Зависимость толщины провода от мощности: Зависимость мощности от сечения кабеля

Содержание

Зависимость мощности от сечения провода. Расчет сечения кабеля для электропроводки в зависимости от потребляемой мощности


Таблица мощности проводов: рассмотрим подробно

Упрощенная таблица для выбора сечения проводника по номинальной мощности

Таблица зависимости мощности от сечения провода была разработана специально для новичков в вопросах электротехнике. Вообще выбор сечения провода зависит не только от мощности подключаемых нагрузок, но и от массы других параметров.

В одной из главных книг любого электрика – ПУЭ, правильному выбору сечения проводов посвящен целый пункт. И именно на основании него написана наша инструкция, которая должна помочь вам в нелегкой задаче выбора сечения проводов.

Как правильно выбирать сечение провода

Почему нельзя пользоваться таблицами мощности

Прежде всего вы должны знать, что любая таблица зависимости сечения провода от мощности не может противоречить ПУЭ. Ведь именно на основании этого документа осуществляют свой выбор не только профессионалы, но и конструкторские бюро.

Поэтому все те таблицы и видео, которые вы во множестве можете найти в сети интернет, предлагающие осуществлять выбор именно по мощности, являются своеобразным усредненным вариантом.

Итак:

  • Практически любая таблица сечений проводов по мощности предлагает вам выбрать провод, исходя из активной мощности прибора или приборов. Но, те кто хорошо учился в школе должны помнить, что активная мощность — это лишь составная часть полной мощности, которая кроме того содержит реактивную мощность.

Что такое cosα

  • Отличаются эти составные части на cosα. Для большинства электрических приборов этот показатель очень близок к единице, но для таких устройств как трансформаторы, стабилизаторы, разнообразная микропроцессорная техника и тому подобное он может доходить до 0,7 и меньше.
  • Но любая таблица сечения провода по мощности не точна не только из-за того, что не учитывает полную мощность. Есть и другие важные факторы. Так, согласно ПУЭ, выбор проводников напряжением до 1000В должен осуществляться только по нагреву. Согласно п.1.4.2 ПУЭ, выбор по токам короткого замыкания для таких проводов не является обязательным.
  • Для того, чтобы выбрать сечение провода по нагреву, следует учитывать следующие параметры: номинальный ток, протекающий через провод, вид провода – одно-, двух- или четырехжильный, способ прокладки провода, температура окружающей среды, количество прокладываемых проводов в пучке, материал изоляции провода и, конечно, материал провода. Не одна таблица нагрузочной способности проводов не способна совместить такое количество параметров.
Выбор сечения провода по номинальному току

Конечно, совместить все эти параметры в одной таблице сложно, а выбирать как-то надо. Поэтому, дабы вы могли произвести выбор своими руками и головой, мы предлагаем вам основные аспекты выбора в сокращенном варианте.

Мы отбросили все параметры выбора сечения для высоковольтных кабелей, малоиспользуемых проводов и оставили только самое важное.

Итак:

  • Так как в ПУЭ используется таблица выбора сечения провода по току, то нам необходимо узнать, какой ток будет протекать в проводе при определенных значениях мощности. Сделать это можно по формуле I=P /U× cosα, где I – наш номинальный ток, P – активная мощность, cosα – коэффициент полной мощности и U – номинальное напряжение нашей электросети (для однофазной сети оно равно 220В, для трехфазной сети оно равно 380В).

На фото представлена таблица выбора сечения провода из ПУЭ для алюминиевых проводников

  • Возникает закономерный вопрос, где взять показания cosα? Обычно он указан на всех электроприборах или его можно вывести, если указана полная и активная мощность. Если расчёт ведется для нескольких электроприборов, то обычно принимается средняя либо рассчитывается номинальный ток для каждого из них.

Обратите внимание! Если у вас не получается узнать cosα для каких-то приборов, то для них его можно принять равным единице. Это, конечно, повлияет на конечный результат, но дополнительный запас прочности для нашей проводки не повредит.

  • Зная нагрузки для каждой из планируемых групп нашей электросети, таблица зависимости сечения провода от тока, приведенная в ПУЭ, может быть использована нами. Только для правильного пользования следует остановиться еще на некоторых моментах.
  • Прежде всего следует определиться с проводом, который мы планируем использовать. Вернее, нам следует определиться с количеством жил. Кроме того, следует определиться со способом прокладки провода. Ведь при открытом способе прокладки провода интенсивность отвода тепла от него значительно выше, чем при прокладке в трубах или гофре. Это учитывается в таблицах ПУЭ.

Таблица выбора сечения провода для медных проводников

Обратите внимание! При выборе количества жил провода в расчет не принимаются нулевые и защитные жилы.

  • Кроме того, таблица сечения провода по току поможет вам определиться с выбором материала для проводки. Ведь, исходя из получающихся результатов, вы можете оценить какой материал вам лучше принять.

Обратите внимание! Производя выбор сечения провода, всегда выбирайте ближайшее большее значение сечения. Кроме того, если вы собираетесь монтировать новую проводку к старой, то учитывайте, что, согласно п.3.239 СНиП 3.05.06 – 85, старые клеммные колодки не позволят использовать провод сечением больше 4 мм2.

Дополнительные аспекты выбора сечения провода

Но когда рассматривается таблица зависимости тока от сечения провода, нельзя забывать и об условиях, в которых проложен провод. Поэтому если у вас имеют место быть условия не благоприятные по условиям нагрева провода, то стоит обратить внимание на дополнительные аспекты.

Таблица поправочных температурных коэффициентов

  • Прежде всего, это температура окружающей среды. Если она будет отличаться от среднестатистических +15⁰С, исходя из которых выполнен расчет в таблицах ПУЭ, то вам следует внести поправочные коэффициенты. Сводную таблицу этих коэффициентов вы найдете ниже.
  • Также таблица нагрузки и сечения проводов по п.1.3.10 ПУЭ требует введение поправочных коэффициентов при совместной прокладке нагруженных проводов в трубах, лотках или просто пучками. Так, для 5-6 проводов, проложенных совместно, этот коэффициент составляет 0,68. Для 7-9 он будет 0,63, и для большего количества он равен 0,6.

Вывод

Надеемся, наша таблица нагрузки медных и алюминиевых проводов поможет вам определиться с выбором. А предложенная нами методика позволит даже не профессионалу сделать правильный выбор.

Ведь цена ошибки может быть очень велика. Чего стоит только статистика пожаров, случившихся из-за короткого замыкания. А причина в большинстве случаев — не отвечающая нормам по нагреву проводка.

elektrik-a.su

Сечение кабеля и мощность

Довольно часто при проведении электромонтажных работ возникает вопрос, какой кабель использовать при прокладке от электрощита до электрических приборов. Определить мощность кабеля можно заранее, зная будущую потребляемую мощность.

Правильный выбор провода и расчет мощности

Выбор провода начинается с подсчета общей нагрузки электроэнергии, которая планируется к потреблению. Ведь у любого электрического прибора имеется расчетная потребляемая мощность, которая обозначается на специальных табличках. Для начала необходимо точно установить весь перечень электрооборудования, подключаемого к будущему кабелю. При этом, следует учесть на перспективу, возможность приобретения, в будущем, дополнительного оборудования и, соответственно, расчет кабеля должен производиться с запасом.

Расчет суммарной мощности рассмотрим на простом примере. Допустим, что суммарная мощность всех приборов и устройств, составила 15 кВт. Практически, во всех квартирах используется разрешенное напряжение в 220 вольт, поэтому расчет проводится по однофазной системе.

Необходимо учитывать количество одновременно включаемых приборов, особенно в выходные и праздничные дни. Коэффициент одновременного включения составляет 0,7 или 70%. Применив этот коэффициент к суммарной мощности в 15 кВт, получается расчетная мощность 10,5кВт.

Выбор УЗО или автомата

Следующим этапом является выбор автомата или устройства защитного отключения, на которые будет подключаться провод. Для этого расчетную нагрузку в 10500 ватт нужно разделить на 220 вольт. Полученный результат 47,73 ампера округляется до 48 А. Поэтому, защитное устройство должно быть на 50 ампер. Устройства с меньшим значением могут просто не выдержать предполагаемой нагрузки.

Вводный кабель является основой всей системы энергообеспечения, и выбирать его необходимо очень тщательно. Из двух основных видов кабеля – медного и алюминиевого, рассмотрим медный, который намного превосходит алюминиевый по своим проводящим и техническим характеристикам. Такой провод должен в обязательном порядке иметь три жилы, чтобы обеспечить нормальное устройство заземления для всего электрооборудования. Кабель может прокладываться в открытом или закрытом виде.

Зависимость сечения кабелей от потребляемой мощности приводится в таблице:

Формулы для расчета сечения кабеля и провода

electric-220.ru

по мощности, силе тока, длине

В зависимости от потребляемой мощности оборудования, рассчитывается сечение кабеля, которое зависит от силы тока, напряжения и длине самого кабеля. Производители кабельной продукции предлагают рынку богатый ассортимент, разобраться в котором и выбрать то, что нужно не просто.

От правильного выбора зависит не только его стоимость, но и электробезопасность при эксплуатации электрооборудования. Если сечение кабеля рассчитано неправильно и оно значительно ниже требуемого, то это может привести к перегреву изоляции, короткому замыканию и возможному возгоранию, что приведет к пожару.

Затраты на устранение последствий от такой ситуации несоизмеримы с теми, которые нужны чтобы выполнить грамотный расчет проводки, даже с привлечением специалиста.

В этой статье предлагается простая методика расчета сечения проводника, которая окажет методическую помощь, желающим самим правильно рассчитать и смонтировать кабельную проводку.

Содержание статьи

Расчет по мощности электроприборов

Любой кабель или провод, в зависимости от материала из которого он изготовлен, может выдержать определенную (номинальную) силу тока, а она имеет прямую зависимость от его сечения и длины. Определить общую потребляемую мощность всех установленных приборов не сложно. Для этого составляется перечень всего оборудования с указанием потребляемой мощности каждой единицы. Все указанные значения суммируются.

Этот расчет выполняется по следующей формуле:Pобщ = (P1+P2+P3+…+Pn)×0.8

Где:

  • Pобщ – общая сумма всех нагрузок.
  • (P1+P2+P3+…+Pn) – потребляемая мощность каждого оборудования.
  • 0,8 – это поправочный коэффициент, который характеризует степень загрузки всех приборов. Обычно приборы редко когда используются одновременно. Такие, как фен, пылесос или электрокамин, используются довольно редко

Полученная сумма будет использоваться для дальнейшего расчета.

Таблицы, по которым выбирается сечение кабеля

Расчет для алюминиевого проводаРасчет для медного провода

Выбрать нужное сечение по данным таблицы не так, сложно. По установленной мощности, величине напряжения и тока, выбирается размер сечения кабеля для закрытой и открытой проводки. Так же подбирается и материал, из которого изготовлен кабель.

На примере это будет выглядеть так: допустим общая потребляемая мощность электроэнергии в доме составила 13 кВт. Если это значение умножить на поправочный коэффициент 0.8, то номинальная потребляемая мощность составит 10.4 кВт. По таблице выбирается близкая по значению величина мощности. В данном случае для однофазной сети будет число 10.1 кВт, а для трехфазной 10.5 кВт. Для этих значений потребляемой мощности, выбирается сечение 6 мм2 и 1.5 мм2 соответственно.

Расчет сечения кабеля по силе тока

Если расчет по мощности не такой уж точный, то расчет по силе тока может дать самые оптимальные размеры сечения кабеля, что довольно важно, если используется медный кабель и в большом количестве.

Для начала необходимо определить токовую нагрузку на всю электропроводку. Она складывается из такой нагрузки для каждого из приборов и рассчитываются по таким формулам.

Для однофазной сети применяется следующая формула: I= P:(Uˑcos), а для трехфазной I=P÷√3×Uˑcos

Где:

  • I- сила тока
  • U – напряжение в сети
  • Cos – коэффициент мощности

Полученные таким способом расчета данные суммируются, и определяется токовая нагрузка на всю проводку. Из таблицы подбираются точные размеры сечения для всей сети. В таблице имеются значения для открытой и закрытой проводки. Они значительно отличаются друг от друга.

Таблица по выбору сечения кабеля в зависимости от силы тока.

Соотношения диаметра жил к токовым нагрузкам

Расчет по длине кабеля

В любом проводнике, сопротивление тока зависит от его длины. На этом свойстве и основан третий способ расчета сечения кабеля. Чем длиннее проводник, тем больше потери в сети. Если они превышают более 5%, то выбирают кабель с большим сечением.

Для определения сечения кабеля определяют суммарную мощность всех установленных приборов и силу тока, который будет протекать по проводнику. Для этого можно использовать, выше приведенную форму расчета. Далее выполняется расчет сопротивления проводки по следующей формуле:

  • R=(p×L)÷S, где p — удельное сопротивление проводника, которое приводится в специальных таблицах;
  • L – длина проводника в метрах, умножается на два, так как ток течет по фазному и нулевому проводу;
  • S- площадь поперечного сечения кабеля.

Далее производится расчет потери напряжения, где сила тока умножается на сопротивление, полученное при расчете. Полученное значение делится на величину напряжение в сети и умножается на 100%.

Если итоговое значение меньше 5%, то сечение кабеля выбрано правильно. В противном случае необходимо подобрать проводник большего сечения.

В любом случае при расчете сечения проводки, необходимо делать соответствующие поправки на перспективу. Возможно, появится желание приобрести более современные дополнительные бытовые приборы, которые будут потреблять больше электроэнергии. Поэтому желательно увеличить сечение проводки хотя бы на одну ступень. При этом вся проводка должна быть выполнена из медного провода.

Видео по расчету сечения кабеля

Понравилась статья? Поделиться с друзьями:

elektro-enot.ru

Как сделать правильный расчет сечения кабеля по мощности

Для правильного и безопасного монтажа кабелей для проводки обязательно нужно произвести предварительный расчет предполагаемой потребляемой мощности. Невыполнение требований по подбору сечения кабеля, используемого для проводки, может привести к оплавлению изоляции и пожару.

Расчет сечения кабеля для определенной системы электропроводки можно разбить на несколько этапов:

  1. разбивка потребителей электроэнергии по группам;
  2. определение максимального тока для каждого сегмента;
  3. выбор сечения кабеля.

Распределение потребителей электроэнергии по группам

Все потребляющие электроприборы следует разделить на несколько групп так, чтобы суммарная мощность потребления одной группой не была выше примерно 2,5-3 кВт. Это позволит подобрать медный кабель сечением не больше 2,5 кв. мм. Мощность некоторых основных бытовых приборов приведена в Таблице 1.

Таблица 1. Значение мощности основных бытовых приборов.

Потребители, объединенные в одну группу, должны находиться территориально примерно в одном месте, так как они подключаются к одному кабелю. Если весь подключаемый объект питается от однофазной сети, то количество групп и распределение потребителей не играют существенной роли.

Если питание трехфазное, то рекомендуется разделение потребителей по группам так, чтобы на каждую фазу приходилась примерно одинаковая мощность.

Тогда процент расхождения можно рассчитать по формуле = 100% — (Pmin/Pmax*100%), где Pmax – максимальная суммарная мощность, приходящаяся на одну фазу, Pmin– минимальная суммарная мощность, приходящаяся на одну фазу. Чем меньше процент расхождения мощности, тем лучше.

Расчет максимального тока для каждой группы потребителей

После того, как для каждой группы была найдена потребляемая мощность, можно рассчитать максимальный ток. Коэффициент спроса (Кс) лучше принять везде равным 1, так как не исключается использование одновременно всех элементов одной группы (например, вы можете включить одновременно все бытовые приборы, относящиеся к одной группе потребителей). Тогда формулы для однофазной и трехфазной сети будут иметь вид:

Iрасч = Pрасч / (Uном * cosφ) для однофазной сети , в этом случае напряжение в сети 220 В,

Iрасч = Pрасч / (√3 * Uном * cosφ) для трехфазной сети , напряжение в сети 380 В.

При монтаже электропроводки в последние десятилетия особенную популярность получил метод с использованием гофры для кабеля. Это объясняется целым набором свойств, которыми обладает гофрированная труба, но вместе с тем, при работе с ней необходимо придерживаться определенных правил.

