторный тип. Создан был этот прибор в 1921 в США. Эксперименты с ним продолжались очень много времени, пока не были открыты его свойства нагревать.

В результате работ, были созданы самые различные его виды и разновидности, нашедшие свое применение в самых различных отраслях электроники. В статье будет рассказано о том, где они используются, чем отличаются друг от друга и какую структуру они имеют. В качестве дополнения, статья содержит два видеоматериала и одну научно-популярную статью.

Магнетрон для микроволновой печи.

Магнетрон для микроволновой печи.

Что такое магнетрон

Микроволновки могут сильно различаться между собой, но есть одна деталь, без которой не сможет работать ни одна существующая модель, будь то Самсунг, Филипс или другая известная марка. Именно от качественного магнетрона и зависит вся работа СВЧ-печки. Из чего же состоит эта деталь?

  1. Для излучения волн прибор оснащен специальной антенной.
  2. Для изоляции антенны от рабочей поверхности используется специальный цилиндр, изготовленный из качественного металла.
  3. За распределение магнитных полей отвечает особый магнитопровод.
  4. А вот за распределение потоков отвечают магниты.
  5. Для того чтобы деталь не перегревалась, важной комплектующей для нее является радиатор.
  6. Чтобы излучения микроволновой печи не приносили вреда, магнетрон оснащен специальными фильтрами.
Магнетрон - что такое.

Магнетрон – что такое.

Схема устройства

Такая конструкция как магнетрон, понятна только профессионалам. Ремонтировать ее самостоятельно – процесс трудоемкий и неблагодарный. Если вы уверены в том, что проблема именно в нем, лучше обратиться к специалисту. Изучив устройство магнетрона, становится понятно, что из строя выходит не вся деталь.

Возможно, не работает какая-то из его частей, что и необходимо установить. Существует несколько распространенных причин поломки. Как проверить магнетрон и узнать, где именно кроется неисправность?

  1. Одной из важных составляющих магнетрона является специальный колпачок, который сохраняет вакуумность трубы. Если проблема в нем, то заменить его не составит труда.
  2. Если деталь перегревается, то значит, из строя вышел радиатор.
  3. Из-за перегрева может произойти обрыв нити накаливания. Для диагностики этой неисправности потребуется специальный тестер. В рабочем состоянии нить показывает напряжение 5-7 Ом. Если она вышла из строя, то напряжение упадет до 2-3 Ом, если же произошел обрыв, то прибор покажет бесконечность.
  4. Поломка фильтра проверяется тестером. Если деталь исправна, прибор покажет бесконечность, в случае поломки – вы увидите численное сопротивление.

Существуют поломки, которые вы не сможете диагностировать самостоятельно. Для этого необходимо обладать не только знаниями, но и специальным оборудованием.

Устройство магнетрона.

Устройство магнетрона.

Магнетрон – специальный электронный прибор, в котором генерирование сверхвысокочастотных колебаний (СВЧ-колебаний) осуществляется модуляцией электронного потока по скорости. Магнетроны значительно расширили область применения нагрева токами высокой и сверхвысокой частоты.

Как проверить прибор

Цена замены этой детали настолько высока, что многие предпочитают приобрести новую микроволновку, а не ремонтировать старую. Прежде чем отправить испортившийся прибор на помойку, необходимо убедиться в том, что проблема именно в этой дорогостоящей детали. Для этого необходимо проделать определенные манипуляции:

  1. Первое, что вы должны сделать, чтобы проверить магнетрон – это отключить питание в микроволновке, выключив устройство из сети.
  2. Осмотрите внутренние стенки микроволновой печи. В случае неисправности магнетрона, вы обнаружите оплавленные участки, потемневшие или сгоревшие стены.
  3. Если внешних признаков нет, необходимо произвести диагностику тестером.
  4. Проверьте, исправен ли предохранитель.

Основными признаками того, что магнетрон вышел из строя, являются странные звуки, дым или искры из печи. После таких внешних проявлений микроволновка перестает корректно работать. Если у вас дорогостоящая модель СВЧ, то разумней все же заменить поломавшуюся деталь, а не покупать новую печку. Конечно, лучше всего обратиться в сервисный центр, но можно попробовать произвести замену самостоятельно.

Покупая новый магнетрон, обратите внимание на то, чтобы совпадала мощность, соответствовали контакты и отверстия для крепления. В противном случае вы рискуете приобрести бесполезную деталь. В таблице ниже приведена мощность и взаимозаменяемость устройства.

Таблица мощности и взаимозаменяемости магнетрона

Это интересно! Все о полупроводниковых диодах.

Подсоединить новый магнетрон не составляет труда, так как он имеет всего два основных контакта. Подробная информация обо всех обозначениях есть на схеме, главное, проверить соответствие следующих частей устройства:

  1. Антенна должна соответствовать диаметру заводской.
  2. Следите за плотным прилеганием нового устройства к волноводу.
  3. Длина неисправной антенны должна соответствовать новой.
Как устроен магнетрон: принцип работы и применение в микроволновой печи

Лучше всего, выкрутить старую деталь и отправиться в сервис с ней, чтобы специалисты подобрали вам нужную.

Микроволновка – незаменимая помощница на любой кухне. С ее помощью можно и быстро подогреть еду, и приготовить вкусное блюдо. Поломка этого технического чуда вызывает некоторый ступор и парализует привычный ритм жизни. Многие из существующих неисправностей СВЧ можно решить самостоятельно, но если из строя вышел магнетрон, обратитесь к специалисту. Производить ремонт самостоятельно опасно не только для техники, но и для вас.

Магнетроны резонансного типа состоят из:

  • Анодный блок. Представляет собой толстостенный металлический цилиндр с полостями в стенках. Эти полости являются объемными резонаторами, которые создают колебательную кольцевую систему.
  • Катод. Он имеет цилиндрическую форму. Внутри него размещен подогреватель.
  • Внешние электромагниты или постоянные магниты. Они создают магнитное поле, которое параллельно оси прибора.
  • Проволочная петля. Она применяется для вывода сверхвысоких частот, и закреплена в резонаторе.

Резонаторы создают кольцевую систему колебаний. Возле них пучки электронов воздействуют на электромагнитные волны. Так как эта система выполнена замкнутой, то она способна возбудиться только на определенных частотах колебаний. При нахождении рядом с рабочей частотой других частот, случается перескакивание частоты и нарушается стабильность работы устройства.

Из чего состоит магнетрон

Из чего состоит магнетрон

Чтобы исключить такие отрицательные эффекты магнетроны с одинаковыми резонаторами оснащаются разными связками, либо используются магнетроны с отличающимися размерами резонаторов. Магнетроны разделяют по виду резонаторов:

  • Лопаточные.
  • Щель-отверстие.
  • Щелевые.

В магнетронах применяется движение электронов в перпендикулярных магнитных и электрических полях, созданных в зазоре кольца между анодом и катодом. Между ними подается напряжение (анодное), которое образует радиальное электрическое поле. Под воздействием этого поля электроны вырываются из нагретого катода и устремляются к аноду.

Как устроен магнетрон: принцип работы и применение в микроволновой печи

Анодный блок находится между полюсов магнита, образующего магнитное поле, которое направлено вдоль оси магнетрона. Магнитное поле действует на электрон и отклоняет его на спиральную траекторию. В промежутке между анодом и катодом создается вращательное облако, похожее на колесо со спицами. Электроны возбуждают в объемных резонаторах колебания высокой частоты.

Отдельно каждый резонатор является колебательной системой. Магнитное поле концентрируется внутри полости, а электрическое поле сосредоточено у щелей. Энергия выводится из магнетрона с помощью индуктивной петли. Она размещена в соседних резонаторах. Электроэнергия подключается к нагрузке коаксиальным кабелем. Нагревание токами высокой частоты производится в волноводах различного сечения, либо в объемных резонаторах. Также нагревание может производиться электромагнитными волнами.

Приборы работают от выпрямленного тока по простой схеме выпрямления. Устройства небольшой мощности способны работать от переменного тока. Рабочая частота тока магнетронов может достигать 100 ГГц, мощностью до нескольких десятков киловатт в постоянном режиме, и до 5 мегаватт в режиме импульсов. Устройство магнетрона довольно простое. Его стоимость невысока. Поэтому такие качества в сочетании с повышенной эффективностью нагревания и разнообразным использованием высокочастотных токов открывают большие возможности использования в разных сферах жизни.

Внутреннее строение магнетрона.

Внутреннее строение магнетрона.

Типы устройства

Основные виды магнетронов

  • Многорезонаторные устройства. Они содержат анодные блоки с несколькими резонаторами. Блоки состоят из различного вида резонаторов. В диапазоне 10 см длины волны магнетрон обладает КПД 30%. Выход излучения высокой частоты осуществляется сбоку в щель резонатора.
  • Обращенные устройства. Они бывают двух исполнений: коаксиальные и обычные. Такие магнетроны способны выдать импульсы высокой частоты 700 наносекунд с энергией 250 джоулей. Коаксиальный вид магнетрона содержит стабилизирующий резонатор. В нем имеются отверстия во внешней стенке, а также ферритовые стержни с подмагничивающими катушками.

