Алюминий и медь: можно ли их паять и как это сделать в домашних условиях паяльником?

Содержание

Как соединить медный и алюминиевый провод различными способами

Современная электрическая разводка в квартире или доме выполняется только медными проводами так гласит ПУЭ. Но в старых домах проводку делали чаще всего алюминиевым проводом и возникает ситуация, при которой необходимо соединить 2 провода из разного материала. И в этой статье вы узнаете, как соединить медный и алюминиевый провод разными способами.

Способы соединения медных и алюминиевых проводов

Можно ли скручивать медный провод с алюминиевым

Начнем с того, что  можно ли соединять алюминиевые провода с медными, и не приведёт такое соединение к пожару? Ответ да, можно. Но давайте сперва ознакомимся  с этими материалами.

Если задаться вопросом какая проводка лучше, медная или алюминиевая, то выбор конечно за медной. Это выходит из технической характеристики меди, сечение алюминиевого провода в тех же условиях приходится брать больше. Есть и минусы, медь дороже. Отличить медный провод от алюминиевого легче по цвету, медь имеет красноватый оттенок, алюминий — серый, белый.

Посмотрев на электротехнические показатели металлов, отпадает вопрос в том, что лучше проводит ток. Вот некоторые сведения:

  • Удельное сопротивление: медь – 0,017 Ом·мм²/м, алюминий – 0,028 Ом·мм²/м.
  • Теплоёмкость: меди — 0,385 Дж/гК, алюминия – 0,9 Дж/гК.
  • Упругость материала: меди – 0,8%, алюминия – 0,6%.

Так почему нельзя скручивать медные и алюминиевые провода, ведь скрутка, особенно при небольшом сечении, является самым дешёвым вариантом в плане как средств, так и времени? Все дело в том что, эти материалы при соединении создают гальваническую пару.

Гальваническая пара — 2 металла разного рода, соединение которых между собой приведёт к повышенной коррозии. Именно такой гальванической парой являются медь и алюминий. Электрохимические потенциалы двух металлов слишком разные, поэтому скорая коррозия увеличит сопротивление в месте соединения и последует его нагрев. Более подробно о совместимости металлов указано в ГОСТ 9.005-72. Ниже привожу таблицу с некоторыми данными по металлам:

Гальваническая совместимость мелталов

Добиться качественного контакта двух проводников можно разными способами (пайкой, применением простой клеммной колодки, более дорогих клемм WAGO или обыкновенного болта с гайкой).

Соединение проводов

Соединение алюминиевых и медных проводов между собой требует технологических решений, простой скрутки здесь недостаточно.

Способы соединения проводников с разными электрохимическими потенциалами:

  • Посредством пайки. Но не простой пайки.
  • С применением простых клеммников или дорогостоящих WAGO. Здесь экономить не стоит и если стоит вопрос, как правильно соединить медный и алюминиевый провода, то лучше взять WAGO. Преимущества данного производителя будут описаны далее.
  • Используя болтовое соединение, у которого масса преимуществ: дешевизна, простота и возможность работы с проводами большого сечения.
  • Опрессовкой гильзами. Требуется наличие специализированного инструмента.

WAGO

Зажимы WAGO для стыковки алюминия и меди весьма популярны, так как их очень удобно использовать:

  1. Щелчком отвести прижимные пластины в сторону.
  2. Вставить в отверстия провода.
  3. Поставить пластины на свои места, зажать.

Клемы WAGO для соединения медного провода с алюминиевым отличное решение

Но сейчас WAGO заставляет усомниться в своей репутации. По многочисленным отзывам, пружинящий контакт слабеет, что приводит к подгоранию клеммника и его скорой замене.

Скрутка проводов

Ранее упоминалась скрутка алюминиевого и медного провода как очень ненадёжный способ соединения, но иногда это единственная возможность быстрого восстановления энергоснабжения.

Пара советов перед выполнением скрутки:

  • Перед скруткой медный провод следует хорошо залудить.
  • Величина скрутки должна быть не менее 5 витков.
  • После работы, место соединения надо защитить несколькими слоями изолирующей ленты или термоусадочной трубкой.

Пайка меди к клемнику

Можно спаять медь и алюминий между собой.

Если с медью все понятно, то для пайки алюминия нужен специальный флюс. Некоторые электрики просто припаивают медный провод к клеммнику.

Флюс для алюминия

Клеммники

Перечень инструмента и расходных материалов электрика включает в себя клеммные колодки. Клеммники – медные или из латуни покрытые слоем никеля, рассчитанные под провода определённого сечения и покрытые слоем изолирующего пластика. Фиксацию проводов обеспечивают 2 небольших винта.

 

Соединяя клеммниками медь и алюминий следует правильно зажать винты-фиксаторы. Если их перетянуть, то можно повредить алюминиевые жилы, что не очень хорошо отразится на дальнейшей эксплуатации электропроводки. Поэтому необходимо найти золотую середину: затянуть не слишком туго, но добиться качественного контакта.

Болтовое соединение

Если под рукой нет клеммника, паяльника или WAGO, а сечение проводов достаточно большое, то добиться качественного можно обыкновенным болтом.

Для соединения двух проводов потребуется: болт, гайка, 3 шайбы. Последовательность действий:

  1. На концах проводов сделать кольца, такого же диаметра, как и болт. Для удобства лучше использовать круглогубцы.
  2. Одеть кольца на болт в таком порядке, чтобы они оказались между тремя шайбами.
  3. Затянуть гайку и проверить качество соединения.
  4. Нанести несколько слоёв изолирующей ленты.

Болтовое соединения алюминия и меди

Соединение «орешек»

«Орех» — это ещё одна разновидность клеммной колодки, чаще всего используемая для ответвления проводов большого сечения. Представляет собой 2 медных пластины, уложенных в пластиковый корпус.

Между пластинами помещают медный и алюминиевый провод, а также провод ответвления. Но использовать «орех» можно просто как соединительный элемент. После укладки проводников пластины стягиваются болтами. В качестве изоляции поверх всей конструкции одевается пластиковый корпус, состоящий из двух половин, для крепления которых используют стандартные винты.

Соединение «орех» подходит для всех видов уличных соединений и ответвлений

Опрессовка

Для этого метода вам потребуются специальные опрессовочные клещи и гильзы. Принцип соединения проводов гильзой очень прост: с одной стороны в гильзу вставляют алюминиевый провод, с другой медный, и обжимают с обеих сторон гильзу клещами. Существуют гильзы для проводов с большим сечением – от 16 мм2 и до 300 мм2, но в этом случае потребуется специальный гидравлический пресс. Единственный недостаток опрессовки – высокая стоимость инструмента.