Часто можно встретить и в теории, и на практике термины соединение треугольником и звездой, напряжение фазное и линейное — разобраться в их различиях поможет интересная статья.

Значение косинуса для бытовых приборов и освещения лампами накаливания принимается равным 1, для светодиодного освещения – 0,95, для люминесцентного освещения – 0,92. Для группы находится среднеарифметический косинус. Его значение зависит от того, какой косинус у прибора, потребляющего наибольшую мощность в данной группе. Таким образом, зная токи на всех участках проводки, можно приступить к выбору сечения проводов и кабелей.

Подбор сечения кабеля по мощности

При известных значениях расчетного максимального тока можно приступить к подбору кабелей. Это можно сделать двумя способами, но проще всего подобрать нужное сечение кабеля по табличным данным. Параметры для подбора медного и алюминиевого кабеля приведены в таблице ниже.

Таблица 2. Данные для выбора сечения кабеля с медными жилами и кабеля из алюминия.

При планировании электропроводки предпочтительно выбирать кабели из одного материала. Соединение медных и алюминиевых проводов обычной скруткой запрещено правилами пожарной безопасности, так как при колебаниях температуры эти металлы расширяются по-разному, что приводит к образованию зазоров между контактами и выделению тепла. Если возникает необходимость подключения кабелей из разных материалов, то лучше всего воспользоваться специально предназначенными для этого клеммами.

Видео с формулами расчета сечения кабеля

elektrik24.net

Расчет сечения кабеля. По мощности, току, длине

Как рассчитать кабель по току, напряжению и длине. Кабели, как известно, бывают разного сечения, материала и с разным количеством жил. Какой из них надо выбрать, чтобы не переплачивать, и одновременно обеспечить безопасную стабильную работу всех электроприборов в доме? Для этого необходимо произвести расчет кабеля. Расчет сечения проводят, зная мощность приборов, питающихся от сети, и ток, который будет проходить по кабелю. Необходимо также знать несколько других параметров проводки.

Основные правила

При прокладке электросетей в жилых домах, гаражах, квартирах чаще всего используют кабель с резиновой или ПВХ изоляцией, рассчитанный на напряжение не более 1 кВ. Существуют марки, которые можно применять на открытом воздухе, в помещениях, в стенах (штробах) и трубах. Обычно это кабель ВВГ или АВВГ с разной площадью сечения и количеством жил.Применяют также провода ПВС и шнуры ШВВП для подсоединения электрических приборов.

После расчета выбирается максимально допустимое значение сечения из ряда марок кабеля.

Основные рекомендации по выбору сечения находятся в Правилах устройства электроустановок (ПУЭ). Выпущено 6-е и 7-е издания, в которых подробно описывается, как прокладывать кабели и провода, устанавливать защиту, распределяющие устройства и другие важные моменты.

За нарушение правил предусмотрены административные штрафы. Но самое главное состоит в том, что нарушение правил может привести к выходу из строя электроприборов, возгоранию проводки и серьезным пожарам. Ущерб от пожара измеряется порой не денежной суммой, а человеческими жертвами.

Важность правильного выбора сечения

Почему расчет сечения кабеля так важен? Чтобы ответить, надо вспомнить школьные уроки физики.

Ток протекает по проводам и нагревает их. Чем сильнее мощность, тем больше нагрев. Активная мощность тока вычисляют по формуле:

P=UI cos φ=I²*R

R – активное сопротивление.

Как видно, мощность зависит от силы тока и сопротивления. Чем больше сопротивление, тем больше выделяется тепла, то есть тем сильнее провода нагреваются. Аналогично для тока. Чем он больше, тем больше греется проводник.

Сопротивление в свою очередь зависит от материала проводника, его длины и площади поперечного сечения.

R=ρ*l/S

ρ – удельное сопротивление;

l – длина проводника;

S– площадь поперечного сечения.

Видно, что чем меньше площадь, тем больше сопротивление. А чем больше сопротивление, тем проводник сильнее нагревается.

Если вы покупаете провод и замеряете его диаметр, то не забудьте, что площадь рассчитывается по формуле:

S=π*d²/4

d – диаметр.

Не стоит также забывать удельное сопротивление. Оно зависит от материала, из которого сделаны провода. Удельное сопротивление алюминия больше, чем меди. Значит, при одинаковой площади сильнее нагреваться будет алюминий. Сразу становится понятно, почему алюминиевые провода рекомендуют брать большего сечения, чем медные.

Чтобы каждый раз не вдаваться в длинный расчет кабеля, были разработаны нормы выбора сечения проводов в таблицах.

Расчет сечения провода по мощности и току

Расчет сечения провода зависит от суммарной мощности, потребляемой электрическими приборами в квартире. Ее можно рассчитать индивидуально, или воспользоваться средними характеристиками.

Для точности расчетов составляют структурную схему, на которой изображены приборы. Узнать мощность каждого можно из инструкции или прочитать на этикетке. Наибольшая мощность у электрических печек, бойлеров, кондиционеров. Суммарная цифра должна получиться в диапазоне приблизительно 5-15 кВт.

Зная мощность, по формуле определяют номинальную силу тока:

I=(PK)/(Ucos φ)

P – мощность в ваттах

U=220 Вольт

K=0,75 – коэффициент одновременного включения;

cos φ=1 для бытовых электроприборов;

Если сеть трехфазная, то применяют другую формулу:

I=P/(U√3cos φ)

U=380 Вольт

Рассчитав ток, надо воспользоваться таблицами, которые представлены в ПУЭ, и определить сечение провода. В таблицах указан допустимый длительный ток для медных и алюминиевых проводов с изоляцией различного типа. Округление всегда производят в большую сторону, чтобы был запас.

Можно также обратиться к таблицам, в которых сечение рекомендуют определять только по мощности.

Разработаны специальные калькуляторы, по которым определяют сечение, зная потребляемую мощность, фазность сети и протяженность кабельной линии. Следует обращать внимание на условия прокладки (в трубе или на открытом воздухе).

Влияние длины проводки на выбор кабеля

Если кабель очень длинный, то возникают дополнительные ограничения по выбору сечения, так как на протяженном участке происходят потери напряжения, которые в свою очередь приводят к дополнительному нагреву. Для расчета потерь напряжения используют понятие «момент нагрузки». Его определяют как произведение мощности в киловаттах на длину в метрах. Далее смотрят значение потерь в таблицах. Например, если потребляемая мощность составляет 2 кВт, а длина кабеля 40 м, то момент равняется 80 кВт*м. Для медного кабеля сечением 2,5 мм кв. это означает, что потери напряжения составляют 2-3%.

Если потери будут превышать 5%, то необходимо брать сечение с запасом, больше рекомендованного к использованию при заданном токе.

Расчетные таблицы предусмотрены отдельно для однофазной и трехфазной сети. Для трехфазной момент нагрузки увеличивается, так как мощность нагрузки распределяется по трем фазам. Следовательно, потери уменьшаются, и влияние длины уменьшается.

Потери напряжения важны для низковольтных приборов, в частности, газоразрядных ламп. Если напряжение питания составляет 12 В, то при потерях 3% для сети 220 В падение будет мало заметно, а для низковольтной лампы оно уменьшится почти вдвое. Поэтому важно размещать пускорегулирующие устройства максимально близко к таким лампам.

Расчет потерь напряжения выполняется следующим образом:

∆U = (P∙r0+Q∙x0)∙L/ Uн

P — активная мощность, Вт.

Q — реактивная мощность, Вт.

r0 — активное сопротивление линии, Ом/м.

x0 — реактивное сопротивление линии, Ом/м.

Uн – номинальное напряжение, В. (оно указывается в характеристиках электроприборов).

L — длинна линии, м.

Ну а если попроще для бытовых условий:

ΔU=I*R

R – сопротивление кабеля, рассчитывается по известной формуле R=ρ*l/S;

I – сила тока, находят из закона Ома;

Допустим, у нас получилось, что I=4000 Вт/220 В=18,2 А.

Сопротивление одной жилы медного провода длиной 20 м и площадью 1,5 мм кв. составило R=0,23 Ом. Суммарное сопротивление двух жил равняется 0,46 Ом.

Тогда ΔU=18,2*0,46=8,37 В

В процентном соотношении

8,37*100/220=3,8%

На длинных линиях от перегрузок и коротких замыканий устанавливают автоматические выключатели с тепловыми и электромагнитными расцепителями.

Похожие темы:

 

electrosam.ru

Выбор мощности, тока и сечения проводов и кабелей

— для медного провода 10 ампер на миллиметр квадратный,

— для алюминиевого 8 ампер на миллиметр квадратный, можно определить, подойдет ли имеющийся у вас провод или же необходимо использовать другой.

При выполнении скрытой силовой проводки (в трубке или же в стене) приведенные значения уменьшаются умножением на поправочный коэффициент 0,8. Следует отметить, что открытая силовая проводка обычно выполняется проводом с сечением не менее 4 кв. мм из расчета достаточной механической прочности.

Приведенные выше соотношения легко запоминаются и обеспечивают достаточную точность для использования проводов. Если требуется с большей точностью знать длительно допустимую токовую нагрузку для медных проводов и кабелей, то можно воспользоваться нижеприведенными таблицами.

В следующей таблице сведены данные мощности, тока и сечения кабельно-проводниковых материалов, для расчетов и выбора зашитных средств, кабельно-проводниковых материалов и электрооборудования.

Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами.

Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами.

Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных.

Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных.

Примечание. Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по данной таблице как для трехжильных кабелей, но с коэффициентом 0,92.

Сводная таблица сечений проводов, тока, мощности и характеристик нагрузки.

В таблице приведены данные на основе ПУЭ, для выбора сечений кабельно-проводниковой продукции, а также номинальных и максимально возможных токов автоматов защиты, для однофазной бытовой нагрузки чаще всего применяемой в быту.

Наименьшие допустимые сечения кабелей и проводов электрических сетей в жилых зданиях.

Рекомендуемое сечение силового кабеля в зависимости от потребляемой мощности:

  • Медь, U = 220 B, одна фаза, двухжильный кабель

 

Р, кВт

1

2

3

3,5

4

6

8

I, A

4,5

9,1

13,6

15,9

18,2

27,3

36,4

Сечение токопроводящей жилы, мм2

1

1

1,5

2,5

2,5

4

6

Макс. допустимая длина кабеля при указанном сечении, м*

34,6

17,3

17,3

24,7

21,6

23

27

  • Медь, U = 380 B, три фазы, трехжильный кабель

 

Р, кВт

6

12

15

18

21

24

27

35

I, A

9,1

18,2

22,8

27,3

31,9

36,5

41

53,2

Сечение токопроводящей жилы, мм2

1,5

2,5

4

4

6

6

10

10

Макс. допустимая длина кабеля при указанном сечении, м*

50,5

33,6

47,6

39,7

51

44,7

66,2

51

* величина сечения может корректироваться в зависимости от конкретных условий прокладки кабеля

Мощность нагрузки в зависимости от номинального тока автоматического выключателя и сечения кабеля.

Наименьшие сечения токопроводящих жил проводов и кабелей в электропроводках.

 

 

Сечение жил, мм2

Проводники

медных

алюминиевых

Шнуры для присоединения бытовых электроприемников

0,35

Кабели для присоединения переносных и передвижных электроприемников в промышленных установках

0,75

Скрученные двухжильные провода с многопроволочными жилами для стационарной прокладки на роликах

1

Незащищенные изолированные провода для стационарной электропроводки внутри помещений:

 

 

непосредственно по основаниям, на роликах, клицах и тросах

1

2,5

на лотках, в коробах (кроме глухих):

 

 

для жил, присоединяемых к винтовым зажимам

1

2

для жил, присоединяемых пайкой:

 

 

однопроволочных

0,5

многопроволочных (гибких)

0,35

на изоляторах

1,5

4

Незащищенные изолированные провода в наружных электропроводках:

 

 

по стенам, конструкциям или опорам на изоляторах;

2,5

4

вводы от воздушной линии

 

 

под навесами на роликах

1,5

2,5

Незащищенные и защищенные изолированные провода и кабели в трубах, металлических рукавах и глухих коробах

1

2

Кабели и защищенные изолированные провода для стационарной электропроводки (без труб, рукавов и глухих коробов):

 

 

для жил, присоединяемых к винтовым зажимам

1

2

для жил, присоединяемых пайкой:

 

 

однопроволочных

0,5

многопроволочных (гибких)

0,35

Защищенные и незащищенные провода и кабели, прокладываемые в замкнутых каналах или замоноличенно (в строительных конструкциях или под штукатуркой)

1

2

secretdachi.ru

Калькулятор расчета сечения провода по мощности и току

S=0,8D.

Небольшая поправка. — является округленным коэффициентом. Точная расчетная формула:

В электропроводке и электромонтаже в 90 % случаях применяется медный провод. Медный провод по сравнению с алюминиевым проводом, имеет ряд преимуществ. Он более удобен в монтаже, при такой же силе токе имеет меньшую толщину, более долговечен. Но чем больше диаметр (площадь сечения), тем выше цена медного провода. Поэтому, несмотря на все преимущества, если сила тока превышает значение 50 Ампер, чаще всего используют алюминиевый провод. В конкретном случае используется кабель, имеющий алюминиевую жилу 10 мм и более.

В квадратных миллиметрах измеряют площадь сечения проводов. Наиболее чаще всего на практике (в бытовой электрике), встречаются такие площади сечения: 0,75; 1,5; 2,5; 4 мм .

Существует иная система измерения площади сечения (толщины провода) — система AWG, которая используется, в основном в США. Ниже приведена таблица сечений проводов по системе AWG, а так же перевод из AWG в мм .

Выделяют, три основные принципа, при выборе сечения провода.

1.    Для прохождения электрического тока, площадь сечения провода (толщина провода), должна быть достаточной. Понятие достаточно означает, что когда проходит максимально возможный, в данном случае, электрический ток, нагрев провода будет допустимый (не более 600С).

2.    Достаточное сечение провода, что бы падение напряжения не превышало допустимого значения. В основном это относится к длинным кабельным линиям (десятки, сотни метров) и токам большой величины.

3.    Поперечное сечение провода, а также его защитная изоляция, должна обеспечивать механическую прочность и надежность.

Для питания, например люстры, используют в основном лампочки с суммарной потребляемой мощностью 100 Вт (ток чуть более 0,5 А).

Выбирая толщину провода, необходимо ориентироваться на максимальную рабочую температуру. Если температура будет превышена, провод и изоляция на нем будут плавиться и соответственно это приведет к разрушению самого провода. Максимальный рабочий ток для провода с определенным сечением ограничивается только максимально его рабочей температурой. И временем, которое сможет проработать провод в таких условиях.

Далее приведена таблица сечения проводов, при помощи которой в зависимости от силы тока, можно подобрать площадь сечения медных проводов. Исходные данные – площадь сечения проводника.

Максимальный ток для разной толщины медных проводов. Таблица 1.

Сечение токо-проводящей жилы, мм2

Ток, А, для проводов, проложенных

открыто

в одной трубе

одного двух жильного

одного трех жильного

0,5

11

0,75

15

1

17

15

14

1,2

20

16

14,5

1,5

23

18

15

2

26

23

19

2,5

30

25

21

3

34

28

24

4

41

32

27

5

46

37

31

6

50

40

34

8

62

48

43

10

80

55

50

16

100

80

70

25

140

100

85

35

170

125

100

50

215

160

135

70

270

195

175

95

330

245

215

120

385

295

250

Выделены номиналы проводов, которые используются в электрике. «Один двужильный» — кабель, имеющий два провода. Один Фаза, второй – Ноль – это считается однофазное питание нагрузки. «Один трехжильный» — используется при трехфазном питании нагрузки.

Таблица помогает определиться, при каких токах, а также в каких условиях эксплуатируется провод данного сечения.

Например, если на розетке написано «Мах 16А», то к одной розетке можно проложить провод сечением 1,5мм . Необходимо защитить розетку выключателем на ток не более чем 16А, лучше даже 13А, или 10 А. Эту тему раскрывает статья «Про замену и выбор защитного автомата».

Из данных таблицы видно, что одножильный провод – означает, что вблизи (на расстоянии менее 5 диаметров провода), не проходит более никаких проводов. Когда два провода рядом, как правило, в одной общей изоляции – провод двужильный. Здесь более тяжелый тепловой режим, поэтому меньше максимальный ток. Чем больше собрано в кабеле или пучке проводов, тем меньше должен быть максимальный ток отдельно для каждого проводника, из-за возможности перегрева.