Сфера использования магнетронов

  • В устройствах радаров антенна подключена к волноводу. Она, по сути, является щелевым волноводом, или рупорным коническим облучателем вместе с отражателем в виде параболы (тарелка). Управление магнетрона осуществляется с помощью коротких мощных импульсов напряжения. В итоге образуется короткий импульс энергии с малой длиной волны. Малая часть такой энергии поступает снова на антенну и волновод, и далее к чувствительному приемнику. Сигнал обрабатывается и поступает на электронно-лучевую трубку на экран радара.
  • В бытовых микроволновых печах волновод имеет отверстие, которое не создает препятствие радиочастотным волнам в рабочей камере. Важным условием работы микроволновки является условие, чтобы при работе печи в камере находились какие-либо продукты. При этом микроволны поглощаются продуктами, и не возвращаются на волновод. Стоячие волны в микроволновой печи могут искрить. При долгом искрении магнетрон может выйти из строя. Если в микроволновке мало продуктов для приготовления, то лучше дополнительно поместить в камеру стакан с водой для лучшего поглощения волн.
  • В радиолокационных станциях используются коаксиальные магнетроны с быстрым изменением частоты. Это позволяет расширить тактико-технические свойства локаторов.
Проверка магнетрона тестером.

Проверка магнетрона тестером.

Выбор и приобретение детали

Чтобы самому приобрести магнетрон для домашней микроволновой печи, необходимо изучить и разобраться в маркировке, выяснить, какие бывают их виды, и их параметры. Показатель мощности у них равен 1150 ватт. Перед приобретением необходимо сопоставить цену магнетрона со стоимостью всей печи, и не забыть о стоимости работ по ремонту. Возможно, что не будет смысла в ремонте.

Можно ли заменить самостоятельно

Для разных моделей микроволновок можно устанавливать магнетрон других фирм изготовления. Главное, чтобы он подходил по мощности, в настоящее время не проблема приобрести его в торговой сети. Исключение составляют модели, которые уже сняты с производства. Однако, даже если вы разобрались в устройстве микроволновки, то не рекомендуется заниматься заменой деталей в домашних условиях, так как этим должны заниматься квалифицированные специалисты, способные обеспечить безопасную работу устройства. К тому же, сделать это самостоятельно будет довольно проблематично.

Интересно по теме: Как проверить стабилитрон.

Работа микроволновки

Пища имеет в составе воду, которая состоит из заряженных частиц. Продукты в микроволновой печи разогреваются посредством воздействия на них волн высокой частоты. Молекулы воды выступают в качестве диполя, так как проводят волны электрического поля.

Возможные неисправности

Внутренняя схема магнетрона содержит множество деталей, и, если случается поломка, то причина может крыться именно в них. Случается так, что одна из частей пришла в негодность, но влияет на работу всей лампы. Следует понять, в чем причина неисправности, и решить проблему в домашних условиях. Как именно, мы расскажем далее.

  • Металлический колпачок отвечает за сохранность вакуума внутри трубы.Зачастую он ломается, и требуется новая замена;
  • Радиатор может прийти в негодность, если деталь перегорает;
  • Нить накаливания в результате перегрева может оборваться. Для выявления такой неисправности нужен специальный прибор;
  • Фильтр может также перестать нормально функционировать, следует проверять тестером. Исправный элемент будет показывать бесконечность, а сломанный – численное сопротивление;
  • Изменение герметичности детали из-за перегрева;
  • Нарушение работы высоковольтного диода;
  • Неисправность конденсатора высокого напряжения;
  • Разлом контактов предохранителя, основная задача которого не допускать перегрева.

Установка и подключение нового устройства

Заменить магнетрон стоит после визуальной диагностики и попыток монтажа, если ничего не вышло – значит настало время установки новой детали. Помощь в подключении магнетрона вам могут предоставить в сервисном центре, но и сделать это своими руками будет несложно.

При покупке стоит быть внимательным: выбирайте аналогичную старой по мощности и расположению выходов деталь. Поскольку у магнетрона всего два контакта, то подсоединить его не составит труда. Во внимание стоит взять некоторые нюансы:

  • длина нового магнетрона, также как и диаметр антенны должны совпадать со сломанной деталью;
  • при установке убедитесь в достаточном примыкании детали к волноводу.

Самым оптимальным вариантом станет поход в сервисный центр со старой деталью, где обученные люди смогут подобрать нужный товар и установить его.

Устройство микроволновой печи.

Устройство микроволновой печи.

Полезные советы

При работе микроволновки вы обнаружили нехарактерный треск и шум, появление искр – прекратите использование, отсоедините от сети. Такая ситуация может привести к возгоранию без должного монтажа. Причиной может стать перегрев и перегорание колпачка, из-за которого печь начинает искрить. Поиск поломки и ее ликвидация будет стоить в разы дешевле, чем приобретение новой детали, поэтому оттягивать не стоит.

Слюдяная накладка бережет гнездо волновода от попадания в него пищевых отходов. Она может прийти в негодность, при обнаружении неполадок в системе колпачка, а это влияет на работоспособность магнетрона. Основное требование к слюдяной накладке: она должна содержаться в чистоте, т.к. жир под действием температур может проводить электрический ток и, как следствие, образует искры в камере.

Как устроен магнетрон: принцип работы и применение в микроволновой печи

Нестабильное напряжение в помещении негативно сказывается на СВЧ-печи. В такой ситуации лучше осуществлять работу устройства через стабилизатор. При уменьшении мощности износ катода прибора происходит чаще, т.е. при напряжении в объеме 200 Вт в два раза падает сила работы электронной лампы.

Не всегда поломка микроволновки связана со схемой питания и магнетроном. Прежде чем искать причину сбоя в них, проверьте внешний вид слюдяной пластины и степень напряжения в местах подключения устройства к сети питания.

Микроволновая печь – это важный бытовой предмет в современном укладе жизни, с множеством функций и задач, которые облегчают жизнь человека. Но для долгой и качественной работы нужно следить за внешним видом прибора, содержать его в чистоте и эксплуатировать согласно рекомендациям производителя.

Устройство магнетрона.

Устройство магнетрона.

Заключение

Рейтинг автора

Автор статьи

Инженер по специальности «Программное обеспечение вычислительной техники и автоматизированных систем», МИФИ, 2005–2010 гг.

Написано статей

Более подробную информацию об устройстве и использовании магнетрона можно узнать из статьи  Что такое безнакальные магнетроны. Если у вас остались вопросы, можно задать их в комментариях на сайте.

А также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов. Для этого приглашаем читателей подписаться и вступить в группу. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию во время подготовки материала:

www.electrosam.ru

www.ekb-holod.ru

www.tehnika.expert

www.youtwig.ru

www.vsem-zapchast.ru

www.magnetronic.kiev.ua

Проекты каркасных домов с фото

 

Предыдущая

Вакуумные приборыЧто такое пентоды и где они применяются

Следующая

Вакуумные приборыЧто такое клистрон и как он работает

Замена магнетрона | Ремонт Микроволновых, DVD, LCD, ЖК телевизоров своими руками.

 В этом статье мы поговорим о замене магнетрона, как можно поменять магнетрон. На самом деле поменять магнетрон одного типа на тот же самый много ума не надо: открутил 4 болта, вытащил, поставил новый. Особенно это касается магнетронов OM75, они вообще, бывает, на двух болтах крепятся, то есть два болта открутил (а нижней частью вставлены в специальные прорези) и вытащил его. При замене одного типа на другой тип нужно знать несколько факторов.

Замена магнетрона

Во-первых, хочу сказать, что все магнетроны в принципе взаимозаменяемы. Все магнетроны, которые используются в микроволновках, можно поменять один на другой, без всяких проблем. У одних поменьше корпус, у других побольше радиатор, исключение составляют лишь магнетроны, которые используются не с классическим трансформатором питания, а уже с инверторным блоком питания. В инверторных системах уже используются  магнетроны, немного отличающиеся от этой общей массы.

Есть некоторые параметры, которые все же нужно знать, чтобы не допустить ошибок. Сейчас мы о них поговорим. Во-первых, это высота или длина антенны. То есть антенна бывает вот примерно такая длиной. Это, к сожалению, у меня сейчас нет в наличии такого магнетрона, чтобы вам показать. Длина магнетрона влияет на согласование с волноводом. То есть смысл такой – если стоял магнетрон с короткой антенной, то ставить вместо него магнетрон с длинной антенной нежелательно.

Во-первых, он просто может не войти в волновод. Во-вторых, может оказаться близко к стенке волновода. Это может вызвать пробой. То есть если в этом волноводе стоял у нас магнетрон 2m214 таким вот образом, то в принципе можно сюда поставить любой другой магнетрон, но чтобы антенна была не длиннее, чем у родного.

А что касается наоборот замены магнетрона с длинной антенной на магнетрон с более короткой антенной, то я прекрасно менял, проблем никаких не возникает. Ну и поговорим о креплениях – собственно такое большое количество креплений, за что крепится магнетрон к корпусу печи, вызывает большое разнообразие и много вопросов. Что если другое крепление, то магнетрон не подходит. Ничего подобного, магнетроны можно менять, что касается крепления, то нужно конечно напрягать фантазию.

К примеру, если взять магнетрон OM52, я его ставил вместо OM75. И, как видим, если вот так прикинуть, то отверстия совпадают по ширине. Но по длине не совпадают. Что я делал. То есть если его подставить, OM52, то отверстия OM75 будут примерно здесь находиться, выше.