Специальная гильза для соединения алюминия и меди

Смазка

Для улучшения качества контакта можно использовать специальную смазку или пасту. Обычно это — кварцевазелиновая паста. Обычно ее используют для улучшения соединения именно алюминиевых проводов.

Но  такую пасту можно применять при всех видах соединений (резьбовом, с помощью клеммников, опрессовкой), особенно, если соединение происходит на улице. Тогда на контакт воздействуют дополнительные факторы, существенно снижающие долговечность соединения. Хотя и применение смазки без изоляции вызывает сомнения.

Итог

Исходя из всего вышесказанного подбирайте подходящий для вас способ в зависимости от места соединения (улица, дом) и  материальных возможностей.

Влияние меди на алюминий

Медь с алюминием имеют разные электрохимические потенциалы и при контакте образуют гальваническую пару — электрохимическая коррозия… Соединяют их вроде через прокладку…

Присутствие в одной отопительной системе медного теплообменника и алюминиевого радиатора — явление далеко не необычное… Надо специальный ингибитор добавлять – performax

При соединении меди и алюминия происходит химическая реакция с образованием интерметаллидов. Медь с алюминием образуют два вида интерметаллидов и все бы ничего, но они оба имеют более плотную кристаллическую упаковку. Именно поэтому контакт ослабевает.

Реакция меди и алюминия протекает только с наличием воды.

Воздух в системе отопления вещь неприятная но от попадания не затрахован нито, в первую очередь это кочество материалов, даже у солидных прохзводителей присутствует брак. Но с этим можно бороться, а как бить с долговечностью данной системы и электролизом. Внимание! Выбирая алюминиевый радиатор, следует помнить 1) Алюминий предъявляет повышенные требования к химическому составу теплоносителя (в частности, к показателю pH), по-скольку в процессе эксплуатации происходит активное выделение водорода (если теплоноситель «кислый», то он вступает в реакцию с алюминием) 2) 2) Алюминиевые радиаторы не рекомендуется устанавливать с медными системами отопления. При условии установки автоматических кранов Маевского (воздухоотводчик), такая система будет функционировать

Медь не терпит двух соседей — алюминия и цинка. При установке на медных трубах алюминиевых радиаторов через теплоноситель (воду, или незамерзайку) образуется электрохимическая пара медь-алюминий. При этом выделяется водород, который постоянно завоздушивает систему. Особенно этот эффект становится заметным, если система отопления заполняется незамерзающим теплоносителем. На радиаторах приходится устанавливать автоматические воздушники, которые портят дизайн помещений, и увеличивается объем подпитки. Сами радиаторы при этом не разрушаются, т.к. расход алюминия на процесс ничтожен. Тем не менее, НИИ Сантехники (Москва, Локомотивный проезд, 21) в официальных бумагах не рекомендует устанавливать на медные трубопроводы алюминиевые радиаторы. При установке медных вставок на стальных оцинкованных трубопроводах (например, в системах центрального горячего водоснабжения), цинк с труб, расположенных «ниже по течению» от медной вставки, реагирует с медью с образованием крупных рыхлых хлопьев. При этом вода теряет прозрачность и становится непригодной для применения. НИИ Сантехники в своих рекомендациях ЗАПРЕЩАЕТ применение медных вставок на стальных оцинкованных трубопроводах.

Сплавы цветных металлов — меди, алюминия, цинка, магния

Цветная металлургия занимается добычей руд цветных металлов, а также обогащением и выплавкой чистых металлов и их сплавов. Цветные металлы имеют множество ценных свойств: малую плотность (магний, алюминий), высокую теплопроводность (медь), устойчивость к коррозии (титан) и др. Условно они делятся на тяжелые, легкие, благородные и редкие.

Группы металлов

К тяжелым металлам относятся вещества, которые отличаются высокой плотностью. Это кобальт, хром, медь, свинец и др. Некоторые из них (свинец, цинк, медь) применяют в чистом меде, но обычно используют в качестве легирующих элементов.

Плотность легких металлов — менее 5 г/см3. В этой группе относятся алюминий, натрий, калий, литий и др. Их используют как раскислители при изготовлении чистых металлов и сплавов, а также применяют в пиротехнике, медицине, фототехнике и других областях.

Благородные металлы отличаются высокой устойчивостью к коррозии. В данную группу входят платина, золото, серебро, осмий, палладий, родий, иридий и рутений. Они применяются в медицине, электротехнике, приборостроении, ювелирном деле.

Редкие металлы объединены в отдельную группу, так как имеют особые свойства, не характерные для других металлов. Это уран, вольфрам, селен, молибден и др.

Также выделяется группа широко применяемых металлов. В нее входят титан, алюминий, медь, олово, магний и свинец.

Сплавы на основе цветных металлов бывают литейные и деформируемые. Они различаются технологией создания заготовок: из литейных производят детали с помощью литья в металлические или песчаные формы, а из деформируемых делают листы, фасонные профили, проволоку и другие элементы. В этом случае используются методы прессования, ковки и штамповки. Литейные сплавы относятся к металлургии тяжелых металлов, деформируемые — к металлургии легких металлов.

Алюминий и его сплавы


Алюминий — цветной металл, который имеет серебристо-белый оттенок и плавится при температуре 650°С. В периодической системе ему соответствует символ Al. Этот элемент занимает третье место по распространенности среди всех пород в земной коре (на первом месте — кислород, на втором — кремний). В атмосферных условиях на поверхности алюминия образуется оксидная пленка, препятствующая появлению коррозии.

Важные свойства алюминия:

  • Низкая плотность — всего 2,7г/см3 (например, у меди — 8,94г/см3).
  • Высокая электрическая проводимость (37*106 См/м) и теплопроводность (203,5 Вт/(м·К)).
  • Низкая прочность в чистом виде — 50 МПа.
  • Структура кристаллической решетки — кубическая гранецентрированая.

Металл легко обрабатывается давлением. Находит широкое применение в электропромышленности: из алюминия изготавливают проводники электрического тока. При производстве стали его используют для раскисления. Из алюминия также делают посуду, однако она не подходит для приготовления солений и хранения кисломолочных продуктов — элемент неустойчив в щелочной и кислой среде. Некоторые стальные детали покрывают алюминием (процесс алитирования), чтобы повысить их жаростойкость. Из-за невысокой прочности алюминий практически не применяется в чистом виде.

При маркировке алюминия используется буква А в сочетании с числом, которое указывает на содержание металла. Например, марка A99 содержит 99,95% алюминия, а марка А99 — 99,99%. Существует также марка особой чистоты — А999, в которой 99,999% алюминия.