Однако, эта таблица не совсем удобна с практической стороны. Зачастую исходный параметр – это мощность потребителя электроэнергии, а не электрический ток. Следовательно, нужно выбирать провод.

Определяем ток, имея значение мощности. Для этого, мощность Р (Вт) делим на напряжение (В) – получаем ток (А):

Общая информация для потребителя

Токонесущая часть кабеля выполняется из металла. Часть плоскости, проходящей под прямым углом к проводу, ограниченная металлом, называется сечением провода. В качестве единицы измерения используют квадратные миллиметры.

Сечение определяет допустимые токи, проходящие в проводе и кабеле. Этот ток, по закону Джоуля-Ленца, приводит к выделению тепла (пропорционально сопротивлению и квадрату тока), которое и ограничивает ток.

Условно можно выделить три области температур:

  • изоляция остается целой;
  • изоляция обгорает, но металл остается целым;
  • металл плавится от высокой температуры.

Из них только первая является допустимой температурой эксплуатации. Кроме того, с уменьшением сечения возрастает его электрическое сопротивление, что приводит к увеличению падения напряжения в проводах.

Однако, увеличение сечения приводит к увеличению массы и особенно стоимости или кабеля.

Из материалов для промышленного изготовления кабельной продукции используют чистую медь или алюминий. Эти металлы имеют различные физические свойства, в частности, удельное сопротивление, поэтому и сечения, выбираемые под заданный ток, могут оказаться различными.

Узнайте из этого видео, как правильно подобрать сечение провода или кабеля по мощности для домашней проводки:

Выбираем сечение кабеля по мощности

Подобрать сечение провода можно по мощности приборов, которые будут подключаться. Эти приборы называются нагрузкой и метод может еще называться «по нагрузке». Суть его от этого не меняется.

Выбор сечения кабеля зависит от мощности и силы тока

Собираем данные

Для начала находите в паспортных данных бытовой техники потребляемую мощность, выписываете ее на листочек. Если так проще, можно посмотреть на шильдиках — металлических пластинах или стикерах, закрепленных на корпусе техники и аппаратуры. Там есть основная информация и, чаще всего, присутствует мощность. Опознать ее проще всего по единицам измерения. Если изделие произведено в России, Белоруссии, Украине обычно стоит обозначение Вт или кВт, на оборудовании из Европы, Азии или Америки стоит обычно английское обозначение ваттов — W, а потребляемая мощность (нужна именно она) обозначается сокращением «TOT» или TOT MAX.

Пример шильдика с основной технической информацией. Нечто подобное есть на любой технике

Если и этот источник недоступен (информация затерлась, например, или вы только планируете приобрести технику, но еще не определились с моделью), можно взять среднестатистические данные. Для удобства они сведены в таблицу.

Таблица потребляемой мощности различных электроприборов

Находите ту технику, которую планируете ставить, выписываете мощность. Дана она порой с большим разбросом, так что иногда трудно понять, какую цифру брать. В данном случае, лучше брать по-максимуму. В результате при расчетах у вас будет несколько завышена мощность оборудования и потребуется кабель большего сечения. Но для вычисления сечения кабеля это хорошо. Горят только кабели с меньшим сечением, чем это необходимо. Трассы с большим сечением работают долго, так как греются меньше.

Суть метода

Чтобы подобрать сечение провода по нагрузке, складываете мощности приборов, которые будут подключаться к данному проводнику

При этом важно, чтобы все мощности были выражены в одинаковых единицах измерения — или в ваттах (Вт), или в киловаттах (кВт). Если есть разные значения, приводим их к единому результату

Для перевода киловатты умножают на 1000, и получают ватты. Например, переведем в ватты 1,5 кВт. Это будет 1,5 кВт * 1000 = 1500 Вт.

Если необходимо, можно провести обратное преобразование — ватты перевести в киловатты. Для это цифру в ваттах делим на 1000, получаем кВт. Например, 500 Вт / 1000 = 0,5 кВт.

Далее, собственно, начинается выбор сечения кабеля. Все очень просто — пользуемся таблицей.

Сечение кабеля, мм2 Диаметр проводника, мм Медный провод Алюминиевый провод
Ток, А Мощность, кВт Ток, А Мощность, кВт
220 В 380 В 220 В 380 В
0,5 мм2 0,80 мм 6 А 1,3 кВт 2,3 кВт
0,75 мм2 0,98 мм 10 А 2,2 кВт 3,8 кВт
1,0 мм2 1,13 мм 14 А 3,1 кВт 5,3 кВт
1,5 мм2 1,38 мм 15 А 3,3 кВт 5,7 кВт 10 А 2,2 кВт 3,8 кВт
2,0 мм2 1,60 мм 19 А 4,2 кВт 7,2 кВт 14 А 3,1 кВт 5,3 кВт
2,5 мм2 1,78 мм 21 А 4,6 кВт 8,0 кВт 16 А 3,5 кВт 6,1 кВт
4,0 мм2 2,26 мм 27 А 5,9 кВт 10,3 кВт 21 А 4,6 кВт 8,0 кВт
6,0 мм2 2,76 мм 34 А 7,5 кВт 12,9 кВт 26 А 5,7 кВт 9,9 кВт
10,0 мм2 3,57 мм 50 А 11,0 кВт 19,0 кВт 38 А 8,4 кВт 14,4 кВт
16,0 мм2 4,51 мм 80 А 17,6 кВт 30,4 кВт 55 А 12,1 кВт 20,9 кВт
25,0 мм2 5,64 мм 100 А 22,0 кВт 38,0 кВт 65 А 14,3 кВт 24,7 кВт

Чтобы найти нужное сечение кабеля в соответствующем столбике — 220 В или 380 В — находим цифру, которая равна или чуть больше посчитанной нами ранее мощности. Столбик выбираем исходя из того, сколько фаз в вашей сети. Однофазная — 220 В, трехфазная 380 В.

В найденной строчке смотрим значение в первом столбце. Это и будет требуемое сечение кабеля для данной нагрузки (потребляемой мощности приборов). Кабель с жилами такого сечения и надо будет искать.

Немного о том, медный провод использовать или алюминиевый. В большинстве случаев, при прокладке проводки в доме или  квартире, используют кабели с медными жилами. Такие кабели дороже алюминиевых, но они более гибкие, имеют меньшее сечение, работать с ними проще. Но, медные кабели с большого сечения, ничуть не более гибкие чем алюминиевые. И при больших нагрузках — на вводе в дом, в квартиру при большой планируемой мощности (от 10 кВт и больше) целесообразнее использовать кабель с алюминиевыми проводниками — можно немного сэкономить.

Параметры, определяющие сопротивление проводника

На предыдущих уроках мы уже поднимали вопрос о том, каким образом электрическое сопротивление влияет на силу тока в цепи, но не обсуждали, от каких же конкретно факторов зависит сопротивление проводника. На сегодняшнем уроке мы узнаем о параметрах проводника, которые определяют его сопротивление, и узнаем, каким образом Георг Ом в своих экспериментах исследовал сопротивление проводников.

Для получения зависимости силы тока в цепи от сопротивления Ому пришлось провести огромное количество экспериментов, в которых необходимо было изменять сопротивление проводника. В связи с этим он столкнулся с проблемой изучения сопротивления проводника в зависимости от его отдельно взятых параметров

В первую очередь, Георг Ом обратил внимание на зависимость сопротивления проводника от его длины, о которой уже вскользь шла речь на предыдущих уроках. Он сделал вывод, что при увеличении длины проводника прямо пропорционально увеличивается и его сопротивление

Кроме того, было выяснено, что на сопротивление влияет еще и сечение проводника, т. е. площадь фигуры, которая получается при поперечном разрезе. При этом, чем площадь сечения больше, тем сопротивление меньше. Из этого можно сделать вывод, что чем провод толще, тем его сопротивление меньше. Все эти факты были получены опытным путем.

Кроме геометрических параметров на сопротивление проводника влияет еще и величина, описывающая род вещества, из которого состоит проводник. В своих опытах Ом использовал проводники, изготовленные из различных материалов. При использовании медных проводов сопротивление было каким-то одним, серебряных – другим, железных – третьим и т. д. Величину, которая характеризует род вещества в таком случае, называют удельным сопротивлением.

Таким образом, можно получить следующие зависимости для сопротивления проводника (рис. 1):

1. Сопротивление прямо пропорционально длине проводника , которую в СИ измеряют в м;

2. Сопротивление обратно пропорционально площади сечения проводника , которую мы будем измерять в мм2 из-за малости;

3. Сопротивление зависит от удельного сопротивления вещества  (читается «ро»), которое является табличной величиной и измеряется обыкновенно в .

Рис. 1. Проводник

Проблемы качества выпускаемых проводов

Многие производители кабельно-проводниковой продукции, стараясь выручить побольше, искусственно занижают толщину изоляции и завышают диаметр кабеля.
Указывая большее, чем в реальности, сечение провода, производитель экономит очень большую сумму. К примеру, на производство тысячи метров медного провода сечением 2,5 мм2 требуется меди 22,3 кг, а при изготовлении провода в 2,1 мм2 требуется всего 18,8 кг. Вот и получается экономия в 3,5 кг меди.

Ещё один способ удешевления продукции – изготовление токопроводящей жилы из некачественного сырья. При добавлении дешёвых примесей снижается токопроводность, следовательно, расчёты длины кабеля должен быть изменены.

Особенности самостоятельного расчета

Самостоятельное вычисление продольного сечения выполняется на жиле без изоляционного покрытия. Кусочек изоляции можно отодвинуть или снять на отрезке, приобретенном специально для тестирования. Вначале понадобится определить диаметр и по нему найти сечение. Для работ используется несколько методик.

Способ оправдан, если будут измеряться параметры усеченного, или бракованного кабеля. К примеру, ВВГ может обозначаться как 3х2,5, но фактически быть 3х21. Вычисления производятся так:

  1. С проводника снимается изоляционное покрытие.
  2. Диаметр замеряется штангенциркулем. Понадобится расположить провод между ножками инструмента и посмотреть на обозначения шкалы. Целая величина находится сверху, десятичная – снизу.
  3. На основании формулы поиска площади круга S = π (D/2)2 или ее упрощенного варианта S = 0,8 D² определяется поперечное сечение.
  4. Диаметр равен 1,78 мм. Подставляя величину в выражение и округлив результат до сотых, получается 2,79 мм2.

Вычисление ПС с помощью линейки и карандаша

При отсутствии специального измерителя можно воспользоваться карандашом и линейкой. Операции выполняются с тестовым образом:

  1. Зачищается от изоляционного слоя участок, равный 5-10 см.
  2. Получившаяся проволока наматывается на карандаш. Полные витки укладываются плотно, пространства между ними быть не должно, «хвостики» направляются вверх или вниз.
  3. В конечном итоге должно получиться определенное число витков, их требуется посчитать.
  4. Намотка прикладывается к линейке так, чтобы нулевое деление совпадало с первой намоткой.
  5. Замеряется длина отрезка и делится на количество витков. Получившаяся величина – диаметр.
  6. Например, получилось 11 витков, которые занимают 7,5 мм. При делении 7,5 на 11 выходит 0,68 мм – диаметр кабеля. Сечение можно найти по формуле.

Точность вычислений определяется плотностью и длиной намотки.

Рекомендации по устройству

Устройство проводки, кроме всего прочего, требует навыков проектирования, что есть не у каждого, кто хочет ее сделать. Недостаточно иметь только хорошие навыки в электромонтаже. Некоторые путают проектирование с оформлением документации по каким-то правилам. Это совершенно разные вещи. Хороший проект может быть изложен на листках из тетрадки.

Прежде всего, нарисуйте план ваших помещений и отметьте будущие розетки и светильники. Узнайте мощности всех ваших потребителей: утюгов, ламп, нагревательных приборов и т. п. Затем впишите мощности нагрузок, наиболее часто потребляемых в разных помещениях. Это позволит вам выбрать наиболее оптимальные варианты выбора кабелей.

Вы удивитесь, сколько тут возможностей и какой резерв для экономии денег. Выбрав провода, подсчитайте длину каждой линии, которую вы ведете. Сложите все вместе, и тогда вы приобретете ровно то, что нужно, и столько, сколько нужно.

Каждая линия должна быть защищена своим автоматом (автоматическим выключателем), рассчитанным на ток, соответствующий допустимой мощности линии (сумма мощностей потребителей). Подпишите автоматы, расположенные в щитке, например: «кухня», «гостиная» и т. д.

Целесообразно иметь отдельную линию на все освещение, тогда вы сможете спокойно чинить розетку в вечернее время, не пользуясь спичками. Именно розетки чаще всего и бывают перегруженными. Обеспечивайте розетки достаточной мощностью – вы не знаете заранее, что вам придется туда включать.

В сырых помещениях используйте кабели только с двойной изоляцией! Используйте современные розетки («евро») и кабели с заземляющими проводниками и правильно подключайте заземление. Одножильные провода, особенно медные, изгибайте плавно, оставляя радиус в несколько сантиметров. Это предотвратит их излом. В кабельных лотках и каналах провода должны лежать прямо, но свободно, ни в коем случае нельзя натягивать их, как струну.

В розетках и выключателях должен быть запас в несколько лишних сантиметров. При прокладке нужно убедиться, что нигде нет острых углов, которые могут надрезать изоляцию. Затягивать клеммы при подключении необходимо плотно, а для многожильных проводов эту процедуру следует сделать повторно, у них есть особенность усадки жил, в результате чего соединение может ослабнуть.

Медные провода и алюминиевые «не дружат» между собой по электрохимическим причинам, непосредственно соединять их нельзя. Для этого можно использовать специальные клеммники или оцинкованные шайбы. Места соединений всегда должны быть сухими.

Фазные проводники должны быть белого (или коричневого) цвета, а нейтрали – всегда синего . Заземление имеет желто-зеленый цвет. Это общепринятые правила расцветки и продажные кабели, как правило, имеют внутреннюю изоляцию именно таких цветов. Соблюдение расцветки повышает безопасность эксплуатации и ремонта.

Предлагаем вашему вниманию интересное и познавательное видео, как правильно рассчитать сечение кабеля по мощности и длине:

Выбор проводов по сечению является главным элементом проекта электроснабжения любого масштаба, от комнаты, до больших сетей. От этого будет зависеть ток, который можно отбирать в нагрузку и мощность. Правильный выбор проводов также обеспечивает электро- и пожарную безопасность, и обеспечивает экономичный бюджет вашего проекта.

Нередко перед приобретением кабельной продукции возникает необходимость самостоятельного замера ее сечения во избежание обмана со стороны производителей, которые из-за экономии и установления конкурентной цены могут незначительно занижать этот параметр.

Разнообразие кабельной продукции и проводов

Также знать, как производится определение сечения кабеля, необходимо, например, при добавлении новой энергопотребляющей точки в помещениях со старой электропроводкой, на которой отсутствует какая-либо техническая информация. Соответственно, вопрос о том, как узнать сечение проводников, остается актуальным всегда.

Расчет сечения кабеля по мощности и длине

Правила устройства электроустановок описывают все факторы, оказывающие влияние на выбор сечения кабеля для монтажа электропроводки. Основным из них является нагрузка, используемая в сети. Получить ее можно, зная мощность электрооборудования.

Влияние оказывают и другие факторы:

  • Количество жил: от этого зависит, насколько сильно нагревается провод.
  • Способ укладки: кабели, уложенные под землей, выдерживают большую нагрузку. Провода, уложенные в короб, нагреваются друг о друга. Если в коробе находится больше четырех проводов, для расчета сечения применяется поправочный коэффициент, указанный в ПУЭ.
  • Процент падения напряжения.
  • Температура воздуха, при которой будет эксплуатироваться сеть.

К электрическим сетям предъявляются следующие требования:

  • безопасность;
  • надежность;
  • экономичность.

Если выбранная площадь поперечного сечения провода окажется маленькой, то токовые нагрузки на кабели и провода будут большими, что приведет к перегреву. В результате может возникнуть аварийная ситуация, которая нанесет вред всему электрооборудованию и станет опасной для жизни и здоровья людей.