Просто заворачиваем сюда саморез с шайбой и также снизу, и он прекрасно прижимается. Вот вам как вариант. Допустим у магнетронов 2M214, 2M226, при замене такого магнетрона можно просверлить отверстия прямо в волноводе.

То есть, если видим, что у нас немного не совпадает, некуда привернуться, можно прямо вот под эти отверстия сделать отверстия в волноводе и завернуть саморезы.

Что еще хочу сказать по поводу замены – допустим, такая ситуация, меняете OM75 и видим, что у него питание подходит снизу, и мы заместо него ставим допустим такой 214 или 206, у которого питание подходит с другой стороны. Нам нужно соблюсти вентиляцию, так мы его не имеем права ставить. Мы его ставим так и в таком случае нужно будет удлинять провода.

Замена магнетрона в микроволновке

Страшного в этом ничего нет, просто берем колодку с питанием, имеющуюся у нас в запчастях, отрезаем провода, надставляем и перематываем изолентой, и все будет нормально работать. Главное, чтобы вентиляция была направлена правильно.

И пару слов по поводу питания – то есть либо так, либо так, значения никакого не имеет, потому как, в любом случае у нас подходит и накальное питание, и высоковольтное питание. То есть для катода это большого значения не имеет, полярности не существует. Можно его немножко повернуть.

Самое главное – чтобы у нас соблюдалась вентиляция, то есть продувка была горизонтальная. Куда идет поток воздуха, чтобы он продувал радиатор, а не вот так вот, то есть если крепления допустим у другого магнетрона подходят, и мы вот так его привернем, то тут видно, что продуваемости не будет, магнетрон уже будет перегреваться. Вот это вот третий фактор очень важный.

То есть первое у нас это высота антенны, на это нужно обратить внимание. Второе это крепление, дальше я покажу, какие способы можно применять. И третий фактор, крепя другой магнетрон, альтернативный, не родной, нужно смотреть, чтобы была продуваемость радиатора, то есть прохождение от вентиляции было горизонтально. То есть если поток воздуха идет снизу, и стоит вентилятор внизу – есть такая конструкция микроволновок, где вентиляция идет снизу, там соответственно стоит магнетрон так и продувается кверху. Это вот третий фактор, очень важный в данном случае. Ну и приступаем к замене.

Итак, чтобы нам приступить к замене магнетрона, нужно во-первых убедиться в его неисправности. На примере данной печки мы поменяем магнетрончик. Для того, чтобы убедиться, что он действительно не работает, ставим водичку.

Видеокурс по ремонту микроволновых печей  “Отремонтируй микроволновку сам!”

Я включаю печь, даю минуту и прислушиваюсь к нему. Вот такое интересное поведение у данного магнетрона – он запускается, слышим звук резонанса, но он не раскачивается, то есть не входит в полный резонанс, не достигает той частоты, которая нужна ему для генерации СВЧ.

И он как бы не дотягивает, это говорит о том, что у магнетрона закончилась эмиссия катода, и вот эти вылетевшие электроны из катода, их малое количество, не хватает для возбуждения резонаторов. И соответственно, резонанс получается не полный, частота не набирается, налицо магнетрон с потерянной эмиссией.

Как видим, он не дает сильно большой нагрузки, то есть не вылетает предохранитель, не выходит из строя диод, он сам даже практически не греется, вот он минуту поработал и холодный. И соответственно вода тоже будет холодная. Это вот потеря эмиссии, то есть запас электронов в катоде исчерпан.

Ну и что нам делать – мы откручиваем этот магнетрон, магнетрон называется 2M213. На этот магнетрон у меня есть замена – 2M214, у него чуть побольше радиатор, ну а в принципе они полностью взаимозаменяемые, и мы можем смело его поменять. На всякий случай разряжаем конденсатор, снимаем питание, откручиваем от него воздухоотвод, чтобы он нам не мешал, и откручиваем болты, которыми прикручен магнетрон. Тут есть тоже свой нюанс, не стоит его забывать, когда болты откручиваются, они часто теряются.

На самом деле, они примагничиваются к магниту магнетрона, то есть болты откручиваешь – а они пропали. Прежде чем искать болты где-нибудь в печке и так далее, стоит заглянуть в сам магнетрон, он может вот  так вот сидеть спрятанным. То есть примагнититься к магниту и спрятаться, или вот так даже прилипнуть.

Ну вот, магнетрон с потерянной эмиссией, и ставим 2M214. В данном случае есть такие крючки и прорези, то есть он как бы на них навешивается. Поэтому таким же образом его и  ставим, как бы навешиваем, потом заворачиваем болты. Я делают вот таким образом, сначала можно нижние… Главное попасть в резьбу. Ну вот, закрутился. Теперь следующий.

Итак, магнетрон прикрутили, включаем питание, а кстати еще этот воздухозаборник тоже нужно привернуть. Так, ну и все, можно проверять. Ставим воду, подключаем, ставим полторы минуты хотя бы. Вот, срезонировал, вошел в резонанс, немножко потрещал и сейчас он излучает СВЧ, сейчас работает в режиме. Ну вот, водичка парит, водичка горячая, это говорит о том, что поменяли магнетрон мы удачно. Магнетрон тоже горячий. Пока на этом все.

Замена магнетрона своими руками

Бывают такие ситуации, когда есть подходящий по параметрам магнетрон – и накальное напряжение одинаковое, и напряжение питания катода тоже одинаковое, но не подходят крепления. Видим, у OM75 кверху, книзу ушки, а у этого, 2M24, у него влево и вправо.

В таком случае есть выход – конструкция волновода так устроена, что за края можно зацепиться шайбами, как крючками. То есть шайбу, если согнуть, она будет играть роль зацепа. Таким вот образом это делается. У нас получилось два таких крючка. Дальше берем магнетрон, подбираем болт по длине с гайкой, берем шайбу поменьше, это дело наживляем.

То же самое делаем с другой стороны. Если болты короткие, нужно выбрать подлиннее. В некоторых случаях можно исключить дополнительную шайбу, чтобы можно было зацепиться. Иногда потребуется немного расширить эти вот места, для этого нужно просто отверткой… Не забываем, что у нас вот здесь проходит ось центральная, надо, чтобы она у нас совпадала, и совпадало здесь.

Поэтому где-то у нас в этом месте будут крючки, и легко поддается, можно таким вот образом немножко расшорошить. Немножко отогнуть то место, куда будут цепляться наши шайбы-крючки. И теперь это дело нужно постараться все установить. Тут не обойтись без пинцета конечно.

Итак, вот я зацепил магнетрон, зацепил шайбами с одной стороны и с другой стороны тоже так же. Пока они ослаблены, можно его позиционировать по центру, чтобы он четко стоял по центру, ну и потом уже начинать затягивать поочередно с одной стороны и с другой стороны. Ну вот и все.

Вот таким вот креплениями можно исправить положение и заменить магнетрон практически на не родной, не от этой печи. И все, осталось собрать.

принцип работы, устройство, электрическая схема, магнетрон

Микроволновая печь, более известная как микроволновка – полезный кухонный прибор, который в разы упрощает повседневную жизнь. Имея ее в своем арсенале, не придется подолгу возиться на кухне, подогревая пищу. Микроволновую печь еще называют СВЧ-печью.

Задача этого бытового электроприбора – быстрое приготовление или быстрый подогрев приготовленной пищи, размораживание продуктов. Если сравнивать с классической печью, например, духовкой, микроволновка разогревает продукты не с поверхности, а по всему объему.

Как работает микроволновка

Микроволны, глубоко проникая практически в любую пищу, в разы сокращают время разогрева. В статье пойдет речь о принципе работы и устройстве этой техники, незаменимой на кухне.

Принцип работы микроволновой печи

Чтобы разобраться с этим, необходимо немного вводных данных. Большинство продуктов питания в своем составе содержат следующие вещества: соли, жиры, сахар, воду. Чтобы микроволны «работали», то есть грели пищу, в продуктах должны быть дипольные молекулы.

С одной стороны у них положительный электрический заряд, с другой – отрицательный. В пище этих молекул достаточно – это жиры и сахар, но главный диполь – молекула воды.

В овощах, мясе, фруктах и рыбе содержится большое число дипольных молекул, количество которых достигает миллионов. Если электрического поля нет, молекулы располагаются в хаотическом порядке.

Научное подтверждение

В СВЧ-печах микроволны имеют частоту 2450 Мгц

При наличии электромагнитного поля, они начинают «выстраиваться»: «плюс» направлен в одну сторону, «минус» в другую. Когда поле меняет полярность, молекулы «разворачиваются» на 180 градусов.

В СВЧ-печах микроволны имеют частоту 2450 Мгц. 1 герц = 1 колебанию за секунду. Мегагерц – миллион колебаний. Полярность меняется дважды за один период волны.

Когда на продукты воздействует микроволновое излучение, молекулы в них начинают вращаться чаще, буквально стираясь друг о друга. При этом выделяется тепло, которое и служит источником нагрева продуктов.

Нагрев пищи микроволнами можно сравнить с тем, как греются ладони, если тереть ими одна об другую. «Волны» воздействуют только на поверхностный слой пищи, проникая не глубже 1 – 3 см.