Деформируемые сплавы алюминия

Деформируемые алюминиевые сплавы делятся на упрочняемые и неупрочняемые.

Упрочняемые деформируемые сплавы алюминия — это дуралюмины (система А-Сu-Mg) и высокопрочные сплавы (Аl-Сu-Mg-Zn). Высокие механические свойства и небольшой удельный вес позволяют широко применять эти сплавы в области машиностроения, особенно — в изготовлении деталей для самолетов.

Основными легирующими элементами для дуралюминов служат магний и медь. Эти сплавы маркируются буквой Д с числом. Из Д1 делают лопасти винтов, Д16 используется для лонжеронов, шпангоутов, обшивки самолетов, а Д 17 — для крепежных заклепок.

Высокопрочные сплавы, помимо алюминия, меди и магния, содержат цинк. Обозначаются буквой В и числом, применяются для изготовления деталей сложной конфигурации, лопастей вертолетов, высоконагруженных конструкций.

Неупрочняемые деформируемые алюминиевые сплавы — это сплавы алюминия с марганцем (маркировка — АМц1) и с магнием (AМг2 и АМг3). Они хорошо обрабатываются сваркой, вытяжкой, прокаткой, горячей и холодной штамповкой. Отличаются высокой пластичностью, но при этом не очень прочные. Они выпускаются преимущественно в виде листов, которые применяются для изготовления изделий сложной формы (заклепки, рамы и др.).

Литейные сплавы на основе алюминия

Наиболее широкое применение получили литейные сплавы алюминия и кремния, которые называются силуминами. Они содержат более 4,5% кремния и обозначаются буквами АК с номером марки. Силумины сочетают малый удельный вес с высокими механическими и литейными свойствами. Они применяются для сложного литья авто-, мото- и авиадеталей, а также для производства некоторых видов бытовой техники — мясорубок, теплообменников, санитарно-технических арматур и др.

Сплавы на основе меди


Медь — цветной металл, который на поверхности имеет красный оттенок, а в изломе — розовый. В периодической системе Д.И. Менделеева обозначается символом Cu. В чистом виде металл имеет высокую степень пластичности, электро- и теплопроводности, а также характеризуется устойчивостью к коррозии. Это позволяет использовать медь и ее сплавы для кровель ответственных зданий.

Важные свойства металла:

  • Температура плавления — 1083°С.
  • Структура кристаллической решетки — кубическая гранецентрированая.
  • Плотность — 8,94 г/см3.

Благодаря пластичности медь легко поддается обработке давлением, но плохо режется. Из-за большой усадки металл обладает низкими литейными свойствами. Любые примеси, за исключением серебра, оказывают большое влияние на вещество и снижают его электрическую проводимость.

При маркировке меди используется буква М с числом, которое обозначает марку. Чем меньше номер марки, тем больше в ней чистого вещества. Например, М00 содержит 99,99 % меди, а М4 — 99 %.

Наиболее широкое применение в технике находят две группы медных сплавов — бронзы и латуни.

Бронзы

Бронзы — сплавы на основе меди, в которых легирующим элементом является любой металл, кроме цинка. Наиболее часто применяются сплавы меди со свинцом, оловом, алюминием, кремнием и сурьмой.

Все бронзы по химическому составу делятся на оловянные и специальные, или безоловянные, то есть не содержащие в своем составе олова.

Оловянные бронзы отличаются наиболее высокими литейными, механическими и антифрикционными свойствами, а также имеют повышенную устойчивость к коррозии. Из-за высокой стоимости олова эти сплавы применяют ограниченно.

Специальные бронзы часто используют в качестве заменителей оловянных, и некоторые имеют лучшие технологические свойства. Выделяются следующие виды специальных бронз:

  • Алюминиевые. Они содержат от 5% до 11% алюминия, а также марганец, никель, железо и другие металлы. Эти сплавы обладают более высокими механическими свойствами, чем оловянные бронзы, однако их литейные свойства ниже. Алюминиевые бронзы служат для изготовления мелких ответственных деталей.
  • Свинцовистые. В их состав входит около 30% свинца. Эти сплавы имеют высокие антифрикционные свойства, поэтому широко применяются в производстве подшипников.
  • Кремнистые. Эти бронзы содержат примерно 4% кремния, легируются никелем и марганцем. По своим механическим свойствам почти соответствуют сталям. Применяются, в основном, для изготовления пружинистых элементов в судостроении и авиации.
  • Бериллиевые. Содержат до 2,3% бериллия, характеризуются высокой упругостью, твердостью и износостойкостью. Эти бронзы используются для пружин, которые работают в условиях агрессивной среды.

Все бронзы имеют хорошие антифрикционные показатели, коррозионную стойкость, высокие литейные свойства, которые позволяют использовать сплавы для изготовления памятников, отливки колоколов и др.

При маркировке бронз используются начальные буквы Бр, после которых идут первые буквы названий основных металлов с указанием их содержания в процентах. Например, сплав БрОФ8-0,3 включает 8% олова и 0,3% фосфора.

Латуни


Латунями называют сплавы меди и цинка с добавлением других металлов — алюминия, свинца, никеля, марганца, кремния и др. В простых латунях содержится только медь и цинк, а многокомпонентные сплавы включают от 1% до 8% различных легирующих элементов, которые добавляют для улучшения различных свойств.

  • Марганец, никель и алюминий повышают устойчивость сплава к коррозии и его механические свойства.
  • Благодаря добавкам кремния сплав становится более текучим в жидком состоянии и легче поддается сварке.
  • Свинец упрощает обработку резанием.

Процентное содержание цинка в любой латуни не превышает 50 %. Эти сплавы стоят дешевле, чем чистая медь, а благодаря добавлению цинка и легирующих элементов, они обладает большей устойчивостью к коррозии, прочностью и вязкостью, а также характеризуются высокими литейными свойствами. Латуни используют для изготовления деталей методами прокатки, вытяжки, штамповки и др.

При маркировке простой латуни используется буква Л и число, обозначающее содержание меди. Например, марка Л96 содержит 96% меди. Для многокомпонентных латуней используется сложная формула: буква Л, затем первые буквы основных металлов, цифра, обозначающая содержание меди, а затем состав других элементов по порядку. Например, латунь ЛАМш77-2–0,05 содержит 77% меди, 2% алюминия, 0,05% мышьяка, остальное — цинк.

Магний и его сплавы


Магний — цветной металл, который имеет серебристый оттенок и обозначается символом Mg в периодической системе.