Если же монтировать провода с большой площадью поперечного сечения, то безопасное применение обеспечено. Но с финансовой точки зрения будет перерасход средств. Правильный выбор сечения провода – это залог длительной безопасной эксплуатации и рационального использования финансовых средств.

Осуществляется расчет сечения кабеля по мощности и току. Рассмотрим на примерах. Чтобы определить, какое сечение провода нужно для 5 кВт, потребуется использовать таблицы ПУЭ ( “Правила устройства электроустановок“). Данный справочник является регламентирующим документом. В нем указывается, что выбор сечения кабеля производится по 4 критериям:

  1. Напряжение питания (однофазное или трехфазное).
  2. Материал проводника.
  3. Ток нагрузки, измеряемый в амперах (А), или мощность – в киловаттах (кВт).
  4. Месторасположение кабеля.

В ПУЭ нет значения 5 кВт, поэтому придется выбрать следующую большую величину – 5,5 кВт. Для монтажа в квартире сегодня необходимо использовать провод из меди. В большинстве случаев установка происходит по воздуху, поэтому из справочных таблиц подойдет сечение 2,5 мм². При этом наибольшей допустимой токовой нагрузкой будет 25 А.

В вышеуказанном справочнике регламентируется ещё и ток, на который рассчитан вводный автомат (ВА). Согласно “Правилам устройства электроустановок“, при нагрузке 5,5 кВт ток ВА должен равняться 25 А. В документе указано, что номинальный ток провода, который подходит к дому или квартире, должен быть на порядок больше, чем у ВА.

Длина кабеля влияет на потерю напряжения. Таким образом, на конце проводника напряжение может уменьшиться и оказаться недостаточным для работы электроприбора. Для бытовых электросетей этими потерями можно пренебречь. Достаточно будет взять кабель на 10-15 см длиннее. Этот запас израсходуется на коммутацию и подключение. Если концы провода подсоединяются к щитку, то запасная длина должна быть еще больше, т. к. будут подключаться защитные автоматы.

При укладке кабеля на большие расстояния приходиться учитывать падение напряжения. Каждый проводник характеризуется электрическим сопротивлением. На данный параметр влияют:

  1. Длина провода, единица измерения – м. При её увеличении растут потери.
  2. Площадь поперечного сечения, измеряется в мм². При её увеличении падение напряжения уменьшается.
  3. Удельное сопротивление материала (справочное значение). Показывает сопротивление провода, размеры которого 1 квадратный миллиметр на 1 метр.

Падение напряжения численно равняется произведению сопротивления и тока. Допустимо, чтобы указанная величина не превышала 5%. В противном случае надо брать кабель большего сечения. Алгоритм расчета сечения провода по максимальной мощности и длине:

  1. В зависимости от мощности P, напряжения U и коэффициента cosф находим ток по формуле: I=P/(U*cosф). Для электросетей, которые используются в быту, cosф = 1. В промышленности cosф рассчитывают как отношение активной мощности к полной. Последняя состоит из активной и реактивной мощностей.
  2. С помощью таблиц ПУЭ определяют сечение провода по току.
  3. Рассчитываем сопротивление проводника по формуле: Rо=ρ*l/S, где ρ – удельное сопротивление материала, l – длина проводника, S – площадь поперечного сечения. Необходимо учесть ток факт, что ток идет по кабелю не только в одну сторону, но и обратно. Поэтому общее сопротивление: R = Rо*2.
  4. Находим падение напряжения из соотношения: ΔU=I*R.
  5. Определяем падение напряжения в процентах: ΔU/U. Если полученное значение превышает 5%, тогда выбираем из справочника ближайшее большее поперечное сечение проводника.

Определение индуктивного сопротивления проводов

Индуктивное сопротивление воздушных линий для стандартной частоты f = 50 Гц и относительной магнитной проницаемости для цветных металлов µ = 1, определяется по известной всем формуле :

где:

  • Dср. – среднее геометрическое расстояние между проводами, мм;
  • dр – расчетный диаметр провода (мм2), определяется по ГОСТ 839-80, таблицы 1 -4;

Среднее геометрическое расстояние между проводами определяется по формуле :

где:

  • D1-2 — расстояние между проводами первой и второй фазы;
  • D2-3 — расстояние между проводами второй и третей фазой;
  • D1-3 — расстояние между первой и третей фазой.

Данные значения определяются по чертежам опор линий электропередачи.

Для упрощения расчетов индуктивного сопротивления проводов рекомендуется использовать приложения П28-П31 , предварительно определив значение Dср.

Если же нужно выполнить приближенный расчет, то можно использовать в расчетах средние значения сопротивлений:

  • для линий 0,4 – 10 кВ х = 0,3 Ом/км;
  • для линий 35 кВ х = 0,4 Ом/км;
  • для стальных проводов использовать приложение П6 ;

Индуктивное сопротивление кабелей рассчитать довольно сложно, из-за различной их конструкции. Поэтому активные и индуктивные сопротивления кабелей рекомендуется принимать по справочникам, приложение П7 .

Если же нужно выполнить приближенный расчет, можно принять индуктивные сопротивления:

  • для кабелей сечением 16 – 240 мм2 х = 0,06 Ом/км для напряжения до 1000 В;
  • для кабелей сечением 16 – 240 мм2 х = 0,08 Ом/км для напряжения 6 – 10 кВ;
  • для проводов проложенных на роликах х = 0,20 Ом/км;
  • для проводов проложенных на изоляторах х = 0,25 Ом/км;

Литература:

Как и чем измерить диаметр провода (проволоки)

Для измерения диаметра провода подойдет штангенциркуль или микрометр любого типа (механический или электронный). С электронными работать проще, но они есть не у всех. Измерять надо саму жилу без изоляции, потому предварительно ее отодвиньте или снимите небольшой кусок. Это можно делать, если продавец разрешит. Если нет — купите небольшой кусок для тестирования и проводите измерения на нем. На очищенном от изоляции проводнике замеряете диаметр, после чего можно определить реальное сечение провода по найденным размерам.

Какой измерительный прибор в данном случае лучше? Если говорить о механических моделях, то микрометр. У него точность измерений выше. Если говорить об электронных вариантов, то для наших целей они оба дают вполне достоверные результаты.

Если нет ни штангенциркуля, ни микрометра, захватите с собой отвертку и линейку. Придется зачищать довольно приличный кусок проводника, так что без покупки тестового образца на этот раз вряд ли обойдетесь. Итак, снимаете изоляцию с куска провода 5-10 см. Наматываете проволоку на цилиндрическую часть отвертки. Витки укладываете вплотную один к другому, без зазора. Все витки должны быть полными, то есть «хвосты» провода должны торчать в одном направлении — вверх или вниз, например.

Количество витков не важно — около 10. Можно больше или меньше, просто на 10 делить проще

Витки считаете, затем прикладываете полученную намотку к линейке, совместив начало первого витка с нулевой отметкой (как на фото). Измеряете длину участка, занятого проводом, потом его делите на количество витков. Получаете диаметр провода. Вот так все просто.

Например, посчитаем каков размер проволоки, изображенной на фото выше. Количество витков в данном случае — 11, занимают они 7,5 мм. Делим 7,5 на 11, получаем 0,68 мм. Это и будет диаметр данного провода. Далее можно искать сечение этого проводника.

Таблица сечения кабеля по мощности

Сечение одной жилы Ток, Ампер Мощность, кВт
3 20 4,5
4 25 6,5
7 35 8
11 52 11
17 65 14,2
25 80 18,2
30 110 23
40 120 30
55 160 36
70 200 45
120 220 50,1

Процесс замера с помощью штангенциркуля

Сечение одной жилы, мм Ток, Ампер Мощность, кВт
3 18 13,5
4 23 15,1
7 30 20
11 41 24,7
17 55 35
25 90 45,6
30 110 53,4
40 132 60,4
55 150 72
70 165 91
120 200 110
Сечение одной жилы, мм Ток, Ампер Мощность, кВт
3 19 4,1
4 30 5,7
7 36 8,1
11 44 10
17 60 15,3
25 75 18,2
30 84 24,7
40 110 40
55 230 45,1
70 255 58
120 300 66
Сечение одной жилы, мм Ток, Ампер Мощность, кВт
3 14 10,3
4 18 16
7 32 19,7
11 40 25,4
17 55 35
25 70 48,3
30 85 60
40 115 110,4
55 180 115
70 220 140
120 250 170,2

Не зависимо от выбора проводника, нужно обращать внимание на:

  • изоляционный слой. Если он поврежден, использовать такое изделие нельзя;
  • в течение какого времени будет использоваться;
  • пропускная способность кабеля.

Опытные электромонтеры советуют отдавать предпочтение проверенным фабрикам, которые на рынке уже более 10 лет. Также перед покупкой можно почитать отзывы о каждом производителе и выбрать более бюджетный и подходящий для себя вариант. На сегодняшний день в России существует более 50 изготовителей кабельной продукции. В некоторых местах даже можно заказать изделие из Европы. Такие кабели обычно стоят вдвое дороже.

Замер по количеству витков

Сечение провода — достаточно важная величина. При выборе неподходящего изделия могут возникнуть непоправимые последствия в виде пожаров и коротких замыканий. Рекомендуется посетить форум электриков, которые смогут дать ответ на все вопросы и предоставить больше информации, чтобы правильно выбирать продукцию.

Зависимость сечения провода от силы тока

Токовые нагрузки на провода, кабели и шнуры, покрытые резиновой или ПХВ изоляцией приведены исходя из расчета максимально допустимого нагрева жилы до 65°C. Температура окружающего воздуха принята равной 25°C, температура земли 15°C. При определении количества проводов или жил многожильного провода, которые прокладываются в одной трубе, не принимаются в расчет нулевые и заземляющие провода. Токовые нагрузки, указанные в нижеприведенной таблице 2, действительны при любом количестве труб и месте их прокладки (на открытом воздухе, внутри помещения, в перекрытиях здания).

Таблица 1. Токовая нагрузка на провода и шнуры с резиновой или ПХВ изоляцией, проложенные открыто.

Сечение жилы, мм2 Диаметр жилы, мм Ток, А
С медными жилами
С алюминиевыми жилами
0.5 0.80 11
0.75 0.98 15
1.0 1.1 17
1.2 1.2 20 18
1.5 1.4 23
2 1.6 26 21
2.5 1.8 30 24
3 2.0 34 27
4 2.3 41 32
5 2.5 46 36
6 2.8 50 39
8 3.2 62 46
10 3.6 80 60
16 4.5 100 75
25 5.6 140 105
35 6.7 170 130
50 8.0 215 165
70 9.4 270 210
95 11.0 330 255
120 12.4 385 295
150 13.8 440 340
185 15.3 510 390
240 17.5 605 465
300 19.5 695 535
400 22.6 830 645

Таблица 2. Токовая нагрузка на провода и шнуры с резиновой или ПХВ изоляцией, проложенные в трубе.

А — два одножильных; Б — три одножильных; В — четыре одножильных;
Г — один двухжильный; Д — один трехжильный.

Сечение жилы, мм2 Диаметр жилы, мм Ток, А
С медными жилами С алюминиевыми жилами    
А Б В Г Д А Б В Г Д
0.5 0.80
0.75 0.98
1.0 1.1 16 15 14 15 14
1.2 1.2 18 16 15 16 14.5
1.5 1.4 19 17 16 18 15
2 1.6 24 22 20 23 19 19 18 15 17 14
2.5 1.8 27 25 25 25 21 20 19 19 19 16
3 2.0 32 28 26 28 24 24 22 21 22 18
4 2.3 38 35 30 32 27 28 28 23 25 21
5 2.5 42 39 34 37 31 32 30 27 28 24
6 2.8 46 42 40 40 34 36 32 30 31 26
8 3.2 54 51 46 48 43 43 40 37 38 32
10 3.6 70 60 50 55 50 50 47 39 42 38
16 4.5 85 80 75 80 80 60 60 55 60 55
25 5.6  115  100 90  100  100 85 80 70 75 65
35 6.7  135  125  115  125  135  100 95 85 95 75
50 8.0  185  170  150  160  175  140  130  120  125  105
70 9.4  225  210  185  195  215  175  165  140  150  135
95 11.0  275  255  225  245  250  215  200  175  190  165
120 12.4  315  290  260  295  245  220  200  230  190
150 13.8  360  330  275  255
185 15.3
240 17.5
300 19.5
400 22.6

по мощности, силе тока, длине

В зависимости от потребляемой мощности оборудования, рассчитывается сечение кабеля, которое зависит от силы тока, напряжения и длине самого кабеля. Производители кабельной продукции предлагают рынку богатый ассортимент, разобраться в котором и выбрать то, что нужно не просто.

От правильного выбора зависит не только его стоимость, но и электробезопасность при эксплуатации электрооборудования. Если сечение кабеля рассчитано неправильно и оно значительно ниже требуемого, то это может привести к перегреву изоляции, короткому замыканию и возможному возгоранию, что приведет к пожару.

Затраты на устранение последствий от такой ситуации несоизмеримы с теми, которые нужны чтобы выполнить грамотный расчет проводки, даже с привлечением специалиста.

В этой статье предлагается простая методика расчета сечения проводника, которая окажет методическую помощь, желающим самим правильно рассчитать и смонтировать кабельную проводку.

Содержание статьи

Расчет по мощности электроприборов

Любой кабель или провод, в зависимости от материала из которого он изготовлен, может выдержать определенную (номинальную) силу тока, а она имеет прямую зависимость от его сечения и длины. Определить общую потребляемую мощность всех установленных приборов не сложно. Для этого составляется перечень всего оборудования с указанием потребляемой мощности каждой единицы. Все указанные значения суммируются.

Этот расчет выполняется по следующей формуле:
Pобщ = (P1+P2+P3+…+Pn)×0.8

Где:

  • Pобщ – общая сумма всех нагрузок.
  • (P1+P2+P3+…+Pn) – потребляемая мощность каждого оборудования.
  • 0,8 – это поправочный коэффициент, который характеризует степень загрузки всех приборов. Обычно приборы редко когда используются одновременно. Такие, как фен, пылесос или электрокамин, используются довольно редко

Полученная сумма будет использоваться для дальнейшего расчета.

Таблицы, по которым выбирается сечение кабеля

Расчет для алюминиевого проводаРасчет для медного провода

Выбрать нужное сечение по данным таблицы не так, сложно. По установленной мощности, величине напряжения и тока, выбирается размер сечения кабеля для закрытой и открытой проводки. Так же подбирается и материал, из которого изготовлен кабель.

На примере это будет выглядеть так: допустим общая потребляемая мощность электроэнергии в доме составила 13 кВт. Если это значение умножить на поправочный коэффициент 0.8, то номинальная потребляемая мощность составит 10.4 кВт. По таблице выбирается близкая по значению величина мощности. В данном случае для однофазной сети будет число 10.1 кВт, а для трехфазной 10.5 кВт. Для этих значений потребляемой мощности, выбирается сечение 6 мм2 и 1.5 мм2 соответственно.

Расчет сечения кабеля по силе тока

Если расчет по мощности не такой уж точный, то расчет по силе тока может дать самые оптимальные размеры сечения кабеля, что довольно важно, если используется медный кабель и в большом количестве.

Для начала необходимо определить токовую нагрузку на всю электропроводку. Она складывается из такой нагрузки для каждого из приборов и рассчитываются по таким формулам.

Для однофазной сети применяется следующая формула: I= P:(Uˑcos), а для трехфазной I=P÷√3×Uˑcos

Где:

  • I- сила тока
  • U – напряжение в сети
  • Cos – коэффициент мощности

Полученные таким способом расчета данные суммируются, и определяется токовая нагрузка на всю проводку. Из таблицы подбираются точные размеры сечения для всей сети. В таблице имеются значения для открытой и закрытой проводки. Они значительно отличаются друг от друга.

Таблица по выбору сечения кабеля в зависимости от силы тока.

Соотношения диаметра жил к токовым нагрузкам

Расчет по длине кабеля

В любом проводнике, сопротивление тока зависит от его длины. На этом свойстве и основан третий способ расчета сечения кабеля. Чем длиннее проводник, тем больше потери в сети. Если они превышают более 5%, то выбирают кабель с большим сечением.