Но, тепло «идет» дальше – включается физика теплопроводности. Отсюда же следует совет: если нужно разогреть большой кусок мяса, лучше выставить микроволновую печь на среднюю мощность. Так он прогреется лучше, хоть на это и уйдет больше времени. Тепло из наружных слоев начнет проникать внутрь.

Аналогично дела обстоят и с супами: их лучше периодически вынимать из печи и перемешивать, помогая теплу пробиться внутрь.

В выпускаемых сейчас моделях печей может быть функция «Двойного излучения» — это говорит о раздвоенном источнике излучения. Благодаря этому разделению продукты прогреваются равномернее, а СВЧ-печь имеет повышенный КПД.

Схема СВЧ печи

Наглядным примером послужит модель микроволновки Samsung RE290D. Принципиальная электрическая схема поможет понять, как работают печи от любых производителей. Отличаться они могут разве что специфическими модификациями. Сама схема представлена на фото.

Схема СВЧ печи

В левой части заметно, что заземляющий контакт вилки соединяется с корпусом, а тот подключен от средней точки конденсаторной развязки фильтра, снижающего помехи высокочастотного излучения.

В области входа питания находится предохранитель плавного типа – FU1. Для проверки его состояния пользуются электрическими методами – прозванивают цепь мультиметром, работающим в режиме омметра.

Есть второй предохранитель, защищающий микроволновку от работы в аварийном режиме, например, когда неисправны микровыключатели дверцы.

Чтобы магнетрон – источник излучения, начал «работать», контакты исправности дверцы размыкаются, а все остальные – замыкаются. Если их отключить, причем любой, то с высоковольтного трансформатора снимется питающее напряжение.

В схеме есть термические предохранители-датчики (2 шт.), которые, в зависимости от температуры корпуса магнетрона и рабочей камеры, размыкаются и замыкаются. У первого – периодическая работа. Он защищает магнетрон от перегрева. Второй срабатывает, если неисправен вентилятор или засорились вентиляционные отверстия.

Samsung RE290D

СВЧ Samsung RE290D

Контакт страхующего реле обеспечивает подключение электродвигателей таймера и охлаждающего вентилятора. Если предохранитель «Monitor Fuse» перегорит, обмотка реле выходит из строя.

Переключатель, отвечающий за выбор мощности, находится на таймере. Он, следуя алгоритмам, снимает напряжение со схемы магнетрона.

Резистор R1 кратковременно снижает пусковой ток трансформатора. Для этого требуется работоспособный релейный контакт «Inrush Relay».

Его задача – ограничение импульса, вызванного разрядом конденсатора (он может получить заряд до того, как включится). Это обеспечивает плавный запуск микроволновой печи.

Силовая схема этой печи от Самсунг проста для тех, кто в этом разбирается. Главное различие в СВЧ-печах – электронные блоки, с разной конструкцией и функциональными возможностями.

Устройство микроволновки

Внутри микроволновки есть несколько обязательных деталей, поэтому не лишним будет знать, какова их роль. Внутреннее строение имеет следующую конструкцию: металлическая камера, в которой происходит нагрев пищи и дверца, предотвращающая выход излучения наружу.

Чтобы продукты питания разогревались равномернее, для этого в камере предусмотрен вращающийся столик, работающий от мото-редуктора (мотора). Но есть и другие ответственные детали.

Блок управления

Блок управления

Блок управления СВЧ

Панель управления бывает:

  • механической;
  • электронной.

Блок управления поддерживает заданную мощность и выключает устройство по истечении заданного времени.

Внутри электронного блока – микроЭВМ с богатым потенциалом, поэтому в ходе производства печей ему находят другое применение. Например, встраивают часы или отрывки мелодий, которые сигнализируют об окончании работы.

Блок управления – схема, с которой напрямую взаимодействует человек. Рабочими органами выступают: кнопки, механические переключатели, регуляторы, при помощи которых выставляются параметры работы. Посредством них задается мощность, выбирается режим, программа.

Сама схема устроена по-разному. Простейшая представляет собой круговые регуляторы, один из которых – таймер. Бывает и гибридная система – с кнопками. Она, по сравнению с «механикой» более функциональна.

Все чаще встречается блок управления в виде сенсорной панели. Принципом работы она аналогична механическим кнопкам, только надежнее. Продвинутые схемы поддерживают «программирование» — настраивается мощность и время выдачи излучения.

Блок генерации СВЧ излучения

Блок генерации СВЧ излучения

Это «сердце» микроволновой печи. Выглядит элемент как вакуумная лампа, которую можно было встретить в старых кинескопных телевизорах.

Его задача – генерирование интенсивной электромагнитной волны высокой частоты. Когда электроны проходят через магнитное поле – образуется волна, длина которой бывает разной.

Блок генерации включает не единственный СВЧ-источник. Чтобы волны поступали в рабочую зону печи, в ней предусмотрены волноводы. Расположены они за слюдяной пластиной, которая «прячется» за боковой стенкой.

Системы основной и вторичной защиты

Контрольные датчики следят за тем, чтобы ключевые электронные и аппаратные части работали исправно, а не в аварийном режиме. Их функция – обеспечение безаварийной работы микроволновой печи и предотвращение опасных сбоев.

Контрольный датчик

Контрольный датчик

Чтобы защитить человека от воздействия микроволн, в СВЧ-печах есть запорный механизм, состоящих из нескольких выключателей:

  • Primary Switch;
  • Secondary Switch;
  • Door Switch;
  • Monitor Switch.

Блок, генерирующий СВЧ-излучение, начнет работать только тогда, когда замкнутся контакты первичного и вторичного выключателей (закроется дверца).

Задача дверного (door) выключателя – блокировать работу реле регулировки мощности. Устанавливается он преимущественно в технике с электронным блоком управления.

Функции микроволновки

Функции микроволновки

Разогрев пищи в СВЧ

Микроволновую печь большинство используют просто для нагрева пищи. Но эта техника способна на большее. С ее помощью можно даже готовить шашлык, курицу-гриль, выпекать картошку и так далее.

Единственное, режим «гриль» требует мощности в 1500 Вт, значит света «тянуть» печь будет немало. Да и магнетрон – блок, генерирующий излучение, не вечен.

Поэтому, чем реже пользоваться печью, тем дольше она прослужит. Сейчас редко кто полностью отказывается от традиционных плит в пользу микроволновок.

Перечь функций, доступных в СВЧ-печах и их назначение:

  • подвижный гриль. Позволяет менять угол наклона. Те, кто предпочитает курицу-гриль, выбирают печи с этой функцией;
  • конвекция. Обдув продуктов питания горячим воздухом. Как заявляют производители, эта функция предназначена для выпекания. Правда, модели печей с нею дорогие, тяжелые и громоздкие. Неудивительно, так как сзади техники ставится немаленький вентилятор, нагнетающий воздух;
  • биопокрытие. Иначе – керамическое покрытие, хотя производители именуют их по-разному. Его преимущества: стойкость, прочность, биологическая инертность (микробы не будут размножаться внутри печи, даже если долго ее не мыть). Чем дороже модель микроволновки, тем «навороченней» в ней покрытие;
  • автоприготовление. Это функция, встречающаяся в технике компании LG. Есть программы, полностью автоматизированные, предназначенные для готовки определенного блюда. К примеру, готовится каша. С этим режимом остается только выбрать вес продукта, а мощность и время зададутся автоматически;
  • размораживание. Все просто – печь работает на минимальной мощности, необходимой для разморозки продуктов;
  • Intellowave. Система, позволяющая равномерно прогреть еду, например, большой кусок мяса. Встроенные датчики «наблюдают» за отдельными участками продукта, определяя температуру поверхности и регулируя мощность;
  • подача пара. Дополнительная возможность, предотвращающая пересушивание пищи в ходе приготовления;
  • проветривание рабочей камеры. Полезно, если хочется, чтобы новое блюдо не пропиталось оставшимися запахами.

Это основные функции, но они постоянно дополняются новыми.

Что такое магнетрон

Магнетрон в микроволновке – это элемент, генерирующий высокочастотное излучение в рабочей камере. Излучаемые электромагнитные волны воздействуют на молекулы, содержащиеся в пище, из-за чего она разогревается. То есть для подогрева не требуется внешнее тепловое воздействие.

Именно по этой причине температура в микроволновках не превышает отметку в +100 градусов Цельсия. Магнетрон – основная деталь, которая иногда выходит из строя. Ее можно заменить на новую, но для этого учитывается полная совместимость по мощности, частоте, расположению клемм.

Принцип работы магнетрона

Микроволновая печь работает так: она преобразует электроэнергию в высокочастотное электромагнитное излучение. В результате, молекулы воды, содержащиеся в пище, начинают «двигаться», что приводит к разогреву. Устройство, генерирующее микроволны, называется магнетроном.

Принцип работы магнетрона

Магнетрон СВЧ

Нередко магнетрон сравнивают с электровакуумным диодом, который работает за счет явления термоэлектронной эмиссии. Явление образуется, если нагревается поверхность катода или эмиттера.

Высокая температура «вынуждает» активные электроны покинуть поверхность. Но для этого на анод должно подаваться напряжение.