Важные свойства магния:

  • Температура плавления — 650°С.
  • Плотность — 1,74 г/см3.
  • Твердость — 30-40 НВ.
  • Относительное удлинение — 6-17%.
  • Временное сопротивление — 100-190 МПа.

Металл обладает высокой химической активностью, в атмосферных условиях неустойчив к образованию коррозии. Он хорошо режется, воспринимает ударные нагрузки и гасит вибрации. Так как магний имеет низкие механические свойства, он практически не применяется в конструкционных целях, зато используется в пиротехнике, химической промышленности и металлургии. Он часто выступает в качестве восстановителя, легирующего элемента и раскислителя при изготовлении сплавов.

При маркировке используются буквы Мг с цифрами, которые обозначают процентное содержание магния. Например, в марке Мг96 содержится 99,96% магния, а в Мг90 — 99,9 %.

Сплавы на основе магния характеризуются высокой удельной прочность (предел прочности — до 400 МПа). Они хорошо режутся, шлифуются, полируются, куются, прессуются, прокатываются. Из недостатков магниевых сплавов — низкая устойчивость к коррозии, плохие литейные свойства, склонность воспламеняться при изготовлении.

Деформируемые сплавы магния

Наиболее распространены три группы сплавов на основе магния.

Сплавы магния, легированные марганцем

Содержат до 2,5% марганца, не упрочняются термической обработкой. У них хорошая коррозионная стойкость. Так как эти сплавы легко свариваются, они применяются для сварных деталей несложной конфигурации, а также для деталей арматуры, масляных и бензиновых систем, которые не испытывают больших нагрузок. Среди данной группы — сплавы МА1 и МА8.

Сплавы системы Mg-Al-Zn-Mn

В состав этих сплавов, помимо магния и марганца, входят алюминий и цинк. Они заметно повышают прочность и пластичность, благодаря чему сплавы подходят для изготовления штампованных и кованых деталей сложных форм. К этой группе относятся марки МА2-1 и МА5.

Сплавы системы Mg-Zn

Сплавы на основе магния и цинка дополнительно легируются кадмием, цирконием и редкоземельными металлами. Это высокопрочные магниевые сплавы, которые применяются для деталей, испытывающих высокие нагрузки (в самолетах, автомобилях, станках и др.). К данной группе относятся сплавы марок МА14, МА15, МА19.

Литейные сплавы магния

Самая распространенная группа литейных магниевых сплавов относится к системе Mg-Al-Zn. Эти сплавы практически не поглощают тепловые нейтроны, поэтому широко применяются в атомной технике. Из них также делают детали самолетов, ракет, автомобилей (двери кабин, корпуса приборов, топливные баки и др.). Сплавы магния, цинка и алюминия используют в приборостроении и в изготовлении кожухов для электронной аппаратуры. К данной группе относятся марки МЛ5 и МЛ6.

Высокопрочные литейные магниевые сплавы отличаются лучшими механическими и технологическими свойствами. Они применяются в авиации для изготовления нагруженных деталей. К данной группе относятся сплавы МЛ12 (магний, цинк и цирконий), МЛ8 (магний, цинк, цирконий и кадмий), МЛ9 (магний, цирконий, неодим), МЛ10 (магний, цинк, цирконий, неодим).

Цинк и его сплавы


Цинк — цветной металл серо-голубоватого оттенка. В системе Д. И. Менделеева обозначается символом Zn. Он обладает высокой вязкостью, пластичностью и коррозионной стойкостью. Важные свойства металла:

  • Небольшая температура плавления — 419 °С.
  • Высокая плотность — 7,1 г/см3.
  • Низкая прочность — 150 МПа.

В чистом виде цинк используется для оцинкования стали с целью защиты от коррозии. Применяется в полиграфии, типографии и гальванике. Его часто добавляют в сплавы, преимущественно в медные.

Существуют следующие марки цинка: ЦВ00, ЦВ0, ЦВ, Ц0А, Ц0, Ц1, Ц2 и Ц3. ЦВ00 — самая чистая марка с содержанием цинка в 99,997%. Самый низкий процент чистого вещества в марке Ц3 — 97,5%.

Деформируемые цинковые сплавы

Деформируемые сплавы цинка используются для производства деталей методами вытяжки, прессования и прокатки. Они обрабатываются в горячем состоянии при температуре от 200 до 300 ?С. В качестве легирующих элементов выступают медь (до 5%), алюминий (до 15%) и магний (до 0,05%).

Деформируемые цинковые сплавы характеризуются высокими механическими свойствами, благодаря которым часто используются в качестве заменителей латуней. Они обладают высокой прочностью при хорошей пластичности. Сплавы цинка, алюминия и меди наиболее распространены, так как они имеют самые высокие механические свойства.

Литейные цинковые сплавы

В литейных цинковых сплавах легирующими элементами также выступают медь, алюминий и магний. Сплавы делятся на 4 группы:

  • Для литья под давлением.
  • Антифрикционные.
  • Для центробежного литья.
  • Для литья в кокиль.

Слитки легко полируются и принимают гальванические покрытия. Литейные цинковые сплавы имеют высокую текучесть в жидком состоянии и образуют плотные отливки в застывшем виде.

Литейные сплавы получили широкое применение в автомобильной промышленности: из них делают корпуса насосов, карбюраторов, спидометров, радиаторных решеток. Сплавы также используются для производства некоторых видов бытовой техники, арматуры, деталей приборов.

В России цветная металлургия — одна из самых конкурентоспособных отраслей промышленности. Многие отечественные компании являются мировыми лидерами в никелевой, титановой, алюминиевой подотраслях. Эти достижения стали возможными благодаря крупным инвестициям в цветную металлургию и применению инновационных технологий.

Разница между алюминием и медной проволокой

Алюминий и медная проволока

Разница между алюминиевой и медной проволокой в ​​основном заключается в их использовании в коммунальных услугах, сопротивлении, проводимости, весе и стоимости. Алюминий используется коммунальными предприятиями для передачи электроэнергии с начала 1900-х годов. Похоже, что алюминий имеет больше преимуществ по сравнению с более старой медной проволокой с точки зрения веса, гибкости и стоимости, поскольку он легче, гибче и дешевле.

Алюминиевая проводка была предпочтительнее медной, в основном из-за фактора роста цен на медь, поэтому алюминиевая проводка была экономичной. Строительная проволока из алюминиевого сплава, называемая сплавом 800, также используется для низковольтных фидеров, что позволяет сократить расходы по сравнению с медью, которая также значительно тяжелее по весу. Алюминиевые строительные провода имеют вдвое меньший вес, чем медные, и имеют на 50% большую площадь, чем медные, чтобы пропускать тот же ток, но алюминиевые провода требуют большего сечения, чем медные, чтобы выдерживать такой же вес.Повышение цен на медь также привело к использованию алюминиевых проводов в 1970-х годах. Алюминиевая проводка может быть такой же безопасной, как и медная, при правильной установке, так как алюминиевая проводка неумолима в случае неправильной установки.