Для определения сечения кабеля определяют суммарную мощность всех установленных приборов и силу тока, который будет протекать по проводнику. Для этого можно использовать, выше приведенную форму расчета. Далее выполняется расчет сопротивления проводки по следующей формуле:

  • R=(p×L)÷S, где p — удельное сопротивление проводника, которое приводится в специальных таблицах;
  • L – длина проводника в метрах, умножается на два, так как ток течет по фазному и нулевому проводу;
  • S- площадь поперечного сечения кабеля.

Далее производится расчет потери напряжения, где сила тока умножается на сопротивление, полученное при расчете. Полученное значение делится на величину напряжение в сети и умножается на 100%.

Если итоговое значение меньше 5%, то сечение кабеля выбрано правильно. В противном случае необходимо подобрать проводник большего сечения.

В любом случае при расчете сечения проводки, необходимо делать соответствующие поправки на перспективу. Возможно, появится желание приобрести более современные дополнительные бытовые приборы, которые будут потреблять больше электроэнергии. Поэтому желательно увеличить сечение проводки хотя бы на одну ступень. При этом вся проводка должна быть выполнена из медного провода.

Видео по расчету сечения кабеля

Понравилась статья? Поделиться с друзьями:

Таблица сечений кабеля, предохранителей

Рекомендации по монтажу проводов питания (12В) изделий

1. Основные ограничения1.1. Максимально-допустимое падение напряжения на проводах на участке от блока питания до любого изделия — 1В.
1.2. Для подключения питания непосредственно к клеммам изделий рекомендуется использовать провод сечением не более 1,5 мм2.

2. Справочные данные
Сопротивление 100м медного провода (двойного):
а) для провода сечением 0,35мм2 — 10,3 Ом,
б) для провода сечением 9,0мм2 — 0,4 Ом.
В промежутке между этими значениями — обратно пропорционально сечению провода.

3. Минимально-допустимое сечение провода в зависимости от суммарного тока нагрузки и длины провода питания
Для случая монтажа линии питания проводом единого сечения последовательным обходом всех изделий существует следующее общее выражение:
Smin = 0,035 * (i1*L1+ i2*L2+… + ik*Lk), где
L1, L2, … Lk , — значения длины участка провода питания от блока питания до каждого из изделий, м;
i1, i2, ik -токи потребления изделий, включая токи нагрузок, которые питаются через клеммы изделия (замки, сирены, считыватели и т.д.), А;
Smin — минимально-допустимое сечение провода, мм2.

Если токи потребления изделий равны и составляют iср , то выражение упрощается и принимает следующий вид
Smin=0,035 * iср * (L1+ L2+… +Lk).

Ниже приведена таблица значений сечения провода для случая, когда вся нагрузка сосредоточена на конце провода питания.

При равномерном распределении изделий по длине провода питания его сечение может быть уменьшено по отношению к приведенным в таблице в 2 раза.

При неравномерном распределении изделий или при неодинаковых токах потребления для расчета сечения провода следует пользоваться вышеприведенными формулами.

Если для монтажа цепей питания требуется провод сечением больше, чем 1,5 мм2, то рекомендуется разделить нагрузки на группы таким образом, чтобы к каждой группе можно было подвести питание отдельным лучом проводом сечением не более 1,5 мм2.

Если монтаж цепей питания проведен проводом сечением больше, чем 1,5 мм2, то для непосредственного подключения цепи к плате изделий необходимо применять отводы из провода 0,75-1,5 мм2 длиной не более 2м.

************************************************

Подбор сечения силового кабеля.

Работу электрической схемы постоянного тока можно легко объяснить, применяя аналогию движения электронов по проводнику движению воды по трубопроводу. Электрическая цепь ведет себя аналогично гидравлической системе подачи воды под
давлением. Электрический провод, по которому движутся электроны — это труба, по которой течет вода. Аккумуляторная батарея аналогична водонапорной башне (или насосу), которая создает давление в системе. Разность давления воды между начальной
точкой трубы, где установлен насос и ее конечной точкой заставляет течь воду по трубопроводу. Точно так же, разность потенциалов (напряжение) на концах проводника обеспечивает движение электронов по проводу. Количество воды, протекающее за
определенный промежуток времени через сечение трубы называют расходом воды в трубе (литр/сек). Аналогично расходу воды, сила тока в проводнике определяется как количество электрического заряда, переносимого за определенный промежуток времени
через сечение провода. Если сила тока со временем не меняется, то такой ток называют постоянным. Прение, возникающее в роцессе движения электронов о кристаллическую решетку проводника принято называть сопротивлением проводника. Сопротивление
измеряется в Омах. По закону Ома для участка цепи сопротивление равно отношению напряжения к силе тока.

1 Ом = 1 Вольт /1 Ампер

Сопротивление проводника вызывает его нагрев. Поэтому правильный выбор сечения кабеля является очень важной задачей. Чем больше сечение кабеля, тем меньше его сопротивление, и тем больший ток он сможет пропустить. Следует помнить,
что с увеличением длины проводника сопротивление растет.

Автомобильные аудиосистемы потребляют большой ток, особенно если устанавливается несколько усилителей мощности. Напряжение в энергосистеме автомобиля постоянно и равно 12В, поэтому для обеспечения высокой мощности аудиосистема вынуждена потреблять большое количество тока. Усилитель является самым энергопотребляющим компонентом в звуковых системах. Поэтому для расчета
сечения силового кабеля нам прежде всего необходимо будет определить максимальную мощность усилителя. Для начала надо в спецификации к усилителю прочитать его среднюю мощность при 2 Ом или 4 омной нагрузке. Допустим, что мы имеем четырехканальный усилитель, RMS мощность которого равна 35 Вт на канал. Полная RMS мощность равна произведению количества каналов на мощность одного канала:
35 Вт х 4 = 140 Вт. (средняя мощность)

Зная, что средняя (RMS) мощность соответствует приблизительно 50% эффективности усилителя, то для определения максимальной мощности надо удвоить ее значение:
140 Вт х 2 ~ 280 Вт. (максимальная мощность)

Из физики известно, что мощность равна произведению силы тока на напряжение. Следовательно, сила тока равна:
Ампер = Ватт/Вольт.

Напряжение в сети автомобиля известно и равно приблизительно 13В. Значит, ток потребляемый нашим усилителем будет равен:
280 Вт /13 В = 21.53 A

Подобные вычисления следует произвести для каждого усилителя в аудиосистеме. После необходимо определить длину силового кабеля от аккумулятора до распределительного блока, а затем от этого блока до каждого компонента системы. Зная потребляемую силу тока и длину кабеля, обращаемся к специальной таблице подбора сечения и длины кабеля и подбираем необходимый калибр кабеля. Данные в таблице учитывают тот факт, что силовой кабель, сечение которого подобрано удовлетворяет не только потреблению тока усилителем, но и рассчитано на питание остальных компонентов аудиосистемы. Сечение заземляющих кабелей должно быть такое же, как и сечение питающих проводов.

******************************************************

СОВЕТ
Memory 12V+

В современных авто магнитолах применяется несколько проводов питания: для питания усилителя мощности, для включения подсветки при включении габаритов автомобиля, для питания памяти и т.д. провод, питающий усилитель мощности, имеет обычно толстое сечение и на нем установлен мощный предохранитель — это основное питание авто магнитолы.(обычно красный) провод меньшего сечения, часто имеющий предохранитель с малым током сгорания , необходим для питания памяти автомагнитолы . Обычно это аппаратура среднего и высокого класса, имеющие цифровую шкалу настройки и память, куда заносится информация о настройке радиоприемника на станции, что позволяет вести бес поисковый прием станций набрав только номер станции (кнопка). Еще один вариант , где применяется дополнительный провод это приемники с возможностью кодирования и чтобы не вносить код доступа при каждом включении применяется микросхема памяти, питающаяся от аккумулятора отдельным проводом.(может быть желтого цвета или красный, но малого сечения). Из этого следует: чтобы авто магнитола работала правильно надо тонкий провод питания подключать напрямую (без каких-либо коммутаций) это и есть провод «Memory 12V+ » к аккумулятору, а толстый провод можно подключать через коммутирующие элементы как замок зажигания или дополнительный выключатель.



источник АвтоАудиоЦентр — ФОРУМ ПО АВТОЗВУКУ :: Просмотр темы — Питание аудио системы

Resistivity and Resistance — University Physics Volume 2

Теперь рассмотрим сопротивление провода или компонента. Сопротивление — это мера того, насколько сложно пропустить ток через провод или компонент. Сопротивление зависит от удельного сопротивления. Удельное сопротивление является характеристикой материала, используемого для изготовления провода или другого электрического компонента, тогда как сопротивление является характеристикой провода или компонента.

Для расчета сопротивления рассмотрим участок проводящего провода с площадью поперечного сечения A , длиной L и удельным сопротивлением. Батарея подключается к проводнику, обеспечивая разность потенциалов на нем ((рисунок)).Разность потенциалов создает электрическое поле, пропорциональное плотности тока, согласно.

Величина электрического поля на сегменте проводника равна напряжению, деленному на длину,, а величина плотности тока равна току, деленному на площадь поперечного сечения. Используя эту информацию и вспомнив что электрическое поле пропорционально удельному сопротивлению и плотности тока, мы можем видеть, что напряжение пропорционально току:

Единицей измерения сопротивления является ом,.Для заданного напряжения чем выше сопротивление, тем ниже ток.

Резисторы

Обычным компонентом электронных схем является резистор. Резистор можно использовать для уменьшения протекания тока или обеспечения падения напряжения. (Рисунок) показывает символы, используемые для резистора в принципиальных схемах цепи. Два обычно используемых стандарта для принципиальных схем предоставлены Американским национальным институтом стандартов (ANSI, произносится как «AN-см.») И Международной электротехнической комиссией (IEC).Обе системы обычно используются. Мы используем стандарт ANSI в этом тексте для его визуального распознавания, но отметим, что для более крупных и сложных схем стандарт IEC может иметь более четкое представление, что упрощает чтение.

Обозначения резистора, используемого в принципиальных схемах. (а) символ ANSI; (b) символ IEC.

Зависимость сопротивления материала и формы от формы

Резистор можно смоделировать как цилиндр с площадью поперечного сечения A и длиной L , изготовленный из материала с удельным сопротивлением ((рисунок)).Сопротивление резистора составляет.

Модель резистора в виде однородного цилиндра длиной L и площадью поперечного сечения A . Его сопротивление потоку тока аналогично сопротивлению трубы потоку жидкости. Чем длиннее цилиндр, тем больше его сопротивление. Чем больше площадь его поперечного сечения A , тем меньше его сопротивление.

Наиболее распространенным материалом для изготовления резистора является углерод. Углеродная дорожка намотана на керамический сердечник, к нему прикреплены два медных провода.Второй тип резистора — это металлопленочный резистор, который также имеет керамический сердечник. Дорожка сделана из материала оксида металла, который имеет полупроводниковые свойства, аналогичные углеродным. Опять же, в концы резистора вставляются медные провода. Затем резистор окрашивается и маркируется для идентификации. Резистор имеет четыре цветные полосы, как показано на (Рисунок).

Многие резисторы имеют вид, показанный на рисунке выше. Четыре полосы используются для идентификации резистора. Первые две цветные полосы представляют собой первые две цифры сопротивления резистора.{5} \ phantom {\ rule {0.2em} {0ex}} \ text {Ω} Ошибка пакета inputenc: символ Юникода ± (U + 00B1) начальный текст: … ext {Ω} \ phantom {\ rule {0.2em} {0ex}} \ text {±} Файл завершился при сканировании использования \ text @. Экстренная остановка.

.

Сопротивление может быть разным. Некоторые керамические изоляторы, например те, которые используются для поддержки линий электропередач, имеют сопротивление или более. Сухой человек может иметь сопротивление руки к ноге, тогда как сопротивление человеческого сердца составляет около.Кусок медного провода большого диаметра длиной в метр может иметь сопротивление, а сверхпроводники вообще не имеют сопротивления при низких температурах. Как мы видели, сопротивление связано с формой объекта и материалом, из которого он состоит.

Плотность тока, сопротивление и электрическое поле для токоведущего провода. Рассчитайте плотность тока, сопротивление и электрическое поле медного провода длиной 5 м и диаметром 2,053 мм (калибр 12), по которому проходит ток с током 0,5 м.

Стратегия

Мы можем рассчитать плотность тока, сначала найдя площадь поперечного сечения провода, которая есть, и определение плотности тока. Сопротивление можно найти, используя длину провода, площадь и удельное сопротивление меди, где. Удельное сопротивление и плотность тока можно использовать для определения электрического поля.

Решение Сначала мы вычисляем плотность тока:

Сопротивление провода

Наконец, мы можем найти электрическое поле:

Значимость Исходя из этих результатов, неудивительно, что медь используется для проводов, пропускающих ток, потому что сопротивление довольно мало.Обратите внимание, что плотность тока и электрическое поле не зависят от длины провода, но напряжение зависит от длины.

Сопротивление объекта также зависит от температуры, поскольку оно прямо пропорционально. Мы знаем, что для цилиндра L и A не сильно изменяются с температурой, R имеет такую ​​же температурную зависимость, что и (Исследование коэффициентов линейного расширения показывает, что они примерно на два порядка меньше типичных температурных коэффициентов удельного сопротивления, поэтому влияние температуры на L и A примерно на два порядка меньше, чем на

— это температурная зависимость сопротивления объекта, где — исходное сопротивление (обычно принимается равным R — сопротивление после изменения температуры. Цветовой код показывает сопротивление резистора при температуре.

Многие термометры основаны на влиянии температуры на сопротивление ((Рисунок)). Один из наиболее распространенных термометров основан на термисторе, полупроводниковом кристалле с сильной температурной зависимостью, сопротивление которого измеряется для определения его температуры. Устройство небольшое, поэтому быстро приходит в тепловое равновесие с той частью человека, к которой прикасается.

Эти знакомые термометры основаны на автоматическом измерении сопротивления термистора в зависимости от температуры.

Проверьте свои знания Тензодатчик — это электрическое устройство для измерения деформации, как показано ниже. Он состоит из гибкой изолирующей основы, поддерживающей рисунок из проводящей фольги. Сопротивление фольги изменяется по мере растяжения основы. Как меняется сопротивление тензодатчика? Влияет ли тензодатчик на изменение температуры?

Рисунок фольги растягивается по мере растяжения основы, а дорожки фольги становятся длиннее и тоньше.Поскольку сопротивление рассчитывается как, сопротивление увеличивается по мере того, как дорожки из фольги растягиваются. При изменении температуры меняется и удельное сопротивление дорожек фольги, изменяя сопротивление. Один из способов борьбы с этим — использовать два тензодатчика, один используется в качестве эталона, а другой — для измерения деформации. Два тензодатчика поддерживаются при постоянной температуре

Сопротивление коаксиального кабеля Длинные кабели иногда могут действовать как антенны, улавливая электронные шумы, которые являются сигналами от другого оборудования и приборов.Коаксиальные кабели используются во многих случаях, когда требуется устранение этого шума. Например, их можно найти дома через кабельное телевидение или другие аудиовизуальные соединения. Коаксиальные кабели состоят из внутреннего проводника с радиусом, окруженного вторым, внешним концентрическим проводником с радиусом ((Рисунок)). Пространство между ними обычно заполнено изолятором, например полиэтиленовым пластиком. Между двумя проводниками возникает небольшой ток радиальной утечки. Определите сопротивление коаксиального кабеля длиной L .

Коаксиальные кабели состоят из двух концентрических жил, разделенных изоляцией. Они часто используются в кабельном телевидении или других аудиовизуальных средствах связи.

Стратегия Мы не можем использовать уравнение напрямую. Вместо этого мы смотрим на концентрические цилиндрические оболочки толщиной dr и интегрируем.

Решение Сначала находим выражение для dR , а затем интегрируем от до,

Значение Сопротивление коаксиального кабеля зависит от его длины, внутреннего и внешнего радиусов, а также удельного сопротивления материала, разделяющего два проводника.Поскольку это сопротивление не бесконечно, между двумя проводниками возникает небольшой ток утечки. Этот ток утечки приводит к ослаблению (или ослаблению) сигнала, передаваемого по кабелю.

Проверьте свое понимание Сопротивление между двумя проводниками коаксиального кабеля зависит от удельного сопротивления материала, разделяющего два проводника, длины кабеля и внутреннего и внешнего радиуса двух проводников. Если вы разрабатываете коаксиальный кабель, как сопротивление между двумя проводниками зависит от этих переменных?