Образуемое электрическое поле приводит электроды в движение, которые по силовым линиям направляются к аноду. Электрон, оказавшийся в области магнитного поля, меняет свою траекторию.

Анод магнетрона выполнен в форме цилиндра с полостями. Внутри него расположен катод с нитью накаливания. По краям анода находятся кольцевые магниты, образуемые магнитное поле. Из-за них электроны не способны напрямую двигаться от катода к аноду.

Их траектория нарушается, и они начинают вращаться вокруг катода. Электроны, проходящие около резонаторов, отдают им часть собственной энергии (взаимозаменяемость). В результате в полости образуется мощное сверхвысокочастотное поле, выводимое наружу посредством проволочной петли.

Магнетрон «запускается», когда на анод подается высокое напряжение – 3000 – 4000 В. По этой причине в бытовых электросетях магнетрон должен подключаться через высоковольтный трансформатор.

Устройство магнетрона

Магнетрон – элемент, ответственный за генерацию высокочастотных колебаний. Есть устройства с похожим принципом действия – клистроны и платинотроны, но они не получили должного распространения.

Магнетрон

Впервые магнетрон задействовали в СВЧ-печи в 1960 году. Сейчас используется многорезонаторный элемент. Его компоненты и их описания:

  • анод. Цилиндр из меди, состоящий из нескольких секторов. В нем есть полости-резонаторы, которые создают кольцевую систему колебаний;
  • катод. Цилиндр с нитью накаливания, расположенный в центре магнетрона. Эта часть ответственна за эмиссию электронов;
  • кольцевые магниты. Расположены на торцах печи. Они создают магнитное поле, направленное параллельно они магнетрона. Электроны движутся в том же направлении;
  • проволочная петля. Находится в резонаторе, соединяется с катодом и выводится к антенне-излучателю. Задача петли – вывод высокочастотного излучения в волновод. Оттуда оно поступает в рабочую камеру микроволновки.

У магнетронов простая конструкция, поэтому применяются они не только в микроволновых печах, но и в радиолокации.

Подключение магнетрона

Схема включения – однополупериодное выпрямление высоковольтного напряжения. Выход трансформатора работает в режиме короткого замыкания выходной обмотки (не дольше 5 минут).

Подключение магнетрона

Испорченный магнетрон нет смысла нести в ремонт – даже хорошо оснащенные мастерские этим не занимаются. Поэтому приобретают новую деталь.

Извлекая ее из микроволновки, помечают контакты разъемов, чтобы не перепутать их при переустановке. При неправильном подключении выводов магнетрон работать не будет.

С заменой справится любой, кто хоть раз держал в руках отвертку и умеет прозванивать диоды. Знания касаемо принципа работы, устройства и коэффициента полезного действия элемента не потребуются. Не всегда можно отыскать такой же магнетрон, что и был

.

Но подойдет аналогичная деталь. Мощность выбирается та же или выше, крепления и разъемы подключения должны совпадать.

Независимо от производителя, магнетроны имеют единое устройство, отличается только конструкция. Поэтому, заменяя деталь, нужно убедиться, что аналог плотно прилегает к волноводу.

Благодаря серийному изготовлению СВЧ блоков микроволновка становится простой, но полезной в условиях кухни техникой, которая в разы облегчает процедуру приготовления или разогрева пищи. Обслуживать ее легко, а конструкция не предполагает незаменимых деталей, что повышает надежность. Бытует мнение, что излучения от микроволн – вредны, но это не более чем миф.

Facebook

Twitter

Вконтакте

Google+

Как проверить магнетрон в микроволновой печи

Микроволновая печь быстро нагревается из-за работы магнетрона. Благодаря ему пища не только прогревается, но и сохраняет свои питательные свойства с ароматом. Если деталь ломается, техника перестает работать. Следует знать, как проверить магнетрон в микроволновке.

Что это такое и как устроен

Элемент генерирует высокочастотное излучение в микроволновке. Пища нагревается благодаря электромагнитным волнам. Молекулы жидкости в продуктах начинают двигаться, из-за этого происходит нагрев. Поэтому пища может прогреться без теплового влияния извне. Температура в СВЧ не превышает 100 градусов.

Магнетрон работает так же, как и обычная электрическая лампочка. На корпус попадает высокое напряжение. Оно является катодом. Когда микроволновку подключают к электросети, к аноду начинают устремляться электроны.

Анод состоит из медной гильзы (цилиндра с лампой и трубкой). Также внутри есть вакуумные секции и вольфрамовая нить, обеспечивающая накал. На боках магниты. От них излучение движется по спиралевидной траектории движения.

Электроны движутся по резонатору с высокой скоростью, что возбуждает высокочастотный ток. Появляется поток светодиодного излучения. Он направляется к духовому шкафу через антенну.

Магнетрон в СВЧУстройство магнетрона в СВЧ

Важно! Если температура внутри камеры превысит норму, сработает защита от перегорания. Ее обеспечивают алюминиевые пластины радиатора.

Признаки поломки

Выявить поломку в домашних условиях можно по следующим признакам:

  1. Пища плохо подогревается. Если еда не нагревается даже при большой мощности, причина может быть в магнетроне.
  2. Появился дым. Вместе с ним на поломку указывают оплавленнные детали внутри камеры.
  3. Посторонние звуки во время разогрева пищи. Это похоже на гудение и звон. Притом неисправная микроволновка может издавать звук даже по окончании готовки. Это продолжается в течение нескольких минут.

Если обнаружен любой из этих признаков, микроволновку лучше сдать в ремонт. Если вовремя не провести диагностику и не устранить проблему, могут пострадать другие детали.

Как проверить магнетрон на исправность

Без магнетрона микроволновая печь не может работать. Поэтому если эта деталь сломалась, многие покупают новую технику. Но сначала стоит убедиться в том, что причина поломки именно в магнетроне.

Необходимо отключить СВЧ от сети. Затем нужно посмотреть, нет ли внешних признаков поломки магнетрона. Во внутреннем отсеке можно заметить оплавленные участки, деформированные детали. Если они присутствуют, дело в сломанном магнетроне.

Также можно воспользоваться тестером или мультиметром. Нужно подключить его к элементу электромагнитного излучения. Если накал станет нарастать, на тестере отобразится знак бесконечности.

Как проверить магнетрон на исправностьПроверка магнетрона

Как починить и возможность замены

Магнетрон не чинят даже в оборудованных мастерских. Эту деталь легче заменить на новую. Сначала элемент извлекают из микроволновки, меняют контакты разъема. Это нужно для исключения путаницы при монтаже нового магнетрона. Ведь если деталь установлена неправильно, микроволновая печь не включится.

Устройство магнетрона у разных производителей одинаковое. Но деталь отличается своей конструкцией. Нужно обращать внимание на то, как аналог прилегает к волноводу. Если прилегание неплотное, стоит поискать другую модель магнетрона.

Полезные статьи, новости и обзоры на нашем канале Яндекс Дзен

Перейти

Устройство микроволновки.

Устройство и конструкция СВЧ-печи

Главная деталь в любой СВЧ печи – это магнетрон. Магнетрон – это такая специальная вакуумная лампа, которая создаёт СВЧ-излучение. СВЧ-излучение весьма интересным образом воздействует на обычную воду, которая содержится в любой пище.

При облучении электромагнитными волнами частотой 2,45 ГГц молекулы воды начинают колебаться. В результате этих колебаний возникает трение. Да, обычное трение между молекулами. За счёт трения выделяться тепло. Оно то и разогревает пищу изнутри.  Вот так вкратце можно объяснить принцип действия микроволновки.

Конструкция микроволновки.

Конструктивно микроволновая печь состоит из металлической камеры, в которой приготавливается пища. Камера снабжена дверцей, которая не позволяет излучению выйти наружу. Для равномерного разогрева пищи внутри камеры установлен вращающийся столик, который приводится в движение мото-редуктором (мотором), который сокращённо называется T.T.Motor (Turntable motor).

СВЧ-излучение генерируется магнетроном и через прямоугольный волновод подаётся в камеру. Для охлаждения магнетрона во время работы служит вентилятор F.M (Fan motor), который прогоняет холодный воздух через магнетрон. Далее нагретый воздух от магнетрона через воздуховод направляется в камеру и также используется для нагрева пищи. Через специальные неизлучающие отверстия часть нагретого воздуха и водяной пар выводится наружу.

В некоторых моделях СВЧ-печей для формирования равномерного нагрева пищи используется диссектор, который устанавливается в верхней части камеры микроволновки. Внешне диссектор напоминает вентилятор, но он предназначен для создания определённого типа СВЧ-волны в камере так, чтобы осуществлялся равномерный прогрев пищи.

Электрическая схема микроволновки.

Давайте взглянем на упрощённую электрическую схему рядовой микроволновки (кликните для увеличения).

Как видим, схема состоит из управляющей части и исполнительной. Управляющая часть, как правило, состоит из микроконтроллера, дисплея, кнопочной или сенсорной панели, электромагнитных реле, зуммера. Это «мозги» микроволновки. На схеме всё это изображено отдельной платой с надписью Power and Control Curcuit Board. Для питания управляющей части микроволновки используется небольшой понижающий трансформатор. На схеме он отмечен как L.V.Transformer (показана только первичная обмотка).