Алюминиевая проводка имеет явление «холодной ползучести»: при нагревании она расширяется, а при охлаждении сжимается. Маловероятно, что медь потеряет герметичность, как в случае алюминия. Алюминий окисляется и корродирует при контакте с определенными типами металлов, тогда как медь более безопасна и более огнестойка по сравнению с алюминием.Алюминиевый и медный провод также можно соединить вместе, но с этим нужно обращаться с особой осторожностью, потому что, если провода не будут соединены между собой с помощью специальных приспособлений для обжима или антиоксидантной смазки, они загорятся при нагревании проводника. Чтобы ответить на вопрос, что если алюминиевая проводка не уступает медной, мы отвечаем отрицательно. Алюминиевые провода потенциально опасны, и это реакционная способность алюминия с кислородом воздуха, которая может вызвать перегрев и выход из строя соединения, что может стать причиной пожара.Из-за этого фактора риска медные провода снова заняли место алюминия, несмотря на то, что алюминий дешевле.

Также можно сравнить вес и цвет двух проводов. Медная проволока тяжелее, а алюминий светлее и серебристо-серого цвета. Другое главное отличие медной проволоки от алюминиевой — это сопротивление материала. Алюминий и медь являются наиболее часто используемыми проводниками с положительными и отрицательными характеристиками. Медь не только имеет более высокую проводимость, чем алюминий, но и более пластична, имеет относительно высокий предел прочности на разрыв и может быть припаяна.Алюминий имеет меньшую проводимость, около 60 процентов от меди, но его легкость позволяет делать большие пролеты.

Резюме:

1. Алюминиевые провода вызывают коррозию и могут вызвать возгорание.

2. Алюминиевые провода покрыты специальной смазкой и электропроводкой для предотвращения несчастных случаев из-за нагрева.

3. Медные проволоки обладают большей эластичностью и большей проводимостью, чем алюминий, который также менее пластичен.

4. Алюминиевые провода легче меди и позволяют использовать большие пролеты, в то время как медные провода более устойчивы, чем алюминий, и их можно паять.

5. Алюминиевые проволоки расширяются при высоких температурах и сжимаются при низких температурах по сравнению с медью, которая может выдерживать тепловые изменения.


: Если вам понравилась эта статья или наш сайт. Пожалуйста, поделитесь информацией. Поделитесь им с друзьями / семьей.

Укажите
Джилани. «Разница между алюминием и медной проволокой». DifferenceBetween.net. 12 апреля 2010 г.

Гальваническая совместимость алюминия и меди



60 000 тем вопросов и ответов — образование, алоха и развлечения

тема 7897


Обсуждение началось в 2001, но продолжаться до 2020 года

2001 г.

Q.Мы хотели бы знать гальванический эффект, когда у нас есть болтовое соединение алюминий-медь, может быть, есть таблица опыта или данные расчетных значений.

Спасибо за вашу помощь.

Гонсало Рамирес
— Мехико, Мексика
2001

A. Алюминий будет очень восприимчив к гальванической коррозии при контакте с медью, если предположить, что два металла также находятся в контакте с общим электролитом (например, с водой с некоторым содержанием ионов). Практически любой учебник или справочник по коррозии будет иметь гальваническую серию Таблица.Чем дальше друг от друга разделены два металла или сплава на столе, тем быстрее будет коррозия менее благородного из двух металлов, когда они соприкасаются.


Ларри Ханке
Миннеаполис, Миннесота
2001

A. Дополнительное примечание. Оловите медные болты или другие медные детали. Это поможет остановить или замедлить гальваническую атаку.

Крис Снайдер, модель
, Шарлотта, Северная Каролина,
, 2001 г.

A. Также обратите внимание на то, чтобы на вашу медную шину было нанесено серебряное покрытие.Это улучшит болтовые соединения за счет снижения сопротивления и противостоит коррозии. Кроме того, поскольку он превращает красновато-черную медь в приятный однородный серый цвет, он хорошо сочетается с естественным цветом алюминия. Покрытие «Silver Flash» очень тонкое, поэтому дополнительные расходы на фут на несколько центов выше, чем у обычных шин.

В. Карл Эриксон
— Рим, Нью-Йорк
2001

В. Я также думаю о контакте меди и алюминия, на этот раз при установке антенны. Я могу понять каждый комментарий выше, пока W.Карл Эриксон о серебре.

Единственные гальванические таблицы, которые я могу найти, относятся к коррозии в морской воде, но они по-прежнему ранжируют металлы от наиболее анодных до наиболее катодных. Например: www.eaa1000.av.org/technicl/corrosion/galvanic.htm

.

На этой странице автор перечисляет некоторые правила проектирования, включая необходимость иметь низкое соотношение C / A (следствие IV). Следовательно, олово / алюминий лучше, чем медь / алюминий. Но серебро находится на дальнем конце катодного спектра, и по этой логике серебро / алюминий очень нежелательно.Другие источники говорят, что серебро / золото / графит очень благородны. Что это означает для коррозии плохих анодов?

Также для меня электрическая проводимость не обязательна. Что лучше: конформное покрытие медной платы или анодирование алюминиевой части?

Марк Нельсон
— Мельбурн, Флорида
2004

A. Взгляните на эту ссылку www.corrosionsource.com/handbook/galv_series.htm, чтобы увидеть гальваническую серию. При использовании стандартного водородного электрода разница между медью и алюминием составляет -50 вольт.

Несмотря на все отзывы здесь. Коррозия алюминия / меди довольно сложна. Зачем? Поскольку алюминий имеет оксид на поверхности, стабильность оксида определяет его характеристики. Гальванический ряд не всегда предсказывает реакцию в абсолютном выражении, так как нам нужно будет учитывать площадь двух металлов. Хлорид и медь могут вызвать точечную коррозию алюминия. Наконец, таблица скоростей коррозии зависит от области. В Мексике самый высокий уровень загрязнения в мире. SO4, CO2, Cl-, F-2 могут легко образовывать кислоты с влагой и вызывать коррозию.Атмосферная коррозия варьируется от места к месту.

Kam Dianatkhah
— Даллас, Техас
22 июня 2010 г.