Чем больше длина, тем меньше сопротивление.Чем больше удельное сопротивление, тем выше сопротивление. Чем больше разница между внешним радиусом и внутренним радиусом, то есть чем больше соотношение между ними, тем больше сопротивление. Если вы пытаетесь максимизировать сопротивление, выбор значений для этих переменных будет зависеть от приложения. Например, если кабель должен быть гибким, выбор материалов может быть ограничен.

открытых учебников | Сиявула

Математика

Наука

    • Читать онлайн
    • Учебники

      • Английский

        • Класс 7A

        • Марка 7Б

        • 7 класс (A и B вместе)

      • Африкаанс

        • Граад 7А

        • Граад 7Б

        • Граад 7 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 8A

        • Сорт 8Б

        • Оценка 8 (вместе A и B)

      • Африкаанс

        • Граад 8А

        • Граад 8Б

        • Граад 8 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 9А

        • Марка 9Б

        • 9 класс (A и B вместе)

      • Африкаанс

        • Граад 9А

        • Граад 9Б

        • Граад 9 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Класс 4A

        • Класс 4Б

        • Класс 4 (вместе A и B)

      • Африкаанс

        • Граад 4А

        • Граад 4Б

        • Граад 4 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 5A

        • Марка 5Б

        • Оценка 5 (вместе A и B)

      • Африкаанс

        • Граад 5А

        • Граад 5Б

        • Граад 5 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 6А

        • Марка 6Б

        • 6 класс (A и B вместе)

      • Африкаанс

        • Граад 6А

        • Граад 6Б

        • Граад 6 (A en B saam)

    • Пособия для учителя

Наша книга лицензионная

Эти книги не просто бесплатные, они также имеют открытую лицензию! Один и тот же контент, но разные версии (брендированные или нет) имеют разные лицензии, как объяснено:

CC-BY-ND (фирменные версии)

Вам разрешается и поощряется свободное копирование этих версий.Вы можете делать ксерокопии, распечатывать и распространять их сколько угодно раз. Вы можете скачать их на свой мобильный телефон, iPad, ПК или флешку. Вы можете записать их на компакт-диск, отправить по электронной почте или загрузить на свой веб-сайт. Единственным ограничением является то, что вы не можете адаптировать или изменять эти версии учебников, их содержание или обложки, поскольку они содержат соответствующие бренды Siyavula, спонсорские логотипы и одобрены Департаментом базового образования. Для получения дополнительной информации посетите Creative Commons Attribution-NoDerivs 3.0 Непортированный.

Узнайте больше о спонсорстве и партнерстве с другими, которые сделали возможным выпуск каждого из открытых учебников.

CC-BY (версии без марочного знака)

Эти небрендированные версии одного и того же контента доступны для вас, чтобы вы могли делиться ими, адаптировать, трансформировать, модифицировать или дополнять их любым способом, с единственным требованием — дать соответствующую оценку Siyavula. Для получения дополнительной информации посетите Creative Commons Attribution 3.0 Unported.

Объяснение лабораторного отчета

: длина и электрическое сопротивление провода

ВВЕДЕНИЕ И ИСТОРИЯ ВОПРОСА

Когда электроны проходят через провода или другие внешние цепи, они движутся по зигзагообразной схеме, что приводит к столкновению электронов и ионов в проводник, и это называется сопротивлением.Сопротивление провода затрудняет движение электрического тока провода и обычно измеряется в Ом (Ом).

Джордж Ом обнаружил, что разность потенциалов в цепи соответствует току, протекающему по цепи, и что цепь иногда сопротивляется потоку электричества. Таким образом, упомянутый ученый придумал правило для расчета сопротивления, показанное на изображении сбоку:

Сопротивление — важный фактор, на который следует обратить внимание, потому что, во-первых, слишком высокое сопротивление может вызвать перегрев провода из-за трение, которое возникает, когда электроны движутся против сопротивления, что потенциально опасно, поскольку оно может расплавиться или даже поджечь.Поэтому важно учитывать сопротивление при работе с проводами для подачи питания на устройство или около того.

В реальной жизни может быть тостер, у которого провода такого размера, чтобы они были достаточно горячими, чтобы поджарить хлеб, но недостаточно, чтобы расплавиться.

Во-вторых, сопротивление также может быть очень полезным инструментом, который позволяет вам контролировать определенные вещи. Примером из реального мира могут быть светодиодные фонари, которым требуется резистор для управления потоком электрического тока, чтобы предотвратить повреждение высоким электрическим током.Другим примером может быть регулятор громкости на радио, где резистор используется для разделения сигнала, что позволяет вам контролировать уровень громкости.

Теперь ясно, что сопротивление — важный атрибут, который применялся ко многим формам технологий для выполнения полезной функции, и этот эксперимент направлен на то, чтобы увидеть, как мы можем его контролировать. Сопротивление провода варьируется в зависимости от четырех факторов провода; — температура, материал, диаметр / толщина и длина провода.

Этот эксперимент будет сосредоточен именно на этом последнем факторе — длине — и исследует, какую роль длина провода будет иметь на его электрическом сопротивлении, используя диапазон длин проводов для тестирования.

ИССЛЕДОВАТЕЛЬСКИЙ ВОПРОС

Как изменение длины нихромовой проволоки диаметром 0,315 мм — разрезать на 10 см, 20 см, 30 см, 40 см и 50 см — влияет на электрическое сопротивление, генерируемое в нихромовой проволоке, которое может быть захвачены омметром при сохранении температуры и места проведения эксперимента?

ГИПОТЕЗА

Если длину нихромовой проволоки увеличить на 10 см, начиная с 10 см, то график измерения электрического сопротивления проводов будет иметь положительный наклон с математической функцией y = mx, которая отображает возрастающее количество генерируемого сопротивления.

ПРИЧИНА ДЛЯ ГИПОТЕЗЫ

Удвоение длины провода аналогично тому, как если бы два более коротких провода были соединены последовательно. Если один короткий провод имеет сопротивление 1 Ом, то два коротких провода будут иметь сопротивление 2 Ом при последовательном соединении.

Более длинный провод также означает, что в нем будет больше атомов, а это значит, что движущиеся электроны с большей вероятностью столкнутся с ними; следовательно, более высокое сопротивление. Например, 10-сантиметровая проволока содержит 5 атомов, а 20-сантиметровая проволока — 10 атомов.Если, скажем, 5 электронов попытаются пройти через эти два провода, шансы, что они столкнутся с атомами, выше в 20-сантиметровом проводе, чем в 10-сантиметровом. Следовательно, чем длиннее провод, тем выше сопротивление.

Источник: Класс физики «Сопротивление». Кабинет физики, без даты. Интернет. 8 мая 2018 г. [http://www.physicsclassroom.com/class/circuits/Lesson-3/Resistance]

ПЕРЕМЕННЫЕ . омметр
Независимая переменная Зависимая переменная 812
Длина нихромовой проволоки Сопротивление нихромовой проволоки
Эксперимент будет измеряться с использованием 5 комплектов нихромовой проволоки
проводов, начиная с длины 10 см, добавил мультиметр с погрешностью ± 0.01Ω
с шагом 10 см. Длина каждого провода точно путем обрезания щупов омметра
будет измеряться в см с помощью 30-сантиметровой линейки с до краев нихромовых проводов, которые должны быть
± 0,05 см и будет следующим: 10, проверено.
20, 30, 40, 50.
6 Управляемые 6 Управляемые элементы Как управлять
Материал провода Различные материалы имеют разные Материал провода, который будет
сопротивления; некоторые из них являются лучшими проводниками, используется во всем
означает, что у них больше свободных электронов, эксперимент будет сохранен точно
, таким образом, имея меньшее сопротивление. то же, что нихромовая проволока.
Материалы также имеют разный нагрев
точка. Некоторые нагреваются легче, чем другие
после использования, что потенциально может быть
опасным.
Диаметр проволоки Диаметр проволоки является одним из факторов Диаметр проволоки, который повлияет на
сопротивление провода для будет использоваться на всем протяжении
будет больше места для эксперимента будет сохранено ровно
электронов, что будет то же самое, что равно 0.315 мм.
приводит к меньшему сопротивлению. Сохранение диаметра проволоки
постоянным приведет к справедливому эксперименту
различные температуры могут Температура будет поддерживаться на уровне
влияет на сопротивление провода, потому что комнатная температура, которая может
чем выше температура, тем выше можно сделать просто выполняя
сопротивление провода, так как это вызывает эксперимент в одной комнате, в пределах
электроны будут двигаться быстрее из-за за тот же период времени.Увеличение энергии
, в результате чего больше экспериментаторы должны также избегать столкновения
с атомами, таким образом, более с использованием любого света, например, факела,
905 сопротивление. для него может быть источником тепла.
Напряжение источника питания Источник питания должен иметь значение Напряжение будет равно 1.5 В,
то же самое, что и напряжение и передаваемый ток , и ток изменится
в зависимости от этого; высший блок питания в зависимости от напряжения.
напряжение, тем больше напряжения и тока будет
будет отправлен на провод, что повлияет на сопротивление
.

МАТЕРИАЛ И АППАРАТ 9012 9012 58 DESIGN
  1. Наденьте защитные очки, лабораторный халат, перчатки и маски для безопасности.
  2. Осторожно обращайтесь со всеми материалами.
  3. Имейте чистое и свободное рабочее пространство для эксперимента.
  4. Не употребляйте какие-либо из используемых материалов и держите их подальше от глаз.
  5. Завершите все испытания в одной и той же области / комнате в одно и то же время дня, используя одни и те же материалы.
  6. Очистите лабораторию после эксперимента.
  7. После эксперимента тщательно вымойте все материалы теплой водой с мылом.

МЕТОД / ПРОЦЕДУРА ЭКСПЕРИМЕНТА
  1. Соберите материалы и настройте схему, как показано на диаграмме эксперимента выше.
  2. Установите мультиметр в омметр и подключите красный щуп к выходу с надписью COM, а черный щуп к выходу с меткой mAVΩ.
  3. Возьмите нихромовую проволоку длиной 150 см и удалите или протрите ее наждачной бумагой, чтобы она стала проводящей.
  4. Разрежьте проволоку ножницами на 5 отдельных проволок размером 10, 20, 30, 40 и 50 см.
  5. Измерьте каждый провод, приложив концы обоих щупов к краям проводов, и измерьте их четыре раза / попытки каждый.
  6. Запишите показания мультиметра сопротивления каждого из 5 проводов.

РЕЗУЛЬТАТЫ

Зарегистрированное сопротивление для 5 различных длин нихромовой проволоки

Материалы Размер 12
Нихромовая проволока 150см 1
905 9012 905
Мультиметр цифровой 1 ± 0.01cm
Положительные и отрицательные мультиметровые зонды 2
30512 905 905 905 905 ± 0,05 см
Наждачная бумага 1
9012 9012

2

2
  • 0508 20.00 9012 9012 9012 9012 9012 5.00 9012 9012 9012 9012 905
    Независимый 9012 9012 9012 9012 9012 9012 9012 9012 9012
    Длина Величина сопротивления провода 5 разной длины нихромовая проволока
    0509
    No. ед. Измерения: см ед. Погрешность: Погрешность прибора: ± 0,01 Среднее значение
    905
    неопределенность
    ± 0.05см
    Испытательный 905 905 9046 905 905 Среднее значение (макс-мин) / 2
    905
    1 10.00 3,50 3,50 3,50 3,40 3,48
    0,05 905 ошибка
    4,40 4,50 4,70 4,70 4,58 0,2
    905
    3 30.00 6,50 7,00 6,60 7,90 7,00 0,7 905 905
    4 40.00 7,80 7,00 7,50 7,78 7,78
    0,9 ошибка
    8,40 7,00 8,60 8,48 8,48 0,6

    ВЫЧИСЛЕННЫЕ ДАННЫЕ ПРОЦЕССА 93: (6.50 + 7.00 + 6.50 + 7.90) ÷ 4 = 6.98 Средние данные неопределенности № 3: (7,90-6,50) ÷ 2 = 0,70

    ГРАФИК (на основе средних данных)

    ВЫВОД И ОЦЕНКА

    На графике показана возрастающая линейная линия тренда с математической функцией Y = 0,132X + 2.3, который отображает положительную корреляцию, как видно из линии, идущей вверху и вправо, которая указывает положительные значения, а также градиент, который отображает положительное значение.График также имеет идентифицированный наклон или градиент 0,132.

    Единицей этого градиента является Ом / см, и градиент представляет собой скорость общего увеличения зависимой переменной по мере продвижения независимой переменной. Наклон показывает, что при увеличении длины провода сопротивление будет увеличиваться приблизительно на 1,25 Ом, что может быть подтверждено расчетом графика, где все средние значения были рассчитаны из средних приращений каждого провода — (0.7 + 0,78 + 2,42 + 1,1) ÷ 4 = 1,25.

    Другой аспект математической функции, который можно идентифицировать, — это точка пересечения Y, которая составила 2,3, и она представляет собой среднее сопротивление (dv) первых данных независимой переменной, которое составляло 3,48 Ом.

    Данные для длины проводов (независимая переменная) составляли от 10 см до 50 см с шагом 10 см между каждым проводом, в то время как сопротивление (зависимая переменная), казалось, отображало самые низкие данные 3,48 Ом и самые высокие данные 8,48 Ом, который, по-видимому, хорошо согласуется с смоделированным линейным графиком наилучшего соответствия, который явно подтверждается определением коэффициента (R2), в котором говорится, что линия наилучшего соответствия соответствует разбросанным данным на 94.98%

    Данные не полностью совпадают с смоделированной линией наилучшего соответствия, поскольку во время эксперимента действительно возникали ошибки, о чем свидетельствуют довольно большие полосы ошибок над данными. Максимальный столбец ошибки, который может быть идентифицирован там, — это 4-я независимая переменная, которая была 40-сантиметровым проводом, а минимальная шкала погрешности была расположена в первых данных, то есть 10-сантиметровом проводе.

    Два данных с наибольшими ошибками вышли далеко за пределы прогнозируемой линии, из чего мы можем сделать вывод, что собранные данные имеют непостоянную точность.При измерении этих двух данных данные, полученные в каждом испытании, были очень несовместимыми, что, вероятно, было вызвано непоследовательным трением наждачной бумагой, что будет дополнительно уточнено в предложениях по улучшению.

    Образец на графике подтверждает гипотезу эксперимента, согласно которому, если длина провода увеличится, измеренное сопротивление также увеличится, на графике будет наблюдаться положительный градиент с математической функцией y = mx + c, которая должен отображать возрастающее сопротивление.

    Это было доказано и подтверждено линией тренда на графике, которая в основном показывает положительную корреляцию в увеличении сопротивления с той же скоростью, что и независимая переменная, что в точности соответствует предсказанной гипотезе. График также показал положительную математическую функцию y = 0,132x + 2,3 с положительным градиентом (0,132x).

    Однако всему этому есть научное объяснение. Известно, что длина провода является одним из четырех факторов, влияющих на сопротивление провода, и этот эксперимент просто подтвердил это.

    Логическим объяснением было бы то, что более длинный провод также означает, что в нем будет больше атомов, а это означает, что движущиеся электроны с большей вероятностью столкнутся с ними; следовательно, более высокое сопротивление. Например, 10-сантиметровая проволока содержит 5 атомов, а 20-сантиметровая проволока — 10 атомов. Если, скажем, 5 электронов попытаются пройти через эти два провода, шансы, что они столкнутся с атомами, выше в 20-сантиметровом проводе, чем в 10-сантиметровом. Следовательно, чем длиннее провод, тем выше сопротивление.

    В заключение, эксперимент был успешным исследованием, которое успешно отвечает на исследовательский вопрос о том, как в основном изменить длину проволоки (особенно нихромовой проволоки с диаметром 0.315, разрезанные на 10 см, 20 см, 30 см, 40 см и 50 см), может повлиять на электрическое сопротивление, генерируемое внутри проводов.

    Расследование пришло к выводу, что существует четкая взаимосвязь между длиной и сопротивлением провода, и что первое на самом деле влияет на второе.