Микроконтроллер через буферные элементы (транзисторы) управляет электромагнитными реле: RELAY1, RELAY2, RELAY3. Они включают/выключают исполнительные элементы СВЧ-печи в соответствии с заданным алгоритмом работы.

Исполнительные элементы и цепи — это магнетрон (Magnetron), мото-редуктор столика T.T.Motor (Turntable motor), охлаждающий вентилятор F.M (Fan Motor), ТЭН гриля (Grill Heater), лампа подсветки O.L (Oven Lamp).

Особо отметим исполнительную цепь, которая является генератором СВЧ-излучения.

Начинается эта цепь с высоковольтного трансформатора (H.V.Transformer). Он самый здоровый в микроволновке. Собственно, это и не удивительно, ведь через него нужно прокачать мощность в 1500 — 2000 Вт (1,5 — 2 kW), необходимых для магнетрона. Выходная же (полезная) мощность магнетрона 500 — 850 Вт.

К первичной обмотке трансформатора подводится переменное напряжение сети 220V. С одной из вторичных обмоток снимается переменное напряжение накала 3,15V. Оно подводится к накальной обмотке магнетрона. Накальная обмотка необходима для генерации (эмиссии) электронов. Стоит отметить, что ток, потребляемый этой обмоткой, может достигать 10A.

Другая вторичная обмотка высоковольтного трансформатора, а также схема удвоения напряжения на высоковольтном конденсаторе (H.V.Capacitor) и диоде (H.V. Diode) создаёт постоянное напряжение в 4kV для питания анода магнетрона. Ток анода небольшой и составляет где-то 300 мА (0,3A).

В результате электроны, эмитированные накальной обмоткой, начинают своё движение в вакууме.

Особая траектория движения электронов внутри магнетрона создаёт СВЧ-излучение, которое и нужно нам для нагрева пищи. СВЧ-излучение отводится из магнетрона с помощью антенны и поступает в камеру через отрезок прямоугольного волновода.

Вот такая несложная, но весьма изощрённая схема является неким СВЧ-нагревателем. Не стоит забывать, что сама камера СВЧ-печи является элементом данного СВЧ-нагревателя, так как представляет, по сути, резонатор, в котором возникает электромагнитное излучение.

Кроме этих элементов в схеме микроволновой печи есть множество защитных элементов (см. термовыключатели KSD и аналоги.). Так, например, термовыключатель контролирует температуру магнетрона. Его штатная температура при работе где-то 800 – 1000C. Этот термовыключатель крепится на магнетроне. По умолчанию он не показан на упрощённой схеме.

Другие защитные термовыключатели подписаны на схеме, как OVEN THERMAL CUT-OUT (устанавливается на воздуховоде), GRILL THERMAL CUT-OUT (контролирует температуру гриля).

При наличии нештатной ситуации и перегреве магнетрона термовыключатель размыкает цепь, и магнетрон перестаёт работать. При этом термовыключатель выбирается с небольшим запасом — на температуру отключения 120 – 1450С.

Весьма важными элементами микроволновой печи являются три переключателя, которые встроены в правый торец камеры СВЧ-печи. При закрытии передней дверцы два переключателя замыкают свои контакты (PRIMARY SWITCH – главный выключатель, SECONDARY SWITCH– вторичный выключатель). Третий – MONITOR SWITCH (контрольный выключатель) – размыкает свои контакты при закрытии дверцы.

Неисправность хотя бы одного из этих выключателей приводит к неработоспособности микроволновки и срабатыванию плавкого предохранителя (Fuse).

Чтобы снизить помехи, которые поступают в электросеть при работающей СВЧ-печи, имеется сетевой фильтр — NOISE FILTER.

Дополнительные элементы микроволновки.

Кроме базовых элементов конструкции, микроволновка может быть оснащена грилем и конвектором. Гриль может быть выполнен в виде нагревательного элемента (ТЭН’а) или инфракрасных кварцевых ламп. Эти элементы микроволновки очень надёжны и редко выходят из строя.

Нагревательные элементы гриля: металло-керамический (слева) и инфракрасный (справа).

Инфракрасный нагреватель представляет собой 2 последовательно включенные инфракрасные кварцевые лампы на 115V (500 — 600W).

В отличие от микроволнового нагрева, который происходит изнутри, гриль создаёт тепловое излучение, которое разогревает пищу снаружи внутрь. Гриль разогревает пищу медленнее, но без него невозможно приготовить поджаристую курочку .

Конвектор — это, не что иное, как вентилятор внутри камеры, который работает в паре с нагревателем (ТЭН’ом). Вращение вентилятора обеспечивает циркуляцию горячего воздуха в камере, что способствует равномерному прогреву пищи.

Про фьюз-диод, высоковольтный конденсатор и диод.

Элементы в цепи питания магнетрона обладают интересными свойствами, которые нужно учитывать при ремонте микроволновки.

  • Так, по умолчанию, высоковольтный конденсатор (H.V.Capacitor) имеет встроенный резистор.

    Он служит для разряда конденсатора. Дело в том, что конденсатор находится под высоким напряжением (2 кВ), и поэтому после выключения СВЧ-печи требуется его разряд. Это предохранительная мера. Также бывает, что резистор внутри конденсатора перегорает, и конденсатор не разряжается. Поэтому перед проведением ремонта микроволновки рекомендуется принудительно разряжать конденсатор на корпус.

    Внешний вид высоковольтного конденсатора 1.0µF * 2100V AC.

  • Высоковольтный диод (H.V. Diode) является комбинированным элементом и состоит из целой вереницы последовательно включенных диодов. Это позволяет составному диоду работать с высоким напряжением. Но в этом кроется подвох. Дело в том, что протестировать такой диод стандартной методикой проверки не удастся. Мультиметр просто не сможет «открыть» такой диод из-за того, что пороговое (прямое) напряжение отпирания (VF) диодов складываются. В результате в прямом и обратном включении высоковольтный диод будет иметь высокое сопротивление.

    Так, например, для диода HVR-1X3 максимальное прямое напряжение (VF) составляет 11V. Если учесть, что обычно падение напряжения на переходе в прямом включении (VF) у кремниевых диодов составляет 1 — 1.1V, то получается, что в диоде HVR-1X3 ориентировочно смонтировано 10 последовательно включенных диодов.

    Максимальное постоянное обратное напряжение такого диода — 12kV!

  • В некоторых микроволновых печах параллельно высоковольтному конденсатору устанавливается фьюз-диод (защитный диод). По сути, фьюз-диод — это двунаправленный высоковольтный супрессор. Он служит для того, чтобы защитить конденсатор от завышенного рабочего напряжения, которое чревато выходом из строя последнего. Но на практике чаще бывает так, что он сам и выходит из строя. В таком случае ремонтники просто удаляют его из цепи, как ненужный аппендикс. На деле оказалось, что микроволновки прекрасно работают и без такого диода.

Для тех, кто желает более детально разобраться в устройстве СВЧ-печей, подготовлен архив с сервисными инструкциями микроволновых печей (Daewoo, SANYO, Samsung, LG). В инструкции приведены принципиальные схемы, схемы разборки, рекомендации по проверке элементов, список комплектующих.

Также рекомендуем ознакомиться с книгой «Ремонт микроволновых печей».

Главная &raquo Мастерская &raquo Текущая страница

Также Вам будет интересно узнать:

 

Как работают магнетроны? — Объясни, что материал

Криса Вудфорда. Последнее изменение: 17 октября 2019 г.

Хотите приготовить ужин за пять минут или сделать самолет безопаснее? летать в непогоду? Тогда тебе понадобятся микроволновки. Это невидимые, сверхэнергетические коротковолновые радиоволны, которые распространяются на скорости света, делая важные вещи в микроволновых печах и радарно-навигационное оборудование.Сделать микроволновую печь легко, если у вас есть оборудование — удобный гаджет, называемый магнетроном. Что это и как это работает? Возьмем пристальный взгляд!

Фото: Магнетрон с резонатором CV64, разработанный в Бирмингеме в 1942 году, был достаточно мал, чтобы поместиться внутри самолета. Подобные устройства позволили самолетам впервые использовать радиолокационную защиту. Выставка в Think Tank (музей науки в Бирмингеме, Англия). Приносим извинения за немного плохое качество изображения: экспонат находится в стеклянной витрине и его трудно сфотографировать.

Как работает магнетрон?

Изображение: Справа: один из рисунков высокоэнергетического магнетрона, разработанного в 1940-х годах Перси Спенсером, который усовершенствовал микроволновую печь, работая в Raytheon. (Я раскрасил его так, чтобы он соответствовал моему собственному рисунку ниже.) Вы можете увидеть увеличенную версию этого рисунка и прочитать полные технические детали через Google Patents. Изображение любезно предоставлено Бюро по патентам и товарным знакам США.

Магнетроны ужасно сложны.Нет, правда — они ужасно сложный! Чтобы понять, как они работают, я считаю полезным сравнить их к двум другим вещам, которые работают аналогичным образом: телевизор старого образца набор и флейта.