В. Привет! Меня интересует эта тема, так как я собираюсь соединить медную трубу с алюминиевой частью (резьбовое соединение, ниппель на алюминии с гайкой крокса для медной трубы или подобное). Вода, протекающая через систему, является чистой (питьевой). Есть ли проблема с этим суставом? Поможет ли я вставить между ними отрезок трубы из ПВХ?

Все змеевики теплопередачи по всему миру построены с алюминиевыми ребрами, механически закрепленными на медной трубе, и все они очень хорошо работают в течение многих лет на крышах и в различных средах без коррозии.Почему они не ржавеют?

Крис Моана
— Окленд, Новая Зеландия
19 ноября 2012 г.

В. Я подумывал построить солнечный коллектор, используя инструкцию на сайте www.n3fjp.com/solar, но меня беспокоит, что медные трубки с алюминиевыми защелками на абсорберах приведут к преждевременному отказу системы? Или это маловероятно, поскольку между этими разнородными металлами не будет жидкости?
Надеюсь получить ответ от кого-то, кто знает об этом.

Спасибо,

Кеннет Форрестер
— Ричмонд, Вирджиния, США
1 марта 2013 г.

Q.Могут ли другие разнородные металлы попасть в зону гальванической коррозии при наличии гальванической коррозии? Пример: когда алюминий и медь образуют узелок гальванической коррозии, может ли растворимое железо попасть в этот узел?

Роберт Агирре
— Нейпервилл, Иллинойс, США
7 марта 2013 г.

А. Привет, Роберт. Ваше понимание этого явления может быть глубже моего, и я могу неправильно понять вопрос, но я бы сказал «нет».

Давайте начнем с рассмотрения одного металла, не связанного ни с одним другим металлом. Он состоит из атомов с положительно заряженными ядрами (хорошо, «ядра», мисс Крэбэппл), которые окружены электронами, которые уравновешивают заряды, и все в порядке. Затем предположим, что эти атомы подвергаются воздействию агрессивной среды (похитителя электронов). Агрессивные среды крадут электрон. Теперь этот атом больше не атом, а положительно заряженный ион в поисках электрона; поэтому он растворяется в среде в поисках электрона, чтобы уравновесить его. Итак, что на самом деле вызывает коррозию, так это потеря электронов из металла.

Металлы электропроводны, то есть электроны могут проходить через них от одного места к другому так же, как они проходят через провод. Итак, если два разных металла механически связаны каким-либо образом без электрического изолятора между ними, электроны могут проходить через них.

Теперь возьмите кусок двух разных металлов, соединенных вместе, и поместите их в агрессивную среду, которая крадет электроны. Гальваническая защита / коррозия происходит следующим образом: когда более благородный металл (в данном случае медь) имеет электрон, украденный из него коррозионным раствором, он имеет большее сродство к электронам, чем более низкий металл, и немедленно отбирает электрон из металла. основной металл (в данном случае алюминий).В результате атом меди остается уравновешенным атомом металла, а атом алюминия выскакивает и растворяется.

С уважением,

Часто задаваемые вопросы: преимущества медных проводников по сравнению с алюминиевыми

Алюминий широко доступен и представляет собой более дешевую альтернативу меди для проводников. Спрос на медь непостоянен, и цена значительно колеблется, тогда как цена на алюминий гораздо более стабильна. В то время как алюминиевый проводник всего на 61% меньше, чем медный провод такого же размера, он также в три раза легче по весу, что значительно упрощает обращение с ним.По этой причине алюминий находит применение в кабелях большого размера и кабелях для воздушных линий электропередачи.

Разница в проводимости означает, что необходимо использовать алюминиевый провод гораздо большего размера, чтобы соответствовать проводимости эквивалентного медного проводника. Использование проводника большего размера имеет дополнительный эффект, заключающийся в том, что требуется большее количество изоляционного материала для надлежащего покрытия проводника, а дополнительный размер поперечного сечения кабеля может быть ограничивающим в некоторых приложениях.

Другие различия между ними включают прочность на разрыв — медь примерно в два раза превышает прочность на разрыв, чем алюминий, но стоит отметить, что, учитывая, что эквивалентный алюминиевый проводник больше и легче, он часто не требует такой же степени прочности на разрыв. Медь более теплопроводна, чем алюминий, но опять же, если принять во внимание большие размеры проводников, различия уменьшаются. Чем лучше теплопроводность, тем лучше характеристики короткого замыкания проводника.

В некоторых случаях могут использоваться алюминиевые проводники с медным покрытием, состоящие из алюминиевого сердечника с толстой медной оболочкой, прикрепленной к алюминию. Хотя этот тип проводников не получил широкого распространения, он сочетает в себе преимущества более легкого алюминия с более проводящей медью. Однако пластичность — это пластичность алюминия, а не улучшенные характеристики меди. Этот тип проводника нашел применение в качестве легкого центрального проводника коаксиальных кабелей. Более легкий провод позволяет использовать диэлектрический материал с меньшей плотностью для лучшего затухания.

Вернуться к часто задаваемым вопросам

Теплопроводность металлов, металлических элементов и сплавов

Теплопроводность — к — это количество тепла, передаваемого за счет единичного температурного градиента в единицу времени в установившихся условиях в направлении, нормальном к поверхности единицы площади. Теплопроводность — k — используется в уравнении Фурье.

9015 9 0157190 9015 7 0-25 9015 « « Бронза (75% Cu, 25% Sn) 120 9015 9015 — « 9015 9015 9015 9 1 75. 5 73 « 121 9015 « « Сталь — никель, 20% Ni 73157 Тин « 9015 105
Металл, металлический элемент или сплав Температура
— t —
( o C)