    ОЦЕНКА И ПРЕДЛОЖЕНИЯ Описание

    Ошибка системы ) линейкой и ножницами и 9 0512 измерения зависели от нашего взгляда
    Случайная ошибка Описание (значение ошибки) Предложение по улучшению
    Проволока, которая использовалась для После просмотра ювелирных изделий
    форма проволоки были вырезаны из длинного рулона руководств, я обнаружил метод
    из нихромовой проволоки, и поскольку они выпрямляющих проволок, которые были до
    , были прокатаны на значительную , удерживая их на другом крае, в то время как
    количество времени и из-за их жесткости другая рука тянет за провод
    из рулона / бухты выпрямляет
    полностью выпрямляет провода.Итак, с высокой температурой и сильным защемлением, что
    , потому что провода все еще были довольно потребовали бы перчаток, и это было
    свернутое спиралью, экспериментаторы не были то, что мы сделали не делать. Таким образом,
    может получить точные измерения в следующий раз, когда мы будем работать с проводами, это
    проводов. было бы хорошей идеей, чтобы убедиться, что
    они прямые, когда они еще
    только что из рулона с помощью учебника
    из Интернета, чтобы узнать
    как правильно их выпрямить
    Предложение по улучшению
    Неточность Провода были измерены и отрезаны Было бы намного проще провести измерения, если бы
    мы выпрямили провода
    длины проводов , потому что это было сделано вручную заранее, чтобы мы могли просто записать
    людей, человеческие ошибки были неизбежны, провода к линейке и тщательно
    , из-за чего мы не можем наблюдать за измерениями.
    точно измерить провод с помощью провода Однако, поскольку провода были
    , так как провод продолжал двигаться, а волнистый и изогнутый, нам пришлось
    оценить измерения.
    линейки, которая делала бы обрезки , также не были точными, поскольку измерения
    еще более нестабильны. мы не смогли пометить провода на
    где именно резать.
    Систематическая ошибка Описание Систематическая ошибка Описание
    Несоответствие Было непоследовательное использование В следующий раз, эксперименты должны
    905 ступеньки и разрезать
    проводящий одним из которых было натирание их на одну целую 150-сантиметровую проволоку,
    проволоки наждачной бумагой, которая была и натереть все это
    важный шаг, поскольку он приведет к улучшению той же наждачной бумаги за то же время,
    и последовательному чтению.Однако , но один и тот же человек, сразу, поэтому
    , потому что экспериментаторы не имели провода имеют одинаковое количество
    подумайте, мы разрежем провод от проводимости, даже когда они
    катились катушки один за другим и натирали , позже разрезали на более мелкие части
    их отдельно, что означает некоторые разной длины.
    провода были натерты в большем количестве областей
    , чем другие, или потерлись более равномерно
    другие или другие
    ошибок. Это привело к появлению больших полос погрешностей
    этих двух данных
    , упомянутых ранее.

    БИБЛИОГРАФИЯ

    • «Возможная разница» BBC — GCSE Bitesize. BBC, 15 сентября 2006 г. Web. 8 мая 2018 г. [http: // bbc.co.uk/schools/gcsebitesize/design/electronics/calculationsrev1.shtml]
    • «Сопротивление» Класс физики. The Physics Classroom, без даты. Интернет. 8 мая 2018 г. [http: // Physicsclassroom.com/class/circuits/Lesson-3/Resistance]
    • «Сопротивление и удельное сопротивление» Н.п., н.о. Интернет. 8 мая 2018 г. [http://resources.schoolscience.co.uk/CDA/16plus/copelech3pg1.html]
    • «Сопротивление: Глава 1 — Основные концепции электричества» Все о схемах. EETech Media, LLC, n.d. Интернет. 8 мая 2018 г. [https://www.allaboutcircuits.com/textbook/direct-current/chpt-1/resistance/]

    Если мы вам помогли, помогите нам исправить его улыбку своими старыми эссе .. .Это занимает секунды!

    -Мы ищем предыдущие эссе, лабораторные работы и задания, которые вы выполнили!
    -Мы рассмотрим и разместим их на нашем сайте.
    — Доход от рекламы используется для поддержки детей в развивающихся странах.
    — Мы помогаем оплачивать операции по восстановлению расщелины неба через операцию «Улыбка и поезд улыбки».

    Электрическое сопротивление — провод, шланг, вода и длина

    Электрическое сопротивление провода или цепи — это способ измерения сопротивления прохождению электрического тока. Хороший электрический провод, например медный провод , будет иметь очень низкое сопротивление. Хорошие изоляторы, такие как резиновые изоляторы или стеклянные , имеют очень высокое сопротивление.Сопротивление измеряется в Ом и связано с током в цепи и напряжением в цепи согласно закону Ома . Для данного напряжения провод с меньшим сопротивлением будет иметь более высокий ток.

    Сопротивление данного куска провода зависит от трех факторов: длины провода, площади поперечного сечения провода и удельного сопротивления материала, из которого он состоит. Чтобы понять, как это работает, представьте вода , текущую по шлангу.Количество воды, протекающей по шлангу, аналогично току в проводе. Подобно тому, как через толстый пожарный шланг может пройти больше воды, чем через тонкий садовый шланг, толстый провод может пропускать больше тока, чем тонкий. Для провода чем больше площадь поперечного сечения, тем меньше сопротивление; чем меньше площадь поперечного сечения, тем выше сопротивление. Теперь рассмотрим длину. По очень длинному шлангу труднее протекать воде просто потому, что она должна течь дальше. Точно так же току труднее проходить по более длинному проводу.Более длинный провод будет иметь большее сопротивление. Удельное сопротивление — это свойство материала в проводе, которое зависит от химического состава материала, но не от количества материала или формы (длины, площади поперечного сечения) материала. Медь имеет низкое удельное сопротивление, но сопротивление данной медной проволоки зависит от ее длины и площади. Замена медного провода на провод той же длины и площади, но с более высоким удельным сопротивлением приведет к более высокому сопротивлению. В аналогии со шлангом это похоже на заполнение шланга песком .Через шланг, заполненный песком, будет течь меньше воды, чем через такой же свободный шланг. Фактически песок имеет более высокое сопротивление потоку воды. Таким образом, полное сопротивление провода представляет собой удельное сопротивление материала, составляющего провод, умноженное на длину провода, деленное на площадь поперечного сечения провода.

    Что такое American Wire Gage (AWG) и почему это важно?

    … а когда это важно и почему?

    Размеры сечения проводов немного сбивают с толку, и мы получаем много вопросов по ним.Почему один акустический кабель 12 AWG выглядит меньше другого? Калибр провода — хороший индикатор качества кабеля? Что такое калибр проводов, когда и почему это важно? Давайте посмотрим на эти вопросы.

    Что такое AWG (американский калибр проводов)?

    Калибр проволоки — это индекс, который косвенно (обратно и логарифмически) показывает площадь поперечного сечения круглой проволоки. В случае сплошных проводников, измерение этой площади довольно просто: площадь — это радиус провода в квадрате, умноженный на пи, и для простоты выражения вместо этого часто используется мера, называемая «Круговая площадь MIL». ; один круговой мил — это площадь круга диаметром в один мил (1/1000 дюйма), а круговой мил сплошной проволоки, следовательно, всегда представляет собой квадрат диаметра проволоки в милах.

    Многожильный провод — другое дело. Для любого заданного размера AWG многожильный провод будет занимать больше места, чем сплошной, потому что калибр провода измеряется путем суммирования площадей поперечного сечения жил. Поскольку между жилами есть воздушные карманы, любая заданная площадь поперечного сечения провода будет занимать больше места в многожильной конфигурации, чем в сплошном проводе. Следовательно, когда мы говорим о «диаметре» относительно калибра проволоки, следует помнить, что диаметр будет варьироваться не только в зависимости от калибра, но и от скрутки.В этой статье, когда мы говорим об относительных диаметрах, для простоты наши примеры основаны на сплошной проволоке.

    Отношение калибра к сечению провода для многих противоречит здравому смыслу. Чем больше номер калибра, тем меньше размер провода. Более того, соотношение не линейное, а логарифмическое. Два провода 16 AWG, вместе взятые, составляют проводник 13 AWG. Если вы знакомы с децибелами (дБ), это будет иметь смысл. Если мы увеличим или уменьшим размер датчика на 10, мы увеличим или уменьшим площадь проводника в 10 раз.Если мы увеличиваем или уменьшаем 3 размера шкалы, мы увеличиваем или уменьшаем площадь примерно в 2 раза. По какой-то причине (мы не совсем уверены, почему) соотношение неточно, но оно достаточно близко для большинства целей. , к прямой логарифмической формуле. Например, сплошной провод 40 AWG имеет круглую площадь в миле, как определено Национальным бюро стандартов, 9,61; провод 30 AWG имеет круглую площадь 100,5 мил, провод 20 AWG — 1020, а провод 10 AWG — 10380.

    Между прочим, важно помнить, что размер ПРОВОДА, а не размер провода с его изоляцией, измеряется в AWG.Иногда нам звонит клиент, который убежден, что наш акустический кабель 12 AWG не может быть 12 AWG, потому что он выглядит меньше, чем другой кабель 12 AWG, которым он владеет. Многие акустические кабели имеют очень толстую полупрозрачную оболочку из ПВХ, которая не только делает общий профиль громоздким, но и создает эффект увеличительного стекла, из-за чего провод выглядит немного больше, чем он есть на самом деле.

    Как калибр проводов связан с электрическими свойствами провода?

    Наиболее существенное влияние калибратора на электрические свойства провода оказывает сопротивление провода.Любой данный материал проволоки (медь, сталь, алюминий и т. Д.) Имеет сопротивление, а сопротивление постоянному току обратно пропорционально площади в миллиметрах. Если наш провод медный, этот провод 40 AWG с площадью 9,61 имеет сопротивление 1080 Ом на 1000 футов; 10 AWG, площадь которого примерно в 1000 раз больше, имеет сопротивление примерно в один Ом.

    Сопротивление — это свойство проводника, которое описывает, как ток, протекающий по проводнику, преобразуется в тепло.В проводнике с очень низким сопротивлением относительно мало энергии будет потеряно на тепло; по мере увеличения сопротивления все больше и больше преобразуется в тепло. Однако то, как это влияет на электрические цепи, зависит от типа используемой цепи, и мы вернемся к этому чуть позже.

    Но разве это не «сопротивление постоянному току»? Разве это не сигналы переменного тока?

    Одно из наиболее распространенных заблуждений, с которыми мы сталкиваемся по поводу сопротивления, заключается в том, что сопротивление каким-то образом не имеет отношения к аудио- и видеосигналам, потому что эти сигналы представляют собой переменный ток (AC), а сопротивление провода выражается как «сопротивление постоянному току», что относится, конечно, к постоянному току, а не к переменному току.Итак, нас часто спрашивают, если сопротивление — постоянный ток, а сигнал — переменный, какое отношение сопротивление может иметь к чему-либо?

    Сопротивление действует как на переменный, так и на постоянный ток. Причина, по которой сопротивление выражается в технических характеристиках как «сопротивление постоянному току», заключается не в том, что сопротивление не применимо к переменному току. Скорее, это из-за того, что называется «скин-эффектом». По мере увеличения частоты сигнала ток в проводе концентрируется по направлению к внешней стороне или «коже» проводника.Это означает, что для любого данного провода, если мы измеряем сопротивление на разных частотах, мы обнаружим, что сопротивление увеличивается с частотой. Сопротивление выражается в спецификациях как «сопротивление постоянному току», потому что значение сопротивления одного провода при постоянном токе можно осмысленно сравнивать с сопротивлением любого другого провода при постоянном токе. Теоретически, если бы кто-то захотел это сделать, можно было бы указать сопротивление проводов на любой частоте; мы могли бы составить таблицы «сопротивления 1 МГц» вместо сопротивления постоянному току. Этого не происходит, потому что (1) нет удобной «эталонной» частоты, которая широко применима для всех видов использования проводов, и (2) труднее правильно измерить сопротивление на более высоких частотах, потому что трудно отделить потери. к другим факторам, которые становятся важными с увеличением частоты, например емкостью, индуктивностью и обратными потерями.Но не заблуждайтесь: сопротивление преобразует электричество в тепло в проводе независимо от того, является ли электричество постоянным или переменным. И, кстати, в случае многожильного провода рассматриваемая «кожа» все же находится снаружи жгута; это не кожа каждой отдельной пряди, как часто думают люди.

    Итак, AWG относится к сопротивлению. Что означает сопротивление для качества сигнала?

    Какое отношение сопротивление имеет к качеству сигнала? Что ж, это во многом зависит от приложения.Принято считать, что AWG является хорошим индикатором качества кабеля, и это предположение восходит к самым ранним дням маркетинга акустических кабелей для вторичного рынка; коммерческий шаг, с которого начался весь кабельный рынок послепродажного обслуживания потребителей, был, по сути, «чем больше провод, тем лучше». И это, как мы увидим, безусловно, верно для акустического кабеля (в определенных пределах), но не обязательно для других приложений.

    Прежде чем мы перейдем к этому, пара предварительных. Во-первых, важно помнить, что в первую очередь нас интересует качество сигнала, а не его амплитуда.Если потери в системе не зависят от частоты, их очень легко отрегулировать; например, типичные схемы видеовхода просто принимают слабые сигналы и усиливают их до стандартного опорного уровня для использования на дисплее. В таком случае мы хотим быть уверены, что качество сигнала чистое, но это не имеет значения — по крайней мере, это относительно мало, в разумных пределах — высокая или низкая амплитуда сигнала.

    Во-вторых, для понимания следующего обсуждения полезно немного узнать о так называемом законе Ома.Немецкий физик Георг Ом открыл простой принцип сопротивления, который является фундаментальной идеей, лежащей в основе всех видов электрических цепей. Если цепь содержит серию сопротивлений — то есть, если ток будет течь через один резистор, затем через другой, а затем через другой — энергия электрического потока будет поглощаться этими резисторами пропорционально их сопротивлению ( которые, конечно, мы измеряем в Омах в честь работы Георга Ома). Вы также, вероятно, будете знакомы с другим использованием термина «ом»: импедансом.Импеданс — более сложное явление, чем сопротивление, и о нем можно много сказать; но для целей следующих примеров мы можем считать, что сопротивление в омах эквивалентно сопротивлению в омах, как если бы полное сопротивление и сопротивление были одним и тем же.

    Итак, чтобы проиллюстрировать закон Ома, давайте рассмотрим схему динамика, и для этого примера мы предположим, что установщик решил использовать кабель динамика значительно меньшего размера. Каждый провод этого кабеля имеет сопротивление четыре Ом, а динамик — восемь Ом.Сигнал, идущий от одного терминала динамика к другому, проходит через четыре Ом сопротивления провода динамика, через динамик на восемь Ом, а затем через еще четыре Ом сопротивления провода динамика. Что это значит? Полное сопротивление цепи составляет 16 Ом (для упрощения мы предполагаем, что «выходной импеданс» равен нулю; это нереально, но достаточно хорошо, чтобы проиллюстрировать принципы работы здесь). Итак, из энергии, сжигаемой в цепи, одна четверть (4 Ом на 16 Ом) сжигается на пути от плюсовой клеммы к динамику; одна половина (8 Ом на 16 Ом) подводится к динамику; и одна четверть выгорела на другой стороне кабеля динамика, между динамиком и «минусовой» клеммой усилителя.

    Очевидно, что в акустическом кабеле сжигается много энергии. В нашем обсуждении ниже мы объясним, почему это плохо (помимо пустой траты электроэнергии). Но прежде чем мы поговорим об этом, давайте представим другое приложение. Предположим, мы берем кабель с одинаковыми характеристиками сопротивления (4 Ом на выходе, 4 Ом сзади), подключаем его к разъемам RCA и используем его для аналогового аудиосоединения линейного уровня между устройством-источником (скажем, проигрывателем компакт-дисков). ) и усилитель. Входная цепь усилителя не будет иметь низкий импеданс, как у динамика; 10 000 Ом, а не 8 Ом — это примерно нормально.Теперь, когда мы подключим эту схему, что мы обнаружим? Общее сопротивление цепи составляет 10 008 Ом. Из энергии, доставляемой источником, 8/10008 энергии — почти ничего — сгорает в кабеле, а 10000/10008 ее передается в усилитель. Сопротивление, которое было ужасно чрезмерным в кабеле динамика и потребляло половину энергии, подаваемой в цепь, в межблочном соединении незначительно.