Магнетрон имеет много общего с электронно-лучевым. (электронная) трубка, герметичная стеклянная колба, которая превращает изображение в телевизор старого образца. Трубка — это сердце телевизора: она делает картинку вы можете увидеть, стреляя пучками электронов в экран, покрытый в химических веществах, называемых люминофором, поэтому они светятся и выделяют точки света.Вы можете прочитать все об этом в нашей основной статье на телевидение, но вот (вкратце) то, что происходит. Внутри телевизора, есть отрицательно заряженная электрическая клемма, называемая катодом который нагревается до высокой температуры, поэтому электроны «выкипают» из него. Они ускоряются вниз по стеклянной трубке, привлеченные положительно заряженный терминал или анод и достигают таких высоких скоростей, что они промчаться мимо и врезаться в люминофорный экран на конце трубки. Но Магнетрон не имеет той же цели в жизни, что и телевизор.Вместо того, чтобы делать изображение, он предназначен для генерации микроволн — и он делает это немного как флейта. Флейта — это открытая труба, наполненная воздухом. Дуть поперек верхнюю часть правильным образом, и вы заставляете ее вибрировать в определенном музыкальный тон (называемый его резонансной частотой), генерирующий звук, который вы слышите, который прямо соответствует длине труба.

Задача магнетрона — генерировать довольно короткие радиоволны. Если бы вы могли их видеть, вы могли бы легко измерить их школьной линейкой.Обычно они не короче 1 мм (0,04 дюйма; самое короткое деление на метрической линейке) и не более 30 см (12 дюймов; длина типичной школьной линейки). Магнетрон делает свое дело резонирует как флейта, когда вы накачиваете в нее электрическую энергию. Но, в отличие от флейта, она производит электромагнитные волны вместо звуковых, поэтому вы не можете услышать резонансную энергию, которую он производит. (Вы также не можете увидеть эту энергию, потому что ваши глаза не чувствительны к коротковолновым, микроволновым радиация).

Краткая история магнетронов

  • 1920-е годы: американский инженер Альберт У. Халл изобретает первый магнетрон, работая в General Electric.
  • 1934: Артур Л. Сэмюэл из Bell Telephone Laboratories изобретает резонаторный магнетрон.
  • 1939: два физика, Джон Рэндалл и Гарри Бут, работают в Университет Бирмингема, Англия, разработал гораздо более мощный магнетрон, который достаточно компактен, чтобы поместиться на кораблях, самолетах и подводные лодки.
  • 1940-е: американский инженер Перси Спенсер случайно обнаруживает что микроволны, производимые магнетроном, обладают достаточной мощностью, чтобы нагреть и готовить еду.Он патентует микроволновую печь в 1950-х годах.
  • 1976: исследователи Массачусетского технологического института Джордж Бекефи и Таддеус Оржеховски разрабатывают релятивистский магнетрон, который примерно в 10–100 раз больше. более мощный, чем резонаторный магнетрон. Они достигают мощности 900 МВт по сравнению с 10 МВт или около того, когда магнетроны резонатора были затем способен производить.
  • 2009: исследователи из Мичиганского университета при финансовой поддержке ВВС США. объявляют о разработке более компактного магнетрона большей мощности, который может улучшить разрешающую способность радиолокационной навигации.

Фото: Внутри вашей микроволновой печи находится магнетрон, обычно сразу за панелью управления и приборной панелью справа. Если открыть дверцу, иногда можно увидеть магнетрон и его охлаждающие ребра через перфорированную металлическую решетку, отделяющую его от основной рабочей камеры.

Узнать больше

На этом сайте

Книги

Статьи

Легко читаемый
  • Эван Акерман. Краткая история микроволновой печи.IEEE Spectrum, 30 сентября 2016 г. Как Перси Спенсер из Raytheon впервые применил новый способ приготовления пищи — с использованием волн.
  • Андрей Хаф и удивительный микроволновый усилитель Джека Коупленда и Андре А. Хеффа. IEEE Spectrum, 25 августа 2015 г. Изучение работы забытого персонажа из истории микроволнового излучения.
  • Микроволновые печи в образе астрономических объектов. Автор Александр Геллеманс. IEEE Spectrum, 5 мая 2015 г. Как магнетроны в микроволнах создают проблемы для астрономов.
  • Изобретение резонаторного магнетрона и его внедрение в Канаду и США Полом А.Рыжая. Физика в Канаде, ноябрь / декабрь 2001 г. [в ​​формате PDF] Это превосходный краткий отчет о том, как развивались магнетроны во время Второй мировой войны в США, Великобритании и Канаде. [Архивировано через The Wayback Machine.]
Дополнительная техническая информация
  • Обзор релятивистского магнетрона Дмитрия Андреева, Артема Кускова и Эдла Шамилоглу. Материя и радиация в экстремальных условиях 4, 067201 (2019). Включает большой обзор общей истории магнетронов и множество полезных ссылок.
  • Исторические заметки о резонаторном магнетроне Х.А.Х. Бут и Дж. Рэндалл. Труды Института инженеров по электротехнике и радиоэлектронике, номер 7, июль 1976 г., стр.724. Как два британских пионера разработали первые военные магнетроны.

Патенты

Работа: Иллюстрации оригинального резонаторного магнетрона Артура Самуэля из его Патент США №2063342: Устройство электронного разряда, любезно предоставлено Управлением по патентам и товарным знакам США. Как и на рисунках выше, анод окрашен в красный цвет, катод — в желтый, а катушка, окружающая стеклянную разрядную трубку, темно-серого цвета.

Если вы хотите прочитать подробные технические описания того, как устроены магнетроны и как они работают, патенты — отличное место для начала. Их не всегда так легко понять, но описания чрезвычайно подробны и, как правило, имеют очень четкие обозначенные диаграммы. Вот несколько, с которых можно начать: вы найдете гораздо больше, если выполните поиск в USPTO (или в Google Patents), используя ключевое слово «магнетрон»:

  • Патент США № 2099533: Магнетрон Дитриха Принца, Telefunken Gesellschaft, 30 июля 1935 г.Ранний немецкий дизайн магнетрона.
  • Патент США № 2063342: Устройство электронного разряда, автор Артур Л. Сэмюэль, Bell Telephone Laboratories, 8 декабря 1936 г. Первый магнетрон с резонатором.
  • Патент США №2,408,235: Высокоэффективный магнетрон, автор Перси Л. Спенсер, Raytheon Manufacturing Company, 24 сентября 1946 г. Полный текст патента Перси Спенсера на магнетрон резонатора, проиллюстрированный выше.
  • Патент США № 7906912: Магнетрон, автор Такеши Исии и др. Panasonic Corporation, 15 марта 2011 г.Очень подробное описание типа магнетрона, который вы найдете в современной микроволновой печи.
.

Как работает магнетронное зажигание на газонокосилке? | Home Guides

Компания Briggs & Stratton разработала систему зажигания Magnetron в 1980-х годах. Подобно более ранним системам индукционного зажигания, система магнетрона не полагается на механические точки для генерации тока в свече зажигания. Вместо этого переключение выполняется парой транзисторов. Магнетронные системы зажигания настолько надежны, что они заменили системы выключателя во всех двигателях газонокосилок, производимых Briggs & Stratton, а также в двигателях других производителей.

Электромагнитная индукция

Система зажигания запускает газонокосилку и поддерживает ее работу, генерируя электрический ток, достаточный для преодоления зазора между электродами свечи зажигания и создания искры для воспламенения топлива в камере сгорания. Для этого в системе используется явление магнитной индукции, обнаруженное физиком Майклом Фарадеем в 1831 году. Фарадей обнаружил, что магнетизм и электричество взаимосвязаны, и что при движении магнита мимо катушки с проводящим проводом в проводе генерируется электрический ток.Следствием этого является то, что прохождение электрического тока через катушку создает магнитное поле, которое может индуцировать ток во второй катушке.

Повышение напряжения

Двигатель газонокосилки с системой зажигания магнетрон имеет маховик, который соединен с коленчатым валом двигателя. К краю маховика прикреплен единственный постоянный магнит, и каждый раз, когда маховик вращается, магнит проходит через катушку из медной проволоки и генерирует в ней электрический ток. Однако сам по себе этот ток недостаточно силен, чтобы перепрыгнуть через зазор между электродами свечи зажигания, поэтому система зажигания включает в себя трансформатор, который представляет собой вторичную катушку с большим количеством витков, чем исходная.Согласно закону, открытому Фарадеем, напряжение, создаваемое во второй катушке электромагнитным полем, создаваемым первой катушкой, увеличивается с количеством витков во второй катушке.

Транзисторная система переключения

Чтобы предотвратить постоянное искрение свечи и нарушение рабочего цикла поршня, система зажигания должна включать в себя механизм переключения для отключения питания свечи. В системах, предшествующих системе Магнетрон, переключатель был механическим, обычно состоял из вращающегося прерывателя, который мгновенно контактировал с электродом, замыкая цепь.В системе магнетрона переключение осуществляется транзистором Дарлингтона, который на самом деле является парой транзисторов. Когда первый из этих транзисторов обнаруживает ток от обмотки триггера, он открывает второй транзистор, позволяя ему пропускать ток к первичной катушке.

Работа с зажиганием от магнетрона

Запуск газонокосилки с зажиганием от магнетрона состоит из вращения маховика электронным или ручным способом с помощью троса. Напряжение, индуцируемое при каждом вращении, поступает на первичную катушку, которая имеет около 75 витков.Он индуцирует большее напряжение во вторичной катушке, которая имеет более 4000 витков, и производит ток около 10 000 ампер, которого достаточно для преодоления промежутка между электродами свечи зажигания. Искра воспламеняет топливо, и движение поршня толкает маховик на еще один оборот, создавая самоподдерживающийся цикл, который приводит в действие газонокосилку.