Теплопроводность
— k —
(Вт / м K) (Вт / м K)
Алюминий -73 237
« 0 236
» 127 240 240
« 527 220
Алюминий — дюралюминий (94-96% Al, 3-5% Cu, следы Mg) 20 164
Алюминий — силумин (87% Al, 13% Si) 20 164
Алюминиевая бронза 0-25 70
Алюминиевый сплав 3003, прокат 0-25
Алюминиевый сплав 2014. отожженный 0-25 190
Алюминиевый сплав 360 0-25 150
Сурьма -73 30,2
« 127 21,2
» 327 18,2
« 527 16,8
218
« 127 161
» 327 126
527 107 7 107 « 927 73
Бериллиевая медь 25 80
Висмут -73 9.7
« 0 8,2
Бор -73 52,5
» 0 31,7
327 11,3
» 527 8,1
« 727 6. 3
» 927 9015.2
Кадмий -73 99,3
« 0 97,5
» 127 94158 « 0 36,1
Хром -73 111
» 0 94,8
«127 3
« 327 80,5
» 527 71,3
« 727 65,3 -73 122
« 0 104
» 127 0158 84,8
Медь -73 Медь -73 401
« 127 392
» 327 383
« 527 371 371 371 927 342
Медь электролитическая (ETP) 0-25 390
Медь — Адмиралтейская латунь 20 111
Медь — алюминиевая бронза (95% Cu, 5% Al) 20 83
20 26
Медь — латунь (желтая латунь) (70% Cu, 30% Zn) 20 111
Медь — патронная латунь (UNS C26000) 20 120
Медь — константан (60% Cu, 40% Ni) 20 22. 7
Медь — немецкое серебро (62% Cu, 15% Ni, 22% Zn) 20 24,9
Медь — фосфористая бронза (10% Sn, UNS C52400) 20 50
Медь — Красная латунь (85% Cu, 9% Sn, 6% Zn) 20 61
Купроникель 20 29
96157 Германий
« 0 66.7
« 127 43,2
» 327 27,3
« 527 19,8
927 17,4
Золото -73 327
« 0 318
» 9015 9015 9015 9015 9015 9015 9015 9015 9015 304
« 527 292
» 727 278
« 927 262 4
« 0 23,3
» 127 22,3
« 327 21,3
727 20,7
« 927 20,9
Hastelloy C 0-25 12
Inconel 9015 100158 9015 0-100 12
Индий -73 89. 7
« 0 83,7
» 127 75,5
Иридий -73 153 « 127 144
» 327 138
« 527 132
» 727 727 727
Утюг -73 94
« 0 83.5
« 127 69,4
» 327 54,7
« 527 43,3
927 28,2
Чугун — Литой 20 52
Железо — Перлитное железо с шаровидным графитом 100 59
Свинец -73 36. 6
« 0 35,5
» 127 33,8
« 327 31,2
Сурьма свинец (жесткий свинец) 0-25 30
Литий -73 88,1
« 0 79.2
« 127 72,1
Магний -73 159
» 0 157
327 149
» 527 146
Магниевый сплав AZ31B 0-25 100
Марганец17
« 0 7,68
Ртуть -73 28,9
Молибден -73 143 143 143 « 127 134
» 327 126
« 527 118
» 105
Монель 0-100 26
Никель -73 106
« 0 94
« 327 65,5
» 527 67,4
« 727 71,8 — Кованый 0-100 61-90
Мельхиор 50-45 (константан) 0-25 20
Ниобий (колумбий) -573 6
« 0 53,3
» 127 55,2
« 327 58,2 9015 9015 9015 727 64,4
« 927 67,5
Осмий 20 61
Палладий
Платина -73 72,4
« 0 71,5
» 127 71,6
527 75,5
» 727 78,6
« 927 82,6
Плутоний 20 0
Калий -73 104
« 0 104
» 127 52
красный
Рений -73 51
« 0 48,6
» 127 46,1
448 2
« 527 44,1
» 727 44,6
« 927 45,7 « 0 151
» 127 146
« 327 136
» 527 527 527
« 927 115
Рубидий -73 58. 9
« 0 58,3
Селен 20 0,52
Кремний -73 26412 26412
264
127 98,9
» 327 61,9
« 527 42,2
» 727 727.2
« 927 25,7
Серебро -73 403
» 0 428
327 405
» 527 389
« 727 374
» 138
« 0 135
Припой 50-50 0-25 50
Сталь — углерод, 0. 5% C 20 54
Сталь — углерод, 1% C 20 43
Сталь — углерод, 1,5% C 20 36
» 400 36
« 122 33
Сталь — хром, 1% Cr 20 61
Сталь хром, 5% Cr 20 40 9015
Сталь — хром, 10% Cr 20 31
Сталь — хромоникель, 15% Cr, 10% Ni 20 19
Сталь — хром никель, 20% Cr , 15% Ni 20 15.1
Сталь — Hastelloy B 20 10
Сталь — Hastelloy C 21 8,7
Сталь — никель, 10% Ni 20 20 20 19
Сталь — никель, 40% Ni 20 10
Сталь — никель, 60% Ni 20 19
Сталь — хром никель, 80% никель, 15% никель 20 17
Сталь — хром никель, 40% никель, 15% никель 20 11. 6
Сталь — марганец, 1% Mn 20 50
Сталь — нержавеющая, тип 304 20 14,4
Сталь — нержавеющая, тип 347 207 20
Сталь — вольфрам, 1% W 20 66
Сталь — Деформированный углерод 0 59
Тантал -73 57.5
« 0 57,4
» 127 57,8
« 327 58.9
727 60,2
« 927 61
Торий 20 42
-73 -733
« 0 68,2
» 127 62,2
Титан -73 24,5
127 20,4
» 327 19,4
« 527 19,7
» 727. 7
« 927 22
Вольфрам -73 197
» 0 182 9015 « 327 139
» 527 128
« 727 121
» 927 927 927 25.1
« 0 27
» 127 29,6
« 327 34
727 43,9
« 927 49
Ванадий -73 31,5
» 0 0.3
« 427 32,1
» 327 34,2
« 527 36,3 927 41,2
Цинк -73 123
« 0 122
» 127 127 127 127
Цирконий -73 25. 2
« 0 23,2
» 127 21,6
« 327
727 23,7
« 927 25,7

Сплавы — Температура и теплопроводность

Температура и теплопроводность для

    N352 N352 N352 N352 N352 N352 Hastelloy A
  • Advance
  • Монель

сплавов:

Информация о алюминиевом электрическом проводе | Aluminium Association

Алюминий безопасно и эффективно используется в электротехнике США более 100 лет.Требуется всего один фунт алюминия, чтобы равняться токонесущей способности двух фунтов меди, что делает его чрезвычайно привлекательным материалом для коммунальных служб, строителей и других. Ниже приведены некоторые основные часто задаваемые вопросы по алюминию в электрическом секторе, а также более подробные справочные материалы в этом секторе. Вы также можете найти процедуры установки и рекомендации по проектированию алюминиевых строительных проводов и кабелей для жилых, коммерческих, институциональных и промышленных применений в публикации NECA / AA 104-2012 , американской публикации национальных стандартов.

Часто задаваемые вопросы и ответы по строительной проволоке из алюминиевого сплава

Q1) Каковы относительные удельные проводимости алюминия и меди?

Алюминий имеет 61% проводимости меди по объему и 200% проводимости меди по массе.

Q2) Как определить размер алюминиевых и медных проводов?