    Урок здесь в том, что одно приложение не похоже на другое.Калибр проводов критически важен, если вы доставляете электроэнергию от гидроэлектростанции в город; это критически важно, если вы управляете автомобильным стартером; это в некоторой степени важно, если вы управляете динамиком; и это практически несущественно, если вы соединяете несимметричный линейный звук. Поскольку здесь нас не особо интересуют гидроэлектростанции и шестерни Bendix, давайте пройдемся по списку распространенных аудио- и видеоприложений и поговорим о том, какое значение имеет калибр проводов для этих приложений.

    Схемы динамиков:

    В кабелях для акустических систем, за исключением некоторых действительно странных методов строительства, безусловно, наиболее важным аспектом кабеля является калибр. Почему? Что ж, вспомните еще пару абзацев к тому примеру закона Ома. По общему признанию, это крайний случай, но там половина энергии усилителя сгорает в проводе динамика, а не доставляется в динамик. Теперь можно подумать: «В чем разница? Система будет на несколько дБ тише, но в остальном она будет звучать так же.«Это было бы правдой, но для одного фактора, который мы не учли в нашем примере. Импеданс динамика может номинально составлять восемь Ом, но на самом деле он изменяется в зависимости от частоты, начиная с высоких на низких частотах и ​​заканчивая падением. Подумайте, что происходит с нашими Ом. Теперь пример закона. Если на одной частоте сопротивление действительно составляет шесть Ом, а на другой — десять, закон Ома будет распределять эти разные частоты по-разному в цепи. При низком импедансе динамика большая часть энергии поглощается кабелем; где сопротивление динамика велико, большая часть энергии передается динамику.В результате чрезмерное сопротивление в кабеле динамика приведет к большей потере высоких частот, чем низкочастотного сигнала; система будет звучать иначе, чем система, подключенная к акустическому кабелю подходящего размера.

    Межблочные аудиосистемы:

    Аудио межблочные соединения, как мы уже указали, обычно работают в цепях с очень высоким импедансом. Следовательно, калибр проводов сам по себе не является значимым фактором качества кабеля. Однако калибр провода может иметь какое-то отношение к качеству кабеля в косвенном смысле — и это косвенное значение указывает, как ни странно, на то, что желателен провод меньшего, а не большего размера.

    В цепях с высоким импедансом емкость становится важным фактором качества кабеля; Емкость — это тенденция кабеля накапливать часть сигнала в себе и медленно высвобождать ее, а не доставлять немедленно к месту назначения. Емкость кабеля с одним центральным проводником и внешним экраном будет определяться внешним диаметром центрального проводника, внутренним диаметром экрана и типом материала (диэлектрика), который их разделяет.В несбалансированном аудио межблочном соединении существуют практические ограничения на то, что можно сделать с внутренним диаметром экрана (кабель должен быть такого размера, который удобен для подключения штекеров RCA) и типами материалов, которые можно использовать в качестве диэлектрика, и поэтому лучший способ уменьшить емкость — это уменьшить AWG центрального проводника. Вот что мы сделали с нашим аудиокабелем LC-1; центральный провод имеет диаметр 25 AWG, что довольно мало, но при этом остается достаточно большим, чтобы иметь хороший срок службы при изгибе (т.е.е., не ломаться при изгибе) и быть восприимчивым к твердому окончанию обжима. Нас иногда спрашивают, почему AWG такой маленький, при негласном предположении, что центральный проводник большего размера был бы лучше; но даже при пробеге на 50 футов сопротивление центрального проводника составляет всего 1,6 Ом, что является исчезающе малым значением по сравнению с типичным импедансом цепи несимметричного аудиовхода.

    Межкомпонентные соединения аналогового видео, последовательного цифрового видео и цифрового аудио S / PDIF:

    Аналоговые видеосхемы межсоединений, будь то модулированные RF, композитные, s-video, компонентные или RGB, представляют собой цепи с сопротивлением 75 Ом.Поскольку все эти сигналы работают в радиочастотном диапазоне, скин-эффект увеличивает сопротивление используемых проводов, и поскольку длина кабеля часто бывает достаточной для определения характеристического импеданса кабеля (который не связан с его сопротивлением — это функция емкости и индуктивности кабеля), наиболее важным аспектом конструкции кабеля с точки зрения поддержания качества сигнала является то, что кабель должен иметь характеристическое сопротивление 75 Ом во всем диапазоне используемых частот.

    При длительных межсоединениях затухание, вызванное, среди прочего, сопротивлением центрального проводника, в конечном итоге станет достаточным для ухудшения качества сигнала; но для прогонов средней длины это редко вызывает беспокойство. Следовательно, калибр провода имеет некоторое значение для качества сигнала, но не является основным фактором. Однако, как и в случае с аналоговым звуком, калибр проводов имеет второстепенное значение для конструкции кабеля; характеристический импеданс кабеля связан с его индуктивностью и емкостью, а калибр проводов влияет на оба этих параметра, поскольку центральный проводник должен быть в правильной пропорции с другими физическими размерами кабеля.Если мы вставим провод 16 AWG в центр кабеля RG-6, к которому относится провод 18 AWG, мы получим слишком низкое характеристическое сопротивление; если бы мы воткнули провод 20 AWG в то же место, волновое сопротивление было бы слишком высоким. Таким образом, несмотря на то, что в большинстве приложений не может быть серьезных соображений, влияющих на конкретный выбор калибра проводов, тем не менее важно, чтобы все внутренние размеры кабеля находились в правильных пропорциях по отношению друг к другу, включая калибр центрального проводника.

    Параллельное цифровое видео (например, DVI и HDMI):

    Преобладающими потребительскими форматами цифрового видео являются HDMI и DVI. В HDMI и DVI цифровые сигналы передаются с битовой скоростью, которая зависит от разрешения и может быть довольно высокой; в настоящее время наиболее часто используемое разрешение HDMI составляет 1080p / 60, что предполагает скорость передачи сигнала 1,485 Гбит / с. При чем здесь калибр проводов?

    Как и в случае с аналоговым видео — и даже в большей степени из-за задействованных очень высоких частот — действительно важным атрибутом кабеля является его характеристический импеданс.Здесь мы имеем дело не с коаксиальным кабелем, а с витыми парами, характеристическое сопротивление которых намного сложнее контролировать и оно может значительно меняться от одного дюйма к другому.

    Используемые здесь частоты делают интересную вещь для значения калибра проводов, для понимания которого требуется немного трехмерного мышления. В битовом потоке 1,485 Гбит / с наша основная частота обычно считается примерно половиной этого битрейта, или 742,5 МГц, и потому, что мы пытаемся передать некоторые гармоники этой основной частоты, чтобы края наших битов не округлялись слишком сильно, чтобы их можно было распознать. от приемной схемы, ширина полосы, необходимая для обработки, примерно в три раза больше, чем частота, или 2.2275 ГГц. Помните «скин-эффект»? Что ж, говорим ли мы о 742 МГц или 2,2 ГГц, скин-эффект на этих частотах очень велик. По сути, сигнал не проходит через середину жилы кабеля HDMI — он скользит по поверхности.

    Для калибра проводов это означает, что увеличение размера больше не так значительно, как было бы при более низких частотах, потому что увеличение площади поверхности провода пропорционально диаметру, а не квадрату диаметра.Давайте рассмотрим, например, разницу между кабелем 24 и 22 AWG. Если бы мы покупали провод 24 или 22 AWG для питания постоянного тока и хотели знать, какие потери мы увидим при запуске, нас бы в первую очередь интересовала площадь поперечного сечения. Провод 24 AWG имеет круглую площадь 404 мил; провод 22 AWG имеет круглую площадь 640,4 мил. Поскольку сопротивление постоянному току обратно пропорционально этой площади, это имеет большое значение — сопротивление провода 22 AWG немного меньше, чем 2/3 сопротивления провода 24 для любого заданного расстояния.

    Но если мы смотрим на скин-эффект, картина меняется. Площадь поперечного сечения практически не имеет значения, потому что «глубина кожи» практически равна нулю. Вместо площади поперечного сечения потери на сопротивление будут обратно пропорциональны количеству меди, через которую на самом деле проходит сигнал, то есть обратно пропорционально площади поверхности кабеля — или, говоря поперечно -сечение, его периметр. Провод 24 AWG имеет диаметр 0,0201 дюйма, а провод 22 AWG — 0,5 мм.0253 дюйма. Поскольку периметры — это просто эти числа, каждое из которых умножается на пи, мы можем увидеть соотношение периметров, не выполняя этого умножения. 22 AWG «больше», чем 24 на 0,0253 / 0,0201, или в 1,259 раза. Когда нас интересовала площадь поперечного сечения, а не периметр, соотношение круговых милов было намного больше: 640,4 / 404, что делало 22 AWG «больше» в 1,585 раза. Вместо использования сопротивления падения 22 AWG примерно до 63% от сопротивления провода 24 AWG, как это происходит при постоянном токе, сопротивление падает только примерно до 80% от значения 24 AWG.

    Теперь любое снижение сопротивления — это хорошо; Дело здесь просто в том, чтобы показать, что это не так хорошо, как можно было бы ожидать. Если бы все остальное было равным, можно было бы ожидать, что кабель HDMI 22 AWG будет полезен на расстоянии примерно на 20% длиннее, чем аналогичный кабель 24 AWG (это почти наверняка преувеличивает преимущество, потому что, конечно, все остальное не равно. Более длительный период покажет большие потери производительности из-за других факторов, включая емкость, перекрестные помехи, перекос и возвратные потери).

    Факторы качества кабеля, которые действительно важны для кабеля HDMI, — это, в первую очередь, контроль импеданса на парах TMDS (которые делают тяжелую работу в кабеле HDMI) и перекос, который является мерой разницы в электрической длине проводников и пары (под «электрической длиной» мы подразумеваем длину провода, измеряемую временем, которое требуется импульсу для прохождения по линии; это может отличаться от физической длины по ряду причин, большинство из которых, но не все, связанных с контролем импеданса).Эти параметры, как известно, трудно контролировать, и они не имеют ничего общего с калибром проводов, за исключением того, что иногда легче контролировать допуски для большего кабеля, чем для меньшего кабеля. Итак, калибр провода что-то значит в кабеле HDMI; но обычно это не главный фактор при измерении качества кабеля. Кабель с превосходными обратными потерями и перекосом может легко превзойти кабель большего диаметра на расстоянии.

    Вывод:

    Калибр провода может иметь большое значение для качества кабеля; но поскольку это очень важно для некоторых приложений, таких как провод динамика, имеет лишь умеренное значение для других, таких как аналоговое и цифровое видео, и практически бессмысленно для третьих, важно понимать требования приложения, прежде чем делать суждение о качестве кабеля на основе калибр проводов.Когда производители не публикуют подробные спецификации продуктов, может быть ошибкой основывать суждения об относительном качестве на любых предоставленных ограниченных характеристиках, будь то калибр проводов или что-то еще.

    Еще статьи о кабелях

    Вернуться к Blue Jeans Cable Home

    Сопротивление

    | электроника | Britannica

    Узнайте, как сопротивление влияет на поток электронов в электрической цепи

    В каждой электрической цепи есть некоторое сопротивление потоку электрического тока, даже в материалах, которые являются хорошими проводниками.

    Encyclopædia Britannica, Inc. Посмотреть все видео по этой статье

    сопротивление , в электричестве, свойство электрической цепи или части цепи, которая преобразует электрическую энергию в тепловую энергию в противодействии электрическому току. Сопротивление включает столкновения заряженных частиц с током с неподвижными частицами, составляющими структуру проводников. Сопротивление часто считается локализованным в таких устройствах, как лампы, нагреватели и резисторы, в которых оно преобладает, хотя оно характерно для каждой части цепи, включая соединительные провода и линии электропередачи.

    Рассеяние электрической энергии в виде тепла, даже если оно небольшое, влияет на величину электродвижущей силы или управляющего напряжения, необходимого для создания заданного тока в цепи. Фактически, электродвижущая сила В (измеренная в вольтах) в цепи, деленная на ток I (ампер), протекающий через эту цепь, количественно определяет величину электрического сопротивления R. Точнее, R = V / I. Таким образом, если 12-вольтовая батарея постоянно пропускает двухамперный ток по длине провода, провод имеет сопротивление шесть вольт на ампер или шесть Ом.Ом — это общепринятая единица электрического сопротивления, эквивалентная одному вольту на ампер и обозначаемая заглавной греческой буквой омега (Ом). Сопротивление провода прямо пропорционально его длине и обратно пропорционально его площади поперечного сечения. Сопротивление также зависит от материала проводника. См. Удельное сопротивление .

    Сопротивление проводника или элемента схемы обычно увеличивается с повышением температуры. При охлаждении до крайне низких температур некоторые проводники имеют нулевое сопротивление.В этих веществах, называемых сверхпроводниками, продолжают течь токи после снятия приложенной электродвижущей силы.

    Величина, обратная сопротивлению, 1/ R, , называется проводимостью и выражается в единицах обратного сопротивления, называемых mho.

    Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

    Провод какого размера для выключателя на 60 ампер?

    Если вы домовладелец, то, возможно, вас интересовало все, что касается выключателей.Например, вы можете узнать подходящий размер провода для выключателя на 60 А.

    В этом отношении подходящий размер провода для выключателей на 60 ампер находится между 6 и 4 Американскими калибрами проводов (AWG). Хотя размер провода зависит от нескольких факторов, это общепринятый размер провода для выключателей на 60 А.

    Если вы хотите узнать больше о том, какой размер провода для выключателя на 60 А, то читайте дальше!

    Почему размер провода важен для выключателей

    Размер провода важен в выключателях, в частности, по одной причине: безопасность.Для дальнейшего объяснения, общий размер провода критически определяет, могут ли оборудованные проводники провода выдерживать ток, протекающий через них.

    И если провод не рассчитан на определенную силу тока, он может случайно расплавиться и даже загореться, что приведет к пожару, который в конечном итоге может сжечь ваш дом.

    По этой конкретной причине мы должны тщательно знать провода подходящего размера и их способность выдерживать нагрузку в амперах.

    Как показывает практика, провода большего и толстого сечения лучше выдерживают более высокие нагрузки по силе тока, поскольку они могут уменьшить чрезмерное тепло, выделяемое электричеством, проходящим через кабель.

    Размер провода для выключателя на 60 А

    Для выключателей на 60 ампер электрики и профессионалы предлагают использовать калибр сечения проводов от 6 AWG до 4 AWG. Все бытовые провода имеют номинал не менее 600 В, поэтому при определении калибра провода действительно имеет значение только сила тока. Следовательно, сечение провода для 60 А 220 В, например, по-прежнему составляет от 6 до 4 AWG.

    Однако некоторые электрики придерживаются мнения, что для панелей выключателей на 60 ампер следует прокладывать только провода 4 AWG.Они считают, что сечение проводов субпанелей на 60 ампер является золотым стандартом для субпанелей на 60 ампер.

    Это связано с тем, что 4 AWG выдерживает большую силу тока по сравнению с 6 AWG. В частности, медный кабель 4 AWG может выдерживать не менее 70 ампер электричества, прежде чем отказаться от него. Между тем, медный провод 6 AWG может выдерживать только до 55 ампер, прежде чем он выйдет из строя.

    Определение провода подходящего размера

    Теперь, когда мы это прояснили, нам нужно расширить наши знания о проводах, зная, как определить подходящие сечения проводов для конкретных соединений.

    Как мы уже упоминали ранее, сечение провода 60 А может варьироваться от 6 AWG до 4 AWG. Но что, если вы ищете провода для других сил тока?

    Для облегчения просмотра я создал диаграмму с указанием соответствующей допустимой силы тока различных кабелей American Wire Gauge. Обратите внимание, что следующие измерения используются для медных кабелей. Алюминиевые провода будут иметь разные характеристики.

    15 ампер Провод 14 калибра
    20 ампер Провод 12 калибра
    30 ампер Провод 10 калибра
    40 ампер Провод 8 калибра
    55 ампер Провод 6 калибра
    70 ампер Провод 4-го калибра
    85 ампер Провод 3-го калибра
    95 ампер Провод 2-го калибра

    Таблица, которую я создал выше, соответствует расчетам, сделанным опытными электриками относительно способности проводов выдерживать определенные амперы электричества.Не сомневайтесь, используйте эту таблицу для монтажа проводов.