.Магнетрон

, Часть 1: Применение и принципы работы

Магнетрон с вакуумной трубкой почти устарел (за исключением миллионных потребительских микроволновых печей. Его разработка была ключом к созданию высокоэффективного радара во время Второй мировой войны, а также привела к созданию других радиолокационных и радиочастотных устройств). микроволновые вакуумные ламповые приборы.

Электронные лампы такие «вчерашние», не так ли? Они были устаревшими и заменены твердотельными устройствами по многим причинам, за исключением некоторых узкоспециализированных приложений, таких как некоторые радиолокационные передатчики.Точно так же почтенная электронно-лучевая трубка (ЭЛТ), которая десятилетиями использовалась в домашних телевизорах, осциллографах, пользовательских консолях, мониторах и всевозможных дисплеях, была заменена устройствами с плоским экраном

Конечно, ЭЛТ больше не существует, но есть еще одна электронная лампа, которая выживает при широком использовании в конкретном приложении — хотя во многих других она в значительной степени устарела. Как же так? Если у вас есть микроволновая печь на кухне, у вас дома есть вакуумная трубка, называемая магнетроном. Тем не менее, по мнению многих экспертов и историков, это скромное и непритязательное действующее устройство также изменило ход Второй мировой войны.

Q: Что такое магнетрон?

A: Магнетрон — это специализированная электронная лампа, которая выполняет одно предназначение: это источник генератора мощности для частот от нескольких сотен МГц до нескольких ГГц. В зависимости от размера и других факторов он может производить от десятков и сотен ватт до киловатт.

Q: Зачем вообще изучать это уникальное и несколько устаревшее устройство?

A: Есть как минимум три причины: он все еще широко используется, и каждый год производятся миллионы; большие используются для радиолокационных и радиовещательных операций; Кроме того, он научил ученых и инженеров электронным устройствам, которые используют электромагнитные принципы и сочетают электрические и магнитные радиочастотные поля и многое другое, что приводит к созданию важных радиочастотных / микроволновых устройств, таких как лампа бегущей волны (ЛБВ).

Q: Каков физический принцип и основная конструкция магнетрона?

A: В отличие от генератора, построенного вокруг резонансного контура, состоящего из дискретных катушек индуктивности и конденсаторов, магнетрон использует уникальную физическую структуру в сочетании с комбинацией электрических полей, движения электронов и магнитных полей в ограниченной металлической полости. Хотя магнетрон представляет собой вакуумную трубку, он очень сильно отличается от обычной вакуумной трубки, в которой используются электроны, испускаемые нагретым катодом и движущиеся по прямой к положительно заряженному аноду, при этом их путь перемещения модулируется электрическим полем промежуточная сетка.

У обычной вакуумной лампы нет магнитного аспекта. Напротив, магнетрон представляет собой устройство «скрещенного поля», которое использует электрическое поле в сочетании с магнитным полем, при этом силовые линии поля расположены под прямым углом друг к другу. (Название «магнетрон» представляет собой сочетание «магнитного» и «электронного»)

Q: Как работает магнетрон?

A: Анализ магнетрона может варьироваться от качественного объяснения до высокотехнологичного анализа с использованием передовой теории электромагнитного поля и математики.Мы будем использовать более качественный подход.

Q: Каково физическое устройство магнетрона?

magnetron

Рис. 1. Магнетрон с вакуумной трубкой использует резонансные полости на аноде, в которые электроны, испускаемые нагретым катодом, направляются мощным статическим магнитным полем под прямым углом. (Изображение: Hyperphysics / Государственный университет Джорджии)

A: В базовом первом магнетроне — и, конечно же, есть много вариантов — использовался сплошной медный блок (для рассеивания тепла), просверленный с отверстиями (называемыми полостями) (рис. 1) .Размер этих полостей имеет решающее значение для установления рабочей частоты магнетрона. Эта физическая конструкция и устройство радикально отличаются от вакуумной трубки со стеклянной оболочкой, которая использовалась в попытке эффективно генерировать короткие волны и высокие частоты, необходимые для ВЧ / СВЧ-конструкций (1 ГГц = 1000 МГц = 0,3 метра = 30 см). .

Q: Как это устройство работает при подаче напряжения?

A: Катод в центре (который нагревается нитью накала) испускает электроны так же, как катод стеклянной вакуумной трубки, но на этом их сходство заканчивается.Эти электроны обычно притягиваются и движутся в виде радиальных спиц к внешнему кольцу в качестве анода, который заряжен положительно (как пластина трубки). Однако имеется мощное статическое магнитное поле (синие линии), направленное вдоль оси сердечника магнетрона. Это поле заставляет электроны двигаться по круговой схеме потока к внешнему кольцу (красные линии). Магнитное поле изначально создавалось электромагнитами, но, поскольку годы спустя были разработаны более мощные постоянные магниты, они стали использоваться вместо них.

Q: Кажется, что все, что было сделано, — это сдвинуть статический электрический поток, а колебания отсутствуют — так как же магнетрон производит колебания?

A: Магнитное поле отклоняет электроны, и они «кружатся» по кругу. При этом они «качают» на собственной резонансной частоте резонаторов. Результирующий ток вокруг полостей заставляет их излучать электромагнитную энергию на резонансной частоте полостей.

В: Это все? Как можно использовать эту резонансную энергию?

A: С точки зрения физики работа выполняется над электронами, и они поглощают энергию от приложенного источника питания, приложенного к аноду.Электроны продолжают движение и достигают энергетического уровня, на котором имеется избыточный отрицательный заряд, и этот заряд выталкивается обратно вокруг полости. Это, в свою очередь, передает энергию колебаниям на собственной частоте резонатора (накачка). Полость аналогична резонансному ЖК-резервуару: положительно заряженное поле расположено вдоль одного края открытой стороны полости, а отрицательно заряженное поле выровнено вдоль другого края, поэтому отделенная строка функционирует как конденсатор с вакуумом. зазор для интервала.

Q: Как энергия колебаний извлекается из полости магнетрона и используется в системе?

A: Коаксиальная муфта с датчиком точного размера вставлена ​​сбоку в одну полость для захвата энергии от блока, Рис. 2 ; он функционирует как приемная антенна для электромагнитной энергии.

Рис. 2. Зонд с согласованной частотой вставляется в отверстие в одной из полостей для перехвата и извлечения колеблющейся высокочастотной энергии в магнетроне.(Изображение: Руководство EU Radar)

Q: Что задает частоту колебаний магнетрона?

A: Размер и расположение полостей определяют частоту, поскольку они действуют как резонансные камеры. Магнетроны обычно имеют небольшой регулировочный винт для изменения размера полости, поэтому физические размеры можно регулировать для резонанса с точной желаемой частотой, несмотря на неизбежные производственные допуски. Обратите внимание, что магнетрон — это устройство с фиксированной частотой и его нельзя перестраивать, хотя есть несколько продвинутых и более сложных версий, которые имеют скромный диапазон настройки.

Часть 2 этого FAQ будет посвящена истории и роли магнетрона, а также его будущему и возможной кончине.

EE World Online Справочные материалы

Список литературы

  • Википедия, «Полостной магнетрон» (есть ссылки на многие исторические ссылки)
  • Объясните этот материал, «Как работают магнетроны»
  • Государственный университет Джорджии, Гиперфизика, «Магнетрон»
  • Государственный университет Джорджии, Гиперфизика, «Микроволновые печи»
  • Микроволны101, «Магнетроны»
  • Вики по истории инженерии и технологии, «Полостной магнетрон»
  • Музей клапанов, «CV64»
  • Лампы и трубки, «CV64 Ранний британский магнетрон с резонаторами S-диапазона»
  • Radar Tutorial EU, «Магнетрон»
  • Амплеон Н.В., «РФ твердотельная кулинария»
  • ARMMS RF and Microwave Society, «Краткое изложение разработки магнетронов»
.

Как проверить магнетрон СВЧ

Ideas by Mr Right

  • Товары для дома
    • Сантехника

      Вам нужен сантехник? Понять возможные проблемы

    • Электрические

      Как починить базовый переключатель?

    • Плотницкие работы tips-for-beginner-woodworkers01

      Лучшие советы начинающим плотникам

    • Плотницкие работы

      Как найти скидки и предложения на мебель онлайн

    • Сантехника

      Идеи ремонта маленькой ванной комнаты

    • Электрические

      Как починить базовый переключатель?

    • Электрические When-You-Need-Your-Electrician02

      10 ситуаций, когда вам нужен электрик

    • Электрические underfloor heating or radiators

      Под полом с подогревом или радиаторными системами? Или оба?

    • Электрические Heating And Cooling - Should You Repair or Replace Your System?

      Отопление и охлаждение — стоит ли отремонтировать или заменить систему?

    • Электрические Why you should know about the basics of your house wiring

      Зачем нужно знать основы домашней электропроводки

    • Сантехника

      Вам нужен сантехник? Понять возможные проблемы

    • Сантехника
.

Вам может понравится

Отправить ответ

avatar
  Подписаться  
Уведомление о