Размер проводника зависит от нагрузки и применимых правил Национального электрического кодекса (NEC).NEC содержит таблицы размеров медных или алюминиевых проводов с различной изоляцией. Таблица 310.16 является наиболее часто используемой и включает до трех токоведущих проводов в кабельном канале, кабеле или заземлении.

Q3) Почему медь чаще используется для проводов меньшего диаметра?

Медь, доступная человечеству на протяжении тысяч лет, была легко доступна в начале электротехнической промышленности в 1882 году. В то время алюминий был доступен только в очень небольших количествах, поэтому он был драгоценным металлом, более ценным, чем золото. или серебро.Девяносто пять процентов всего когда-либо производимого алюминия было произведено после Второй мировой войны; и к тому времени электротехническая промышленность развивалась с использованием меди. За последние несколько десятилетий алюминий все чаще заменяет медь в электротехнике. Преобразование началось в коммунальной сети через передачу, распределение и продолжилось вплоть до прекращения обслуживания, ввода обслуживания и строительства механизмов подачи проволоки.

Сегодня в Соединенных Штатах медь, как правило, является единственным вариантом, доступным для разветвленной проводки.Розетки и переключатели обычно рассчитаны только на медь и дешевле, чем устройства CO / ALR.

Q4) Есть ли определенный вид алюминия, который необходимо использовать для изготовления проволоки?

Да. В большинстве случаев необходимо использовать строительную проволоку из алюминиевого сплава серии AA-8000 в соответствии с требованиями NEC 310.14. Есть некоторые исключения, в частности, проводники подземных служебных входов, которые заканчиваются за пределами здания.

Q5) Каковы физические различия между строительной проволокой из меди и алюминиевого сплава?

1.Медная и алюминиевая проволока одинаковой силы тока имеет одинаковые тепловые и механические характеристики.
2. Алюминиевые проводники больше по размеру, чем медные проводники равной силы тока.
3. Алюминий весит половину эквивалентной допустимой нагрузки на медь, что удобно для вытягивания или поддержки.
4. Усталостная выносливость (способность многократно сгибаться вперед и назад без разрушения) строительной проволоки из алюминиевого сплава обычно превышает эквивалентную допустимую нагрузку на медь.

Q6) Есть ли какие-либо другие соображения, кроме допустимой токовой нагрузки, при использовании алюминия или меди?

Трубопроводы: медные проводники позволяют использовать трубопровод меньшего размера. Однако с компактными проводниками, обычно используемыми для строительной проволоки из алюминиевого сплава, размеры кабелепровода, как правило, одинаковы для меди и алюминия одинаковой силы тока.

Соединения: Размер разъема должен соответствовать размеру AWG или kcmil проводника, медного или алюминиевого.

Физические характеристики: Алюминиевые проводники легче, их легче тянуть и / или поддерживать.Строительная проволока из алюминиевого сплава требует меньшего усилия для изгиба и после изгиба демонстрирует меньшую упругость.

Стоимость: алюминиевые проводники обычно более экономичны, чем медные проводники равной силы тока.

Технические характеристики: В соответствии с рабочими требованиями может потребоваться проводник определенного типа. Они могут разрешить или не разрешить альтернативу.

Местные нормы и правила. Поправки к электрическим правилам муниципалитета или штата могут ограничивать использование проводов сверх требований Национального электрического кодекса.

Q7) Вам нужны специальные соединители с алюминием?

Все разъемы протестированы и внесены в список для использования с конкретным типом (-ами) проводника. Для алюминия необходимо использовать разъемы с маркировкой «AL». В большинстве случаев одни и те же разъемы могут использоваться как для меди, так и для алюминия, если они имеют маркировку: AL9CU или AL7CU. Никогда не используйте разъем с маркировкой CU только с алюминием, так же как нельзя использовать разъемы с маркировкой AL только с медью.

Для всех разъемов следует использовать только те, которые были протестированы на определенные типы проводов, и вы должны следовать инструкциям производителя по установке.Большинство механических наконечников винтового типа имеют двойные номиналы и подходят для алюминиевых или медных проводов.

Q8) Требуются ли соединители компрессионного типа для алюминиевых проводов?

Нет, как механические установочные винты, так и компрессионные соединители с маркировкой «AL» могут использоваться с алюминием, установленным в соответствии с инструкциями производителя. Оба типа разъемов прошли одинаковые тесты производительности. Испытания показали, что алюминиевая и медная строительная проволока одинаково хорошо справляется с механическими резьбовыми наконечниками.

Q9) Требуется ли нанесение герметика на алюминий для предотвращения коррозии?

Только если этого требует производитель разъема или местные нормы. NEC не требует ингибиторов оксидов ни для алюминия, ни для меди, но требует, чтобы вы следовали инструкциям производителя по установке для перечисленных продуктов.

Тем не менее, даже если ингибитор оксидов специально не требуется, рекомендуется как для алюминиевых, так и для медных проводников, чтобы предотвратить попадание влаги и возможность последующей коррозии.И медные, и алюминиевые проводники подвержены коррозии при установке в агрессивных средах. Правильная установка и выбор соединителя помогают предотвратить коррозию соединений.

Ингибиторы оксида также тестируются для конкретных целей. Обязательно следуйте рекомендациям производителя и используйте только ингибиторы, специально указанные для типа проводника и класса напряжения, который вы устанавливаете.

Q10) Нужно ли периодически подтягивать алюминиевые соединения для поддержания хорошего электрического соединения?

№Соединения на алюминии или меди не следует повторно затягивать после установки в соответствии с инструкциями производителя по установке. Требования к характеристикам теста разъема основаны на отсутствии повторной затяжки. NFPA 70B, Рекомендуемая практика обслуживания электрического оборудования, не требует повторной затяжки алюминиевых проводов. Соединения следует подтягивать только в том случае, если есть признаки слабого соединения. Как чрезмерная, так и недостаточная затяжка могут привести к выходу из строя алюминиевых или медных соединений.Необоснованное повторное затягивание винтовых соединителей может привести к нарушению соединения с алюминиевыми или медными проводниками.


Справочник по алюминиевому электрическому проводнику
Это подробное руководство содержит подробную техническую информацию по использованию алюминия в электротехнике.

Справочник по алюминиевым электрическим проводникам — полная книга

Справочник по алюминиевому электрическому проводнику — по разделу


Дополнительные материалы

Отзывы о

алюминий, медь — интернет-магазины и обзоры на алюминий, медь на AliExpress

Отличные новости !!! Вы находитесь в нужном месте для алюминия и меди.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку эта лучшая алюминиевая медь вскоре станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что купили алюминиевую медь на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в алюминиевой меди и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести Aluminium Copper по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *