Выбор сечения кабелей: Калькулятор сечения кабеля (провода) по длине, мощности и току / Калькулятор / Элек.ру

Содержание

Выбор сечения кабеля — stroka.by

Кабель обычно состоит из 2-4 жил. Сечение (точнее, площадь поперечного сечения) жилы определяется ее диаметром.

Напомним: площадь круга S = 0,78d², где d — диаметр круга. Исходя из практических соображений, при малых значениях силы тока сечение медной жилы берут не менее 1 мм², а алюминиевой — 2 мм².

При достаточно больших токах сечение провода выбирают по подключаемой мощности.

Обычно исходят из расчета мощности, что нагрузка величиной 1 кВт требует 1,57 мм² сечения жилы. Отсюда следуют приближенные значения сечений провода, которых следует придерживаться при выборе его диаметра. Для алюминиевых проводов это 5 А на 1 мм²., для медных — 8 А на 1 мм². Проще говоря, если у вас стоит проточный водонагреватель на 5 кВт, то подключать его надо проводом, рассчитанным не менее чем на 25 А, и для медного провода сечение должно быть не менее 3,2 мм². Учтите, из ряда предпочтительных величин сечений (0,75; 1; 1,5; 2,5; 4; 6 мм² и т.

д.) для алюминиевых проводов сечение выбирают на ступень выше, чем для медных, так как их проводимость составляет примерно 62% от проводимости медных.

Например, если по расчетам нагрузки для меди нужна величина сечения 2,5 мм², то для алюминия следует брать 4 мм², если же для меди нужно 4 мм², то для алюминия — 6 мм² и т. д.
 
А вообще кабель лучше выбирать большего поперечного сечения, чем требуется, — вдруг вы захотите подключить еще что-нибудь? Кроме того, необходимо проверить, согласуется ли сечение проводов с максимальной фактической нагрузкой, а также с током защитных предохранителей или автоматического выключателя, которые обычно находятся рядом со счетчиком.

В таблицах приводится зависимость сечения кабеля, проводов и автомобильных гибких многожильных проводников в зависимости от силы тока и мощности нагрузки.

Таблица выбора сечения кабеля при прокладке проводов открыто и в трубе

Сечение
кабеля,
мм²

Проложенные открыто

Проложенные в трубе

Медь

Алюминий

Медь

Алюминий

Ток

Мощность, кВт

Ток

Мощность, кВт

Ток

Мощность, кВт

Ток

Мощность, кВт

А

220в

380в

А

220в

380в

А

220в

380в

А

220в

380в

0,5

11

2,4

 

 

 

 

 

 

 

 

 

 

0,75

15

3,3

 

 

 

 

 

 

 

 

 

 

1,0

17

3,7

6,4

 

 

 

14

3,0

5,3

 

 

 

1,5

23

5,0

8,7

 

 

 

15

3,3

5,7

 

 

 

2,0

26

5,7

9,8

21

4,6

7,9

19

4,1

7,2

14,0

3,0

5,3

2,5

30

6,6

11,0

24

5,2

9,1

21

4,6

7,9

16,0

3,5

6,0

4,0

41

9,0

15,0

32

7,0

12,0

27

5,9

10,0

21,0

4,6

7,9

6,0

50

11,0

19,0

39

8,5

14,0

34

7,4

12,0

26,0

5,7

9,8

10,0

80

17,0

30,0

60

13,0

22,0

50

11,0

19,0

38,0

8,3

14,0

16,0

100

22,0

38,0

75

16,0

28,0

80

17,0

30,0

55,0

12,0

20,0

25,0

140

30,0

53,0

105

23,0

39,0

100

22,0

38,0

65,0

14,0

24,0

35,0

170

37,0

64,0

130

28,0

49,0

135

29,0

51,0

75,0

16,0

28,0

 

Выбор сечения одиночного проводника гибкого многожильного автомобильного провода:

Номинальное сечение провода, мм²

Сила тока в одиночном проводе, А при длительной нагрузке и при температуре окружающей среды, оС

20 оС

30 оС

50 оС

80 оС

0,5

17,5

16,5

14,0

9,5

0,75

22,5

21,5

17,5

12,5

1,0

26,5

25,0

21,5

15,0

1,5

33,5

32,0

27,0

19,0

2,5

45,5

43,5

37,5

26,0

4,0

61,5

58,5

50,0

35,5

6,0

80,5

77,0

66,0

47,0

16,0

149,0

142,5

122,0

88,5


Примечание: при прокладке проводов сечением 0,5 — 4,0 мм² в жгутах, в поперечном сечении которых по трассе содержится от двух до семи проводов, сила допустимого тока в проводе составляет 0,55 от силы тока в одиночном проводе согласно таблице, а при наличии 8-19 проводов — 0,38 от силы тока в одиночном проводе.

Расчет сечения кабеля

Таблицы ПУЭ и ГОСТ 16442-80


Выбор сечения провода по нагреву и потерям напряжения.

ПУЭ, Таблица 1.3.4. Допустимый длительный ток для проводов и шнуров
с резиновой и поливинилхлоридной изоляцией с медными жилами

Сечение токопроводящей жилы, мм2Токовые нагрузки А проводов, проложенных в одной трубе (коробе, пучке)
открыто
(в лотке)
1 + 1
(два 1ж)
1 + 1 + 1
(три 1ж)
1 + 1 + 1 + 1
(четыре 1ж)
1*2
(один 2ж)
1*3
(один 3ж)
0,511
0,7515
1,00171615141514
1,5231917161815
2,5302725252521
4,0413835303227
6,0504642404034
10,0807060505550
16,01008580758070
25,01401151009010085
35,0170135125115125100
50,0215185170150160135
70,0270225210185195175
95,0330275255225245215
120,0385315290260295250
150,0440360330
185,0510
240,0605
300,0695
400,0830
Сечение токопроводящей жилы, мм2открыто
(в лотке)
1 + 1
(два 1ж)
1 + 1 + 1
(три 1ж)
1 + 1 + 1 + 1
(четыре 1ж)
1 * 2
(один 2ж)
1 * 3
(один 3ж)
Токовые нагрузки А проводов, проложенных в одной трубе (коробе, пучке)

ПУЭ, Таблица 1. 3.5. Допустимый длительный ток для проводов
с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами

Сечение токопроводящей жилы, мм2Токовые нагрузки А проводов, проложенных в одной трубе (коробе, пучке)
открыто
(в лотке)
1 + 1
(два 1ж)
1 + 1 + 1
(три 1ж)
1 + 1 + 1 + 1
(четыре 1ж)
1*2
(один 2ж)
1*3
(один 3ж)
2211918151714
2,5242019191916
3272422212218
4322828232521
5363230272824
6393632303126
8464340373832
10605047394238
16756060556055
251058580707565
3513010095859575
50165140130120125105
70210175165140150135
95255215200175190165
120295245220200230190
150340275255
185390
240465
300535
400645
Сечение токопроводящей жилы, мм2открыто
(в лотке)
1 + 1
(два 1ж)
1 + 1 + 1
(три 1ж)
1 + 1 + 1 + 1
(четыре 1ж)
1 * 2
(один 2ж)
1 * 3
(один 3ж)
Токовые нагрузки А проводов, проложенных в одной трубе (коробе, пучке)

ПУЭ, Таблица 1. 3.6. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных

Сечение токопроводящей жилы, мм2Ток *, А, для проводов и кабелей
одножильныхдвухжильныхтрехжильных
при прокладке
в воздухев воздухев землев воздухев земле
1,52319331927
2,53027442538
44138553549
65050704260
1080701055590
161009013575115
2514011517595150
35170140210120180
50215175265145225
70270215320180275
95325260385220330
120385300445260385
150440350505305435
185510405570350500
240605

ПУЭ, Таблица 1. 3.7. Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных

Сечение токопроводящей жилы, мм2Ток *, А, для проводов и кабелей
одножильныхдвухжильныхтрехжильных
при прокладке
в воздухев воздухев землев воздухев земле
2,52321341929
43129422738
63838553246
106055804270
1675701056090
251059013575115
3513010516090140
50165135205110175
70210165245140210
95250200295170255
120295230340200295
150340270390235335
185390310440270385
240465

ПУЭ, Таблица 1. 3.8. Допустимый длительный ток для переносных шланговых легких и средних шнуров, переносных шланговых тяжелых кабелей, шахтных гибких шланговых, прожекторных кабелей и переносных проводов с медными жилами

Сечение токопроводящей жилы, мм2Ток *, А, для проводов и кабелей
одножильныхдвухжильныхтрехжильных
0.512
0.751614
11816
1.52320
2.5403328
4504336
6655545
10907560
161209580
25160125105
35190150130
50235185160
70290235200

ГОСТ 16442-80, Таблица 23. Допустимые токовые нагрузки кабелей до 3КВ включ. с медными жилами с изоляцией из полиэтилена и поливинилхлоридного пластиката, А*

Сечение токопроводящей жилы, мм2Ток *, А, для проводов и кабелей
одножильныхдвухжильныхтрехжильных
при прокладке
в воздухев землев воздухев землев воздухев земле
1,5293224332128
2,5404233442837
4535444563748
6676756714958
10918976946677
1612111610112387100
25160148134157115130
35197178166190141158
50247217208230177192
70318265226237
95386314274280
120450358321321
150521406370363
185594455421406
240704525499468

ГОСТ 16442-80, Таблица 24. Допустимые токовые нагрузки кабелей до 3КВ включ. с алюминиевыми жилами с изоляцией из полиэтилена и поливинилхлоридного пластиката, А*

Сечение токопроводящей жилы, мм2Ток *, А, для проводов и кабелей
одножильныхдвухжильныхтрехжильных
при прокладке
в воздухев землев воздухев землев воздухев земле
2.5303225335128
4404134432937
6515243543744
10696858725059
16938377946777
2512211310312088100
35151136127145106121
50189166159176136147
70233200167178
95284237204212
120330269236241
150380305273278
185436343313308
240515396369355

* Токи относятся к проводам и кабелям как с нулевой жилой, так и без нее.

Сечения приняты из расчета нагрева жил до 65°С при температуре окружающей среды +25°С. При определении количества проводов, прокладываемых в одной трубе, нулевой рабочий провод четырехпроводной системы трехфазного тока (или заземляющий провод) в расчет не входит.

Токовые нагрузки для проводов, проложенных в лотках (не в пучках), такие же, как и для проводов, проложенных открыто.

Если количество одновременно нагруженных проводников, проложенных в трубах, коробах, а также в лотках пучками, будет более четырех, то сечение проводников нужно выбирать как для проводников, проложенных открыто, но с введением понижающих коэффициентов для тока: 0,68 при 5 и 6 проводниках, 0,63 — при 7-9, 0,6 — при 10-12.

Выбор сечения кабелей

      Величину тока, полученного по Таблице 1 необходимо умножить на температурную поправку из Таблицы 2. Например, при температуре воздуха +40 градусов однофазный кабель с медными жилами сечением 2,5 кв. миллиметров способен длительно выдерживать ток 27Ах0,79=21,33 А.

В Таблице 3 даны снижающие коэффициенты на количество кабелей в трубе или коробе.

Таблица 3

Количество кабелей в коробе

Снижающий коэффициент (электроприемники с коэффициентом использования до 0, 7)

 4 и менее

1,0

5-6

0,85

7-9

0,75

10-11

0,7

12-14

0,65

15-18

0,6

 

    Величину тока из Таблицы 1 так же необходимо умножить на поправку из Таблицы 3. Например, при прокладке десяти кабелей с медными жилами в коробе (кабели проложены пучком и отсутствует плотное прилегание кабелей между собой по всей длине) снижающий коэффициент равен 0,7. Если, как и в первом примере, максимально – возможная температура окружающей среды равна +40 градусов, то для десяти однофазных кабелей сечением 2,5 кв. миллиметров, проложенных в коробе,  максимальный допустимый ток составит 27Ах0,79х0,7=14,9 А.

    При плотном прилегании кабелей друг к другу, например при однослойной прокладке, снижение допустимого тока может быть еще большим.

    Сейчас на рынках можно купить кабели некоторых изготовителей, сечение у которых на 10 – 20 % ниже номинального. Допустимый длительный ток у них существенно меньше расчетного.

    Как видно из приведенных примеров, если не учитывать поправки на температуру окружающей среды и на количество кабелей в трубе или коробе, то возможна значительная перегрузка кабелей излишне большим током, что может вызвать их перегрев и стать причиной пожара.

    В Таблице 4 даны зависимости допустимых длительных токов для кабелей с алюминиевыми жилами в зависимости от сечения. Кабели с алюминиевыми жилами сечением 10 и менее кв. миллиметров в настоящее время рекомендовано не использовать, поэтому они из таблицы убраны.

Таблица 4

Сечение алюминиевой токопроводящей

жилы, мм2

Ток, А, для кабелей, при:

однофазной нагрузке

трехфазной нагрузке (кабель без нулевой жилы)

при прокладке:

при прокладке:

в воздухе

в земле

в воздухе

в земле

16

70

105

60

90

25

90

135

75

115

35

105

160

90

140

50

135

205

110

175

70

165

245

140

210

95

200

295

170

255

120

230

340

200

295

150

270

390

235

335

185

310

440

270

385

Температура окружающей среды +25 градусов для воздуха и +15 градусов для земли. Указанные величины токов предполагают нагрев жил до + 65 градусов.

    В таблице 4 при однофазной нагрузке кабель содержит три жилы: фазную, рабочего нуля и защитного заземления. Токи для трехфазных кабелей с нулевой жилой выбираем из таблицы с коэффициентом 0, 92.

    Поправки на температуру окружающей среды можно взять из Таблицы 2, а снижающие коэффициенты на количество проложенных кабелей в трубе или коробе из Таблицы 3.

    При больших длинах кабелей необходимо выполнять расчеты потерь в кабеле и

сопротивление цепи фаза — ноль .

 

23 февраля 2013 г.

К ОГЛАВЛЕНИЮ

Выбор сечения кабеля на напряжение до 1000 В

Выбор сечения кабеля на напряжение до 1000 В независимо это электродвигатель или другая нагрузка. Сводится к определению длительно допустимых токов, то есть подбирается такое сечение кабеля, которое позволяет выдерживать длительно расчетные токи для заданного участка, без нанесения ущерба кабелю. Значения допустимых длительных токов для кабелей и проводов указаны в ПУЭ таблицы 1.3.4 – 1.3.30, ГОСТ 31996-2012, либо использовать каталожные данные завода-изготовителя.

Длительно допустимый ток:

  • для электроприемников:
  • для электродвигателя:

При выборе сечения кабеля нужно учитывать поправочные коэффициенты на землю и воздух при прокладке кабеля, см ПУЭ таблицы 1.3.3, 1.3.23, 1.3.26.

Определение фактического длительно допустимого тока с учетом поправочных коэффициентов в соответствии с ПУЭ определяется по формуле:

где:

  • Iд.т. – длительно допустимый ток для выбранного сечения кабеля, выбирается по ГОСТ 31996-2012 или определяется по каталогам завода-изготовителя.
  • k1 – поправочный коэффициент учитывающий температуру среды отличающуюся от расчетной, выбирается по таблице 1.3.3 ПУЭ.
  • k2 – поправочный коэффициент, который учитывает удельное сопротивление почвы (с учетом геологических изысканий), выбирается по ПУЭ таблица 1. 3.23.
  • k3 – поправочный коэффициент, учитывающий снижение токовой нагрузки при числе работающих кабелей в одной траншее (в трубах или без труб), выбирается по ПУЭ таблица 1.3.26.

При этом должно выполняться условие:

Iф > Iрасч.

Проверка сечения по условию соответствия выбранному аппарату максимальной токовой защите:

Сечение кабеля (провода), по условию соответствия выбранному аппарату максимальной токовой защите, определяется по формуле:

где:

  • Iзащ. – ток уставки при котором срабатывает защитный аппарат;
  • kзащ. – коэффициент кратности длительно допустимого тока кабеля (провода) к току срабатывания защитного аппарата.

Данные значения Iзащ. и kзащ. Можно определить по таблице 8.7 [Л5. с. 207].

Проверка сечения на механическую прочность

Выбранное сечение кабеля (провода) должно быть не менее приведенного в ПУЭ таблица 2.1.1.

Проверка сечения по потере напряжения

После того как Вы выбрали сечение кабеля по длительно допустимому току, нужно проверить кабель на допустимые потери напряжения. То есть отклонение напряжения присоединенного к этой сети токоприемников не выходило за пределы допустимого.

Согласно нормам допускаются следующие пределы отклонений напряжения на зажимах токоприемников [Л1. с 144].

Потеря напряжения ∆U для трехфазной линии определяется по формулам [Л1. с 144]:

1. В конце линии присоединена одна нагрузка:

2. По длине линии присоединено несколько (n) нагрузок:

где:

  • Iрасч. – расчетный ток, А;
  • L – длина участка, км;
  • cosφ – коэффициент мощности;
  • r0 и x0 — значения активных и реактивных сопротивлений определяем по таблице 2-5 [Л2.с 48].

Потерю напряжения ∆U для трехфазной линии, можно определить по упрощенным формулам:

1. В конце линии присоединена одна нагрузка:

2. По длине линии присоединено несколько (n) нагрузок:

где:

  • Р –расчетный мощность, Вт;
  • L – длина участка, м;
  • U – напряжение, В;
  • γ – удельная электрическая проводимость провода, м/Ом*мм2;
  • для меди γ = 57 м/Ом*мм2;
  • для алюминия γ = 31,7 м/Ом*мм2;

Потерю напряжения ∆U для постоянного и однофазного переменного тока, можно определить по упрощенным формулам:

1. В конце линии присоединена одна нагрузка:

2. По длине линии присоединено несколько (n) нагрузок:

где:
s – сечение кабеля, мм2;


Литература:

1. Справочная книга электрика. Под общей редакцией В.И. Григорьева. 2004 г.
2. Проектирование кабельных сетей и проводок. Хромченко Г.Е. 1980 г.
3. ГОСТ 31996-2012 Кабели силовые с пластмассовой изоляцией на номинальное напряжение 0,66, 1 и 3 кВ.
4. Правила устройства электроустановок (ПУЭ). Седьмое издание. 2008г.
5. Расчет и проектирование систем электроснабжения объектов и установок. Издательство ТПУ. Томск 2006 г.

Всего наилучшего! До новых встреч на сайте Raschet.info.

Поделиться в социальных сетях

Как выбрать сечение кабеля — Кабел-провод.ру

При проведении монтажных работ часто возникает вопрос, кабель какого типа и сечения выбрать и не ошибиться?

Во-первых, нужно отметить, что многие путают кабель и провод, или думают, что это одно и то же.  Провода чаще всего используются для расключения электрических шкафов, либо для заземления. Для питания электрооборудования они не подходят, т.к. на провода действуют более жесткие требования к способам прокладки, чем на кабели.

Какие бывают сечения кабелей и проводов

Существует список стандартных сечений на ряд кабелей и проводов:

1,5 мм2

2,5 мм2

4 мм2

6 мм2

10 мм2

16 мм2

25 мм2

35 мм2

50 мм2

70 мм2

95 мм2

120 мм2

150 мм2

185 мм2

240 мм2

Вы также можете встретить другие сечения, но они являются нестандартными, поэтому производятся кабельными заводами только на заказ.

Кабели бывают с медными и алюминиевыми жилами. Для внутренней прокладки в зданиях обычно применяются медные, несмотря на то, что алюминиевые намного дешевле первых. Важно знать, что использование алюминиевых кабелей для проводки розеточных сетей и освещения запрещено.

Правила расчета сечения кабеля

Чтобы рассчитать сечение кабеля, прежде всего нужно узнать, однофазным (220 В) или трехфазным (380 В) является подключаемый прибор. Таблица выбора количества жил кабеля и их значение по цвету в зависимости от фазы представлена ниже:

Фаза

Количество жил кабеля

Значение каждой жилы

Однофазная — 220 В

3

  • Синяя, голубая или белая с голубой полоской — рабочий ноль.
  • Желто-зеленая — защитный ноль.
  • Жила любого другого цвета, например, красного, черного, белого и т.д. называется фазной.

Трехфазная — 380 В

5

Внутри помещений обычно используют кабели следующих марок:

1. ВВГнг(А)-LS, с твердыми жилами, он лучше подходит при строительстве и ремонте.

2. NYM, который является более дорогим аналогом ВВГ.

Наиболее выгодным решением является взять кабель с многопроволочной структурой, например, для межблочной связи между блоками сплит-системы, чтобы создать удлинитель или сделать шнур для какого-либо электроприбора. Для этого лучше всего подойдет провод, или как его еще называют гибкий кабель, ПВС.  

В промышленном строительстве, а также при риске возгорания могут понадобиться негорючие кабели ВВГнг-FRLS благодаря их огнестойкости.

После того, как вы определились с типом кабеля и количеством жил, осталось разобраться с сечением. 

Существуют стандарты применения кабелей с сечением, так для освещения используется сечение 1,5 мм2, а для розеток 2,5 мм2.

Расчет сечения кабеля по мощности

Определяющим фактором для выбора сечения является мощность (P — Ватт) электроприбора, в который планируется подключать кабель, а также потребляемый им ток (I — Ампер).

Формула для расчета тока при известной мощности:

1. P = U*I*cosA, где 0<cosA<1 – коэффициент мощности, определяется нагрузкой. U – напряжение (Вольт).

2. I = P/(U*cosA)

Расчет сечения кабеля по току

Также узнать ток можно, посчитав, что 1кВт, при однофазной нагрузке 220В, примерно равен 4,5А. А при трехфазной (380В) — примерно 1,5А.

1кВт(220) = 4,5А

1кВт(380) = 1,5А

Подробная формула расчета для обеих фаз:

1. I(220) = P/(U*cosA) = 1000 Вт/ (220В*0,99) = 4,59А,

2. I(380) = P/(3U*cosA) = 1000Вт/(660В*0,99) = 1,53А, cosA для нагревательного прибора.

Приведем примеры, чтобы было понятнее.

Допустим, у нас есть однофазный чайник с мощностью 2600 Вт, тогда формула расчета будет:

I = 2600Вт/(220В*0,99) = 11,9А

Получается, такой чайник будет потреблять около 12 Ампер тока.

При выборе сечения необходимо учитывать допустимый длительный ток кабеля(I доп). У каждого сечения жилы есть свой предел или пропускная способность, больше которой пропускать нельзя.

Выбирать сечение кабеля нужно, учитывая расчетный ток нагрузки (Iр), который должен быть меньше I доп.  Несоблюдение данных условий приведет к возгоранию кабеля из-за короткого замыкания.

Таблица сечений кабеля и допустимого длительного тока:


Используя таблицу, помните, что выбирать значение «впритык» лучше не нужно, поэтому выбирайте сечение «с запасом».

После того, как вы определитесь с типом и сечением кабеля, вы можете найти в различных компаниях, занимающихся продажей кабельной-продукции, кабели с одинаковым названием, но разные по стоимости.

Почему стоимость одинаковых кабелей различается?

Цены на одни и те же кабели может различаться в зависимости от качества производимого кабеля. Так, кабель качества ГОСТ и ТУ будут сильно отличаться.

Для защиты кабеля от токовой перегрузки или замыкания не забывайте купить гофрированную трубу.

Заказать кабели различных типов для любых условий вы можете на сайте кабельной компании «Стинкабель». Вас порадуют приятные цены и качественный сервис с быстрой отгрузкой и бесплатной доставкой во многие регионы.

Выбор сечения проводников

В таблицах представлена зависимость максимального допустимого тока от сечения и способа прокладки проводников в соответствии с ПУЭ.

Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами

Сечение токопроводящей жилы, мм2 Ток, А, для проводов, проложенных
открыто в одной трубе
двух одно- жильных трех одно- жильных четырех одно- жильных одного двух- жильного одного трех- жильного
0,5 11
0,75 15
1 17 16 15 14 15 14
1,2 20 18 16 15 16 14,5
1,5 23 19 17 16 18 15
2 26 24 22 20 23 19
2,5 30 27 25 25 25 21
3 34 32 28 26 28 24
4 41 38 35 30 32 27
5 46 42 39 34 37 31
6 50 46 42 40 40 34
8 62 54 51 46 48 43
10 80 70 60 50 55 50
16 100 85 80 75 80 70
25 140 115 100 90 100 85
35 170 135 125 115 125 100
50 215 185 170 150 160 135
70 270 225 210 185 195 175
95 330 275 255 225 245 215
120 385 315 290 260 295 250
150 440 360 330
185 510
240 605
300 695
400 830

Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами

Сечение токопроводящей жилы, мм2 Ток, А, для проводов, проложенных
открыто в одной трубе
двух одно- жильных трех одно- жильных четырех одно- жильных одного двух- жильного одного трех- жильного
2 21 19 18 15 17 14
2,5 24 20 19 19 19 16
3 27 24 22 21 22 18
4 32 28 28 23 25 21
5 36 32 30 27 28 24
6 39 36 32 30 31 26
8 46 43 40 37 38 32
10 60 50 47 39 42 38
16 75 60 60 55 60 55
25 105 85 80 70 75 65
35 130 100 95 85 95 75
50 165 140 130 120 125 105
70 210 175 165 140 150 135
95 255 215 200 175 190 165
120 295 245 220 200 230 190
150 340 275 255
185 390
240 465
300 535
400 645

Допустимый длительный ток для переносных прожекторных кабелей и переносных проводов с медными жилами

Сечение токопроводящей жилы, мм2 Ток, А, для шнуров, проводов и кабелей
одножильных двухжильных трёхжильных
0,5   12  
0,75   16 14
1   18 16
1,5   23 20
2,5 40 33 28
4 50 43 36
6 65 55 45
10 90 75 60
16 120 95 80
25 160 125 105
35 190 150 130
50 235 185 160
70 290 235 200

Снижающий коэффициент для проводов и кабелей, прокладываемых в коробах

Способ прокладки Количество проложенных проводов и кабелей: Снижающий коэффициент для проводов, питающих:
одножильных многожильных электроприёмники с коэфф.
использования до 0,7
электроприёмники с коэфф.
использования более 0,7

Многослойно и пучками
до 4 1,0
2 5-6 0,85
3-9 7-9 0,75
10-11 10-11 0,7
12-14 12-14 0,65
15-18 15-18 0,6
Однослойно 2-4 2-4 0,67
5 5 0,6

Выбор сечения кабеля для квартиры, дома, коттеджа

При подключении частного владения или квартиры к электрической сети нужно принимать во внимание множество условий, чтобы электроснабжение было бесперебойным и долгосрочным. Одной из главных задач будет верный выбор сечения кабеля, ведущего от линии электропередачи до распределительного электрощита в здании.

Далее рассмотрим правила выбора кабеля для подключения различных зданий к электросети, а также нужное сечение кабеля для ввода в квартиру.

Вначале надо определить нагрузки тока, которые будут проходить через кабель. Это нужно сделать для определения оптимальной толщины проводов или, на языке профессионалов, сечений кабеля.

Важно! Сечение провода и его диаметр – это совершенно разные параметры! Сечение – это площадь круга обрезанного провода.

Вначале разберемся с сечением вводного кабеля в дом или коттедж, а затем выберем сечение вводного кабеля в квартиру и кабель, используемый внутри зданий.

Чтобы подключить дом к местным электросетям, нужно подобрать кабель нужного поперечного сечения, измеряемого в квадратных миллиметрах (обычно от 10 мм кв.)

От выбора сечения вводного кабеля в частный дом зависит максимальная подключаемая мощность и его устойчивость к механическим повреждениям.

В современных условиях широко распространилось подключение домов самонесущим изолированным проводом СИП.

При его применении не нужно использовать трос, а изоляция такого типа провода очень долговечная.

СИП – это самый популярный на сегодняшний день провод, используемый для электрификации загородных домов и коттеджей.

Однако у него есть визуальный недостаток – при таком воздушном подключении черные провода, тянущиеся к дому, нарушают эстетическое восприятие всего здания.

Чтобы избежать такого недостатка, используют подземное подключение, прокладывая бронированный кабель в земле. Недостаток такого способа –высокая стоимость работ, а также сложность последующего ремонта, если возникнет повреждение провода, находящегося под землей.

Далее рассмотрим, какое сечение кабеля нужно для дома при проведении внутренних работ по электромонтажу.

К выбору сечения кабеля для частного дома или квартиры нужно отнестись ответственно, ведь это напрямую влияет на вашу электробезопасность и безопасность вашего жилья и имущества.

Поэтому крайне важно выбрать правильное сечение для определенной линии электроприемников.

Когда используется заниженное сечение кабеля в квартире или доме, то провод может перегреться, его изолирующие элементы разрушатся, что в конечном итоге станет причиной возгорания.

Кроме того, при контакте с поврежденной изоляцией вас ударит электрическим током.

Когда выбранное сечение кабеля для квартиры или дома будет завышено, это увеличит энергозатраты, возникнет риск проблем и неудобств с электромонтажом кабельных линий.

Важно! При различных способах монтажа электропроводки (открытая или закрытая), кабели одинакового сечения имеют различные длительно-допустимые токи.

При открытом монтаже происходит меньший нагрев кабеля, чем при закрытой электропроводке, например, в штробах.

Для верного выбора сечения кабеля в квартире или доме, нужно иметь информацию о силе тока, либо мощности всех электроприемников и пользоваться специальными таблицами.

При известной суммарной мощности всех электроприемников возможно с точностью подобрать сечение кабеля для определенной группы кабелей в доме или квартире, так же как и автомат защиты данной линии.

Нужные параметры при выборе сечения кабеля и номинала автоматов электрощиты, их незнание может стать причиной негативных последствий:

  • Для групп розеток оптимальное сечение кабеля 2,5 кв.мм. Автомат при этом необходим не 20А, а 16А, т.к. бытовые розетки рассчитаны именно на эту силу тока.
  • Для освещения выбирают кабель 1,5 кв.мм, а автомат 10А (выключатели рассчитаны на ток не более 10А).
  • Автомат может пропускать ток до 1,13 раза более своего номинала долгое время, а вот при превышении до 1,45 сможет отключиться только спустя 60 минут. Кабель будет нагреваться на протяжении всего этого времени.
  • Сечение кабеля лучше выбирать по скрытому способу прокладки. Так у вас всегда будет запас прочности.
  • Использовать электропроводку из алюминия внутри зданий запрещено!

Вы прочитали все это и голова пошла кругом? Успокойтесь, вдохните… И просто поймите, что есть профессионалы, которые знают все это и намного больше, и существуют они именно для того, чтобы заниматься подобными вещами вместо вас! Компания “Строй Дом” уже много лет занимается проектированием и монтажом электропроводки для квартир, домов и коттежей. И мы гарантируем, что вы будете просто беспроблемно эксплуатировать электрическую сеть дома, не вдаваясь ни в какие подробности.

Искусство определения правильного сечения проводов низкого напряжения

Максимальная допустимая нагрузка по току

Чтобы прояснить в начале этой статьи, определение сечения проводов и кабелей, конечно, не самое лучшее. захватывающая часть электрического дизайна. Есть гораздо более сложные и захватывающие части, чем смотреть на бесконечные столы дирижеров. Однако эта часть должна выполняться профессионально так же, как и все остальные части дизайна. Итак, возьмите очки (если вы их носите), выпейте кофе и приступим.

Искусство определения правильного поперечного сечения проводов низкого напряжения

Определение поперечного сечения проводников основано на знании максимальной допустимой нагрузки по току в системе проводки, которая сама определяется на основе проводов и условия их эксплуатации. Стандарт IEC 60364-5-52 определяет текущие значения в соответствии с основными принципами работы для установок и безопасности людей. Основные элементы приведены ниже.

Таблицу допустимых значений тока можно использовать для прямого определения поперечного сечения проводов в соответствии с:

  1. Тип проводника
  2. Эталонный метод (метод установки)
  3. Теоретическая допустимая нагрузка по току Iz (Iz th )

Iz th рассчитывается путем применения всех поправочных коэффициентов (f) к значению рабочего тока (I B ) .Коэффициенты f определяются в соответствии с методом установки, группировкой, температурой и т. Д.

I B = Iz th × f , что дает Iz th = I B / f

Рисунок 1 — Определение поперечного сечения с использованием таблицы пропускной способности по току

Весь процесс определения правильного поперечного сечения проводов низкого напряжения объясняется следующими шагами.

Содержание:

  1. Характеристики проводников
  2. Системы электромонтажа: способы монтажа
    1. Приложение 1 — «Группы монтажа» в зависимости от типа кабеля
  3. Группы цепей
  4. Температура окружающей среды
  5. Риски взрыва
  6. Параллельные проводники
  7. Общий поправочный коэффициент
    1. Пример определения трехфазной цепи
  8. Поперечное сечение нейтрального проводника
    1. Примеры: Применение понижающих коэффициентов для гармонических токов

1.

Характеристики жил

Учитываются следующие данные:

  1. Тип жилы: медь или алюминий.
  2. Тип изоляции, определяющий максимально допустимую температуру во время эксплуатации, XLPE или EPR для изоляции, выдерживающей 90 ° C, и ПВХ для изоляции, выдерживающей 70 ° C.

Таблица 1 — Макс. рабочие температуры в зависимости от типа изоляции

Тип изоляции Максимальная температура (1) ° C
Поливинилхлорид (ПВХ) Проводник: 70
Сшитый полиэтилен (XlPE) и этилен-пропиленовый (EPr) проводник Проводник: 90 (1)
Минерал (с ПВХ-оболочкой или без нее, доступен) Оболочка: 70
Минеральная (без оболочки, доступны и не контактируют с горючими материалами) Оболочка: 105 (2)

(1) Если проводник работает при температуре выше 70 ° C, рекомендуется проверить, что оборудование, подключенное к этому проводу, подходит для конечной температуры соединения.

(2) Более высокие рабочие температуры могут быть разрешены для некоторых типов изоляции в зависимости от типа кабеля, его концов, условий окружающей среды и других внешних воздействий.

Вернуться к таблице содержания ↑


2. Системы электропроводки: методы установки

Стандарт определяет ряд методов установки, которые представляют различные условия установки. В следующих таблицах они разделены на группы и определены буквами от A до G , которые определяют, как читать таблицу допустимой токовой нагрузки в проводниках (см. Приложение 1)

Если используются несколько способов установки вдоль длину системы проводки, следует выбрать методы, для которых условия рассеивания тепла наименее благоприятны .

В стандарте нет четкого положения об определении сечения проводников внутри низковольтных распределительных щитов. Однако стандарт IEC 60439-1 определяет токи (используемые для испытаний на превышение температуры) для медных проводников с ПВХ изоляцией.

Таблица 2 — Группа установки в зависимости от типа кабеля

9103
Группа установки Тип кабеля
Изолированные жилы Одножильные кабели Многожильные кабели
A1) в теплоизолированной стене
(A1) в кабелепроводе в теплоизолированной стене
(A1-A1-A1-A1-A1-A1-A2) теплоизолированная стена
(B1-B2) в канале на деревянной стене
(C)08 на деревянной стене
(C) закреплен на деревянной стене
(D) в воздуховодах в земле
(E) на открытом воздухе
(F) на открытом воздухе G) На открытом воздухе

Подробное описание каждой группы установки см. В Приложении 1 ниже.

Вернуться к таблице содержания ↑


3. Группы цепей

Таблицы, в которых представлены методы установки, также относятся к конкретным таблицам, которые используются для определения поправочных коэффициентов, связанных с группой цепей и трубопроводов.

Таблица 3 — Коэффициенты уменьшения для групп из более чем одной цепи или из более чем одного многожильного кабеля, которые будут использоваться с допустимой нагрузкой по току

Таблица 3 — Коэффициенты уменьшения для групп из более чем одной цепи или из более чем один многожильный кабель должен использоваться с допустимой нагрузкой по току

Эти коэффициенты применимы к одинаковым группам кабелей с одинаковой нагрузкой.Если горизонтальные зазоры между соседними кабелями в два раза превышают их общий диаметр, коэффициент уменьшения не требуется.

Те же коэффициенты применяются к:

  • Группам из двух или трех одножильных кабелей;
  • Многожильные кабели

Если система состоит как из двухжильных, так и из трехжильных кабелей, общее количество кабелей принимается как количество цепей, и соответствующий коэффициент применяется к таблицам для двух нагруженных проводников. для двухжильных кабелей и в таблицы для трех нагруженных жил для трехжильных кабелей.

Если группа состоит из n одножильных кабелей , она может рассматриваться либо как n / 2 цепи с двумя нагруженными проводниками, либо как n / 3 цепи с тремя нагруженными проводниками. Приведенные значения усреднены по диапазону размеров проводников и типам установки, включенным в таблицы, общая точность табличных значений находится в пределах 5%.

Для некоторых установок и других методов, не предусмотренных в приведенной выше таблице, может оказаться целесообразным использовать коэффициенты, рассчитанные для конкретных случаев.

Таблица 4 — Коэффициенты уменьшения для групп из более чем одной цепи, кабели, проложенные непосредственно в земле, метод D — одножильные или многожильные кабели

Таблица 4 — Коэффициенты уменьшения для групп из более чем одной цепи, кабелей проложенный непосредственно в грунте, метод D — одножильные или многожильные кабели

Приведенные значения относятся к монтажной глубине 0,7 м и термическому сопротивлению грунта 2,5 км / Вт . Это средние значения для диапазона размеров и типов кабелей, указанных в таблицах.Процесс усреднения вместе с округлением в некоторых случаях может приводить к ошибкам до ± 10% .

Если требуются более точные значения, они могут быть рассчитаны методами, приведенными в IEC 60287-2-1.

Рисунок 2 — Группирование цепей вместе приводит к снижению допустимой нагрузки по току (применение поправочного коэффициента)

Таблица 5 — Коэффициенты уменьшения для групп, состоящих из более чем одной цепи, кабели, проложенные в каналах, методом заземления D multi -жильные кабели в односторонних каналах

Таблица 5 — Многожильные кабели в односторонних каналах Таблица 5 — Одножильные кабели в односторонних каналах

Приведенные значения относятся к глубине прокладки 0,7 м и тепловому воздействию почвы. удельное сопротивление 2,5 км / Вт.Это средние значения для диапазона размеров и типов кабелей, указанных в таблицах. Процесс усреднения вместе с округлением в некоторых случаях может привести к ошибкам до ± 10%.

Если требуются более точные значения, они могут быть рассчитаны методами, приведенными в IEC 60287.

Таблица 6 — Коэффициенты уменьшения для групп из более чем одного многожильного кабеля, которые должны применяться к эталонным номиналам для многожильных кабелей бесплатно воздух — метод установки E

Таблица 6 — Коэффициенты уменьшения для групп из более чем одного многожильного кабеля, которые должны применяться к справочным номинальным значениям для многожильных кабелей на открытом воздухе — способ установки E

(1) Значения даны для вертикальных расстояний между лотками 300 мм и не менее 20 мм между лотками и стеной.Для более близкого расстояния коэффициенты следует уменьшить.

(2) Значения даны для горизонтального расстояния между лотками 225 мм с лотками, установленными спина к спине. Для более близкого расстояния коэффициенты должны быть уменьшены

Таблица 7 — Коэффициенты уменьшения для групп, состоящих из более чем одной цепи одножильных кабелей (1) , которые должны применяться к эталонному номиналу для одной цепи одножильных кабелей на открытом воздухе — метод установки F

Таблица 7 — Коэффициенты уменьшения для групп, состоящих из более чем одной цепи одножильных кабелей (1) , которые должны применяться к эталонному номиналу для одной цепи одножильных кабелей на открытом воздухе — метод установки Коэффициенты F

(1) даны для одинарных слоев кабелей (или групп трилистников), как показано в таблице, и не применяются, когда кабели проложены более чем в одном слое, соприкасаясь друг с другом. Значения для таких установок могут быть значительно ниже и должны определяться соответствующим методом.

(2) Значения даны для вертикального расстояния между противнями 300 мм. для более близкого расстояния коэффициенты следует уменьшить.

(4) Значения даны для горизонтального расстояния между лотками 225 мм с лотками, установленными вплотную друг к другу, и не менее 20 мм между лотком и любой стеной. для более близкого расстояния коэффициенты следует уменьшить.

(5) для цепей, имеющих более одного параллельного кабеля на фазу, каждый трехфазный набор проводников следует рассматривать как цепь для целей данной таблицы.

Вернуться к таблице содержания ↑ v


4. Температура окружающей среды

Температура окружающей среды напрямую влияет на сечение проводов. Следует учитывать температуру воздуха вокруг кабелей (установка на открытом воздухе) и температура земли для подземных кабелей.

Следующие таблицы, взятые из стандарта IEC 60364-5-52, могут использоваться для определения поправочного коэффициента, применяемого для температур от 10 до 80 ° C . Во всех этих таблицах базовая температура воздуха составляет 30 ° C, а температура земли — 20 ° C.

Не следует путать температуру окружающей среды вокруг кабелей с температурой, принимаемой во внимание для устройств защиты, то есть внутренней температурой распределительного щита, в котором установлены эти устройства защиты.

Таблица 8 — Поправочные коэффициенты для температур окружающего воздуха, отличных от 30 ° C, которые должны применяться к допустимой токовой нагрузке для кабелей в воздухе (1) .

Таблица 8 — Поправочные коэффициенты для температур окружающего воздуха, отличных от 30 ° C, которые должны применяться к допустимой токовой нагрузке для кабелей в воздухе

При более высоких температурах окружающей среды проконсультируйтесь с производителем.

Таблица 9 — Таблица поправочных коэффициентов для температур окружающей среды земли, отличных от 20 ° C, которые должны применяться к допустимой токовой нагрузке для кабелей в каналах в земле

Таблица 9 — Табличные поправочные коэффициенты для температур окружающей среды земли, отличных от 20 ° C применяется к допустимой токовой нагрузке для кабелей в кабельных каналах в земле

Таблица 10 — Таблица поправочного коэффициента для кабелей в подземных каналах для удельного теплового сопротивления почвы, отличного от 2,5 К. м / Вт, применяемые к допустимой нагрузке по току для эталонного метода D

Таблица 10 — Таблица 10 — поправочный коэффициент для кабелей в подземных каналах для теплового сопротивления почвы, отличного от 2,5 км / Вт, который применяется к допустимой нагрузке по току для эталонного метода D

Приведенные поправочные коэффициенты усреднены по диапазону размеров проводников и типам установки, приведенным в таблицах. Общая точность поправочных коэффициентов находится в пределах ± 5% . Поправочные коэффициенты применимы к кабелям, протянутым в заглубленные каналы; для кабелей, проложенных непосредственно в земле, поправочные коэффициенты для теплового сопротивления менее 2,5 К.м / Вт будет выше.

Если требуются более точные значения, они могут быть рассчитаны методами, приведенными в IEC 60287 . Поправочные коэффициенты применимы к каналам, проложенным на глубине до 0,8 м.

Вернуться к таблице содержания ↑


5.

Риски взрыва

В установках, где существует риск взрыва (наличие, обработка или хранение материалов, которые являются взрывоопасными или имеют низкую температуру вспышки, включая присутствие взрывчатых веществ пыль), системы электропроводки должны иметь соответствующую механическую защиту n, а допустимая нагрузка по току будет подвергаться понижающему коэффициенту.

Описание и правила установки приведены в стандарте IEC 60079.

Интересное чтиво:

Почему оборудование подстанции выходит из строя и почему стоит подумать об этом до отказа

Вернуться к таблице содержания ↑


6. Параллельные проводники

До тех пор, пока расположение проводов соответствует правилам группировки, допустимая нагрузка по току в системе проводки может считаться равной сумме допустимого тока каждого проводника к которому применяются поправочные коэффициенты, связанные с группой проводников.

Рисунок 3 — Параллельные проводники и кабели (фото: nktphotonics.com)

Вернуться к таблице содержимого ↑


7. Общий поправочный коэффициент

Когда все конкретные поправочные коэффициенты известны, можно определить глобальный поправочный коэффициент (f) , который равен произведению всех конкретных коэффициентов. Затем процедура состоит из расчета теоретической допустимой нагрузки по току Iz th системы электропроводки:

Iz th = I B / f

Знание Iz th позволяет ссылаться на таблицы на допустимые токи для определения необходимого сечения.

Считайте из столбца, соответствующего типу проводника и эталонному методу. Затем просто выберите в таблице значение допустимой нагрузки непосредственно над значением Iz th , чтобы найти поперечное сечение.

Обычно допускается отклонение в 5% от значения iz. например, рабочий ток I B 140 A приведет к выбору сечения 35 мм 2 с допустимой нагрузкой по току 169 A . Применение этого допуска позволяет выбрать меньшее поперечное сечение 25 мм 2 , которое может выдерживать ток 145 A (138 + 0,5% = 145 A) .

Таблица 11 — Максимальный ток в амперах

Таблица 11 — Максимальный ток в амперах

Где (1)

  • PVC 2: ПВХ изоляция, 2 нагруженных проводника
  • PVC 3: PVC изоляция, 3 нагруженных проводника
  • PR 2: изоляция XLPE или EPR, 2 нагруженных проводника
  • PR 3: изоляция XLPE или EPR, 3 нагруженных проводника.

Используйте PVC 2 или PR 2 для однофазных или двухфазных цепей и PVC 3 или PR 3 для трехфазных цепей.

Вернуться к таблице содержимого ↑


7.1 Пример

Определение трехфазной цепи, образующей связь между главным распределительным щитом и вторичным распределительным щитом.


Гипотезы
  • Оценка нагрузок позволила рассчитать рабочий ток проводников: I B = 600 A
  • Система электропроводки состоит из одножильных медных кабелей с изоляцией PR
  • Жилы устанавливаются в перфорированном кабельном канале в контакте друг с другом.
  • Предпочтительно устанавливать кабели параллельно, чтобы ограничить поперечное сечение устройства до 150 мм 2

Решение

Установка одножильных кабелей в перфорированном кабельном лотке соответствует эталонному методу F

Таблица 12 — Выдержка из таблицы методов установки

Если достаточно одного проводника на фазу, коррекция не требуется.Если необходимы два проводника на фазу, следует применить понижающий коэффициент 0,88.

Таблица 13 — Выдержка из таблицы с поправочными коэффициентами для групп

Следовательно, теоретическое значение Iz th будет определяться следующим образом: Iz th = I B / F = 600 / 0,88 = 682 A , т.е. 341 А на провод .

Таблица 14 — Считывание из таблицы допустимых значений тока

Для проводника PR 3 в эталонном методе f и допустимой нагрузке по току 382 A (значение непосредственно выше 341 A) в таблице указано поперечное сечение из 120 мм 2 .

Вернуться к таблице содержания ↑


8. Поперечное сечение нейтрального проводника

В принципе, нейтраль должна быть того же сечения, что и фазный провод во всех однофазных цепях. В трехфазных цепях с поперечным сечением более 16 мм 2 (25 мм 2 алюмин.) Сечение нейтрали может быть уменьшено до сечения / 2.

Однако это уменьшение не допускается, если:

  • На практике нагрузки не сбалансированы.
  • Содержание третьей гармоники превышает 15%.

Если это содержание на больше 33% , сечение токоведущих проводов многожильных кабелей выбирается путем увеличения тока I B . Стандарт IEC 60364-5-52 дает таблицу, показывающую поправочные коэффициенты в соответствии с THD (полное гармоническое искажение), с последующим примером определения допустимой токовой нагрузки кабеля.

Таблица 15 — Таблица коэффициентов уменьшения для токов гармоник в 4- и 5-жильных кабелях

Таблица 15 — Таблица коэффициентов уменьшения для токов гармоник в четырех- и пятижильных кабелях (IEC 60364-5-52)

Вернуться к таблице содержимого ↑


8.

1 Примеры
Применение понижающих коэффициентов для гармонических токов (IEC 60352-5-52)

Рассмотрим трехфазную цепь с расчетной нагрузкой 39 А , которая должна быть установлена ​​с использованием четырехжильного кабеля с ПВХ изоляцией, прикрепленного к стене. , способ установки C . Кабель 6 мм 2 с медными жилами имеет допустимую нагрузку по току 41 A и, следовательно, подходит, если в цепи отсутствуют гармоники.

Если присутствует 20% третьей гармоники , то применяется понижающий коэффициент 0,86 и расчетная нагрузка становится: 39 / 0,86 = 45 A .Для этой нагрузки необходим кабель 10 мм 2 .

Если присутствует 40% третьей гармоники , выбор размера кабеля основан на токе нейтрали, который составляет: 39 × 0,4 × 3 = 46,8 A , и применяется понижающий коэффициент 0,86 , что приводит к расчетной нагрузке: 46,8 / 0,86 = 54,4 А . Для этой нагрузки подходит кабель 10 мм 2 .

Если присутствует 50% третья гармоника , размер кабеля снова выбирается на основе тока нейтрали, который составляет: 39 × 0,5 × 3 = 58,5 A .В этом случае номинальный коэффициент равен 1 , и требуется кабель 16 мм 2 .

Выбор всех вышеперечисленных кабелей основан на допустимой нагрузке на кабель; падение напряжения и другие аспекты конструкции не рассматривались.

Вернуться к таблице содержимого ↑


Приложение 1 — «Группы установки» в зависимости от типа кабеля

Приложение 1 — «Группы установки» в зависимости от типа кабеля

Вернуться к таблице содержимого ↑

Источники :

Сечения кабелей | Внутри кабеля

Различные типы кабелей имеют разные функции, и любой кабель легко рассматривать как единый рабочий блок. Но каждый кабель состоит из разных слоев, каждый из которых выполняет свою функцию. Изучение того, как эти части взаимодействуют, упрощает понимание того, как работает кабель и что можно сделать, чтобы не повредить кабель.

Поперечное сечение коаксиального кабеля

Коаксиальный кабель — один из наиболее распространенных типов кабеля, который используется уже более 100 лет. Хотя технология со временем улучшалась, базовая схема коаксиальных кабелей сегодня во многом такая же, как и во время их изобретения.Современные коаксиальные кабели чаще всего используются для телевидения, радио, Интернета и подключения камер видеонаблюдения.

Внешний слой кабеля — это оболочка, предназначенная для защиты более уязвимых внутренних компонентов. Куртки чаще всего изготавливают из пластика и бывают нескольких разных видов. Наряду с защитой от внешних элементов, оболочки также действуют как внешний изолятор, сдерживая любые электрические или магнитные сигналы, которые проходят через другие слои.

Следующий слой — это экран, который может быть плетеным или фольгированным.Хотя экран действительно помогает удерживать электрический кабель сигнала, он больше предназначен для защиты от других сигналов. Если коаксиальный кабель находится рядом с чем-то еще, что излучает сильные сигналы, которые потенциально могут вызвать помехи, например, мощные линии электропередач или вышка сотовой связи, экран сокращает возможные проблемы.

За ним следует диэлектрик, изолятор, который удерживает сигнал коаксиального кабеля внутри центрального проводника. Диэлектрики призваны минимизировать утечку, сохраняя сигнал, передаваемый по кабелю, сфокусированным и сильным.Они действительно помогают удерживать внешние сигналы от создания помех, но это скорее второстепенная функция, поскольку в идеальных условиях помехи не должны проходить мимо экрана.

Последняя часть — это центральный проводник в сердечнике кабеля. Это токопроводящая металлическая линия (обычно сделанная из меди или стали с медным покрытием), предназначенная для передачи сигнала, проходящего через кабель. Сердечник может быть сплошным или многожильным. Как наиболее важная часть кабеля, он надежно защищен первыми тремя слоями.Повреждение трех других слоев может сделать кабель слабее, но повреждение проводника с большей вероятностью приведет к поломке кабеля.

Ethernet в разрезе

Кабель Ethernet

похож на коаксиальный, с металлическими жилами, защищенными несколькими другими слоями. Ключевое отличие состоит в том, что Ethernet состоит из нескольких проводов меньшего размера, содержащихся в основном кабеле.

Как коаксиальный кабель и многие другие кабели, внешняя оболочка Ethernet в основном служит для защиты более мелких и уязвимых частей внутри.Оболочка чаще всего изготавливается из пластика, доступны разные типы в зависимости от того, в какой среде будет находиться кабель.

Если кабель Ethernet экранирован, экран будет расположен непосредственно под оболочкой. Экраны кабеля Ethernet можно приклеить к оболочке с помощью какого-либо клея, например алюминиевой ленты или майларовой ленты. Некоторые даже используют липкий гель; Хотя гель отлично работает как изолятор, работать с ним может быть немного неудобно. Многие кабели Ethernet также включают в себя разрывной шнур, небольшой пушистый кусочек волокна, предназначенный для отслаивания экрана и обнажения внутренних проводов.

Внутри оболочки восемь проводов меньшего размера. Каждый провод имеет цветовую маркировку, поэтому пользователи могут легко отличить их друг от друга. В соответствии с отраслевым стандартом эти провода соединяются попарно и скручиваются друг с другом. Это позволяет тонким проводам поддерживать друг друга и предотвращать повреждение кабеля при изгибах, скручиваниях и поворотах. Он также позволяет выровнять провода для наиболее распространенных распиновок Ethernet. Эти провода покрыты изоляцией из полиэтилена высокой плотности, поэтому сигналы проходят по каждому проводу отдельно.

Сердцевиной каждого провода является металлический провод, который может быть одножильным или многожильным. Эти жилы подключаются к металлическим контактам ( контакты ) на разъемах Ethernet для передачи сигналов. Жилы хрупкие, и их повреждение может ослабить передачу сигнала или полностью прекратить работу кабеля. С помощью тестера сигналов можно проверить, какой из внутренних проводов не работает.

Телефонный перекресток

Телефонный кабель намного проще, чем многие другие типы кабелей. Простые плоские телефонные шнуры обычно используются в местах, где электрические помехи не являются проблемой, например в офисе или гостиной.В результате не всегда требуется экранирование. Внешняя оболочка по-прежнему действует как изолятор, но в большей степени направлена ​​на поддержание правильной и равномерной формы внутренних проводов, чем что-либо еще.

Как и кабели Ethernet, телефонные кабели содержат отдельные провода меньшего размера с цветовой кодировкой. Эти цветные кабели не всегда подключаются к разъемам одинаково; в зависимости от приложения они могут использовать прямую или обратную распиновку. Количество проводов тоже не всегда одинаковое.В новых кабелях используется шесть проводов, а в старых — четыре. Шнуры с большим количеством проводов могут обрабатывать дополнительные линии при разделении одного кабеля между несколькими телефонами, факсами и другими устройствами.

Круглые версии телефонных кабелей также существуют, но, как правило, используются для специальных функций. Эти кабели включают в себя функции, отсутствующие в стандартных телефонных кабелях, такие как двойное экранирование для кабелей интернет-модема или ультрафиолетового излучения (солнечного света) и водонепроницаемость для кабелей, предназначенных для установки вне помещений / для прямой прокладки в земле. Поскольку эти кабели имеют круглую форму, их внутреннее расположение больше соответствует внутренней части кабеля Ethernet, чем других телефонных шнуров.

Размер проводника

| Физика проводников и изоляторов

Это должно быть здравым смыслом: жидкость течет по трубам большого диаметра легче, чем по трубам малого диаметра (если вам нужна практическая иллюстрация, попробуйте пить жидкость через соломинку разного диаметра). Тот же общий принцип действует для потока электронов через проводники: чем шире площадь поперечного сечения (толщина) проводника, тем больше места для движения электронов и, следовательно, тем легче возникает поток (меньшее сопротивление). .

Два основных вида электрического провода: одножильный и многожильный

Электрический провод обычно имеет круглое поперечное сечение (хотя есть некоторые уникальные исключения из этого правила) и бывает двух основных разновидностей: одножильный и многожильный . Сплошной медный провод звучит так, как звучит: одна сплошная медная жила по всей длине провода. Многожильный провод состоит из более мелких жил сплошного медного провода, скрученных вместе в один провод большего размера.Самым большим преимуществом многожильного провода является его механическая гибкость, способность выдерживать повторяющиеся изгибы и скручивания намного лучше, чем сплошная медь (которая со временем склонна к усталости и ломается).

Размер провода можно измерить несколькими способами. Мы могли бы говорить о диаметре провода, но поскольку на самом деле наибольшее значение для потока электронов имеет площадь поперечного сечения , нам лучше определять размер провода в терминах площади.

Изображение сечения провода, показанное выше, конечно, не в масштабе.Диаметр показан как 0,1019 дюйма. Вычисляя площадь поперечного сечения по формуле Area = πr 2 , мы получаем площадь 0,008155 квадратных дюймов:

Это довольно маленькие числа для работы, поэтому размеры проводов часто выражаются в тысячных долях дюйма, или мил . Для проиллюстрированного примера мы бы сказали, что диаметр проволоки составляет 101,9 мил (0,1019 дюйма на 1000). Мы также могли бы, если бы захотели, выразить площадь провода в квадратных милях, вычислив это значение с помощью той же формулы площади круга: Площадь = πr 2 :

Расчет круглой миловой площади провода

Однако электрики и другие лица, часто озабоченные размером провода, используют другую единицу измерения площади, специально разработанную для круглого сечения провода. Эта специальная единица называется round mil (иногда сокращенно cmil ). Единственная цель наличия этой специальной единицы измерения состоит в том, чтобы исключить необходимость использования коэффициента π (3,1415927 …) в формуле для вычисления площади, а также необходимости вычислять радиус провода , когда вам дан диаметр . . Формула для расчета площади в миле круглого провода очень проста:

Поскольку это единица измерения площади , математическая степень 2 по-прежнему действует (удвоение ширины круга всегда будет четырехкратно его площадь, независимо от того, какие единицы используются, или если ширина этого круга выражается через радиус или диаметр).Чтобы проиллюстрировать разницу между измерениями в квадратных милях и измерениями в круглых милах, я сравню круг с квадратом, показывая площадь каждой формы в обеих единицах измерения:

А для другого размера проволоки:

Очевидно, круг заданного диаметра имеет меньшую площадь поперечного сечения, чем квадрат ширины и высоты, равный диаметру круга: это отражают обе единицы измерения площади. Однако должно быть ясно, что единица «квадратный мил» действительно предназначена для удобного определения площади квадрата, в то время как «круговой мил» предназначена для удобного определения площади круга: соответствующую формулу для каждого проще работать с.Следует понимать, что обе единицы действительны для измерения площади формы, независимо от ее формы. Преобразование между круглыми милами и квадратными милами представляет собой простое соотношение: на каждые 4 круглых мила приходится π (3,1415927 …) квадратных милов.

Измерение площади поперечного сечения провода с помощью калибра

Еще одним средством измерения площади поперечного сечения провода является калибр калибра . Шкала датчика основана на целых числах, а не на дробных или десятичных дюймах. Чем больше номер калибра, тем тоньше провод; чем меньше номер калибра, тем толще проволока.Для тех, кто знаком с ружьем, эта обратно пропорциональная шкала измерения должна показаться знакомой.

Таблица в конце этого раздела приравнивает калибр к диаметру в дюймах, круглые милы и квадратные дюймы для сплошной проволоки. Провода большего диаметра достигают конца общей шкалы (которая, естественно, достигает значения 1) и представлены серией нулей. «3/0» — это еще один способ представления «000», который произносится как «тройной дол». Опять же, тем, кто знаком с ружьями, следует признать терминологию, как бы странно это ни звучало.Что еще больше запутывает ситуацию, в мире существует более одного «стандарта» калибра. Для определения размеров электрических проводов предпочтительной системой измерения является калибр American Wire Gauge (AWG), также известный как калибр Brown и Sharpe (B&S). В Канаде и Великобритании британский стандартный калибр для проводов (SWG) является официальной системой измерения электрических проводов. В мире существуют другие системы калибровки проволоки для классификации диаметра проволоки, такие как калибр для стальной проволоки Stubs и калибр для стальной музыкальной проволоки (MWG), но эти системы измерения применимы к неэлектрическим проводам.

Система измерения American Wire Gauge (AWG), несмотря на ее странности, была разработана с целью: на каждые три шага на шкале калибра площадь провода (и вес на единицу длины) примерно удваивается. Это удобное правило, которое следует помнить при приблизительной оценке размера проволоки!

Для очень проводов больших размеров (толще 4/0) от системы калибров обычно отказываются для измерения площади поперечного сечения в тысячах круглых мил (MCM), заимствуя старую римскую цифру «M» для обозначения кратного от «тысячи» перед «CM» для «круговых мил.В следующей таблице размеров проводов не указаны размеры, превышающие калибр 4/0, потому что сплошная медная проволока становится непрактичной для обращения с такими размерами. Вместо этого отдается предпочтение многопроволочной конструкции.

Стол для сплошных круглых медных проводников
Размер Диаметр Площадь поперечного сечения Вес
AWG дюймов cir. мил кв. Дюймов фунтов / 1000 футов
4/0 0.4600 211 600 0,1662 640,5
3/0 0,4096 167 800 0,1318 507,9
2/0 0,3648 133,100 0,1045 402,8
1/0 0,3249 105 500 0,08289 319,5
1 0,2893 83 690 0.06573 253,5
2 0,2576 66 370 0,05213 200,9
3 0,2294 52 630 0,04134 159,3
4 0,2043 41740 0,03278 126,4
5 0,1819 33,100 0,02600 100,2
6 0. 1620 26 250 0,02062 79,46
7 0,1443 20 820 0,01635 63,02
8 0,1285 16 510 0,01297 49,97
9 0,1144 13 090 0,01028 39,63
10 0,1019 10,380 0,008155 31.43
11 0,09074 8 234 0,006467 24,92
12 0,08081 6 530 0,005129 19,77
13 0,07196 5 178 0,004067 15,68
14 0,06408 4,107 0,003225 12,43
15 0.05707 3 257 0,002558 9,858
16 0,05082 2,583 0,002028 7,818
17 0,04526 2,048 0,001609 6. 200
18 0,04030 1,624 0,001276 4,917
19 0,03589 1,288 0.001012 3,899
20 0,03196 1,022 0,0008023 3,092
21 0,02846 810,1 0,0006363 2.452
22 0,02535 642,5 0,0005046 1,945
23 0,02257 509,5 0,0004001 1,542
24 0.02010 404,0 0,0003173 1,233
25 0,01790 320,4 0,0002517 0,9699
26 0,01594 254,1 0,0001996 0,7692
27 0,01420 201,5 0,0001583 0,6100
28 0,01264 159,8 0. 0001255 0,4837
29 0,01126 126,7 0,00009954 0,3836
30 0,01003 100,5 0,00007894 0,3042
31 0,008928 79,70 0,00006260 0,2413
32 0,007950 63,21 0,00004964 0.1913
33 0,007080 50,13 0,00003937 0,1517
34 0,006305 39,75 0,00003122 0,1203
35 0,005615 31,52 0,00002476 0,09542
36 0,005000 25,00 0,00001963 0,07567
37 0.004453 19,83 0,00001557 0,06001
38 0,003965 15,72 0,00001235 0,04759
39 0,003531 12,47 0,000009793 0,03774
40 0,003145 9,888 0,000007766 0,02993
41 0,002800 7. 842 0,000006159 0,02374
42 0,002494 6,219 0,000004884 0,01882
43 0,002221 4,932 0,000003873 0,01493

Для некоторых сильноточных приложений требуются провода сечением, превышающим практический предел размера круглого провода. В этих случаях в качестве проводников используются толстые шины из цельного металла, называемые шинами .Шины обычно изготавливаются из меди или алюминия и чаще всего неизолированы. Они физически поддерживаются вдали от каркаса или конструкции, удерживающей их, с помощью опор изолятора. Хотя квадратное или прямоугольное поперечное сечение очень распространено для формы шины, используются также и другие формы. Площадь поперечного сечения сборных шин обычно измеряется в круглых милах (даже для квадратных и прямоугольных шин!), Скорее всего, для удобства возможности напрямую приравнять размер шины к круглому проводу.

ОБЗОР:

  • Ток течет по проводам большого диаметра легче, чем по проводам малого диаметра, из-за большей площади поперечного сечения, по которой они могут двигаться.
  • Вместо того, чтобы измерять небольшие размеры проволоки в дюймах, часто используется единица измерения «мил» (1/1000 дюйма).
  • Площадь поперечного сечения провода может быть выражена в квадратных единицах (квадратные дюймы или квадратные милы), круговые милы или «калибровочная» шкала.
  • Расчет площади квадратной единицы для круглого провода выполняется по формуле площади круга:
  • A = πr 2 (квадратные единицы)
  • Расчет площади круглой проволоки в миле для круглой проволоки намного проще из-за того, что единица измерения «круговой мил» была выбрана именно для этой цели: чтобы исключить факторы «пи» и d / 2 (радиус) в формула.
  • A = d 2 (круглые единицы)
  • На каждые 4 круговых мил приходится π (3,1416) квадратных милов.
  • Система калибровки проводов калибра основана на целых числах, большие числа представляют провода меньшего сечения и наоборот. Провода толще 1 калибра обозначаются нулями: 0, 00, 000 и 0000 (произносятся «одинарная», «двойная», «тройная» и «четверная».
  • Очень большие сечения проводов измеряются в тысячах круглых милов (MCM), что типично для шин и проводов сечением выше 4/0.
  • Шины — это сплошные шины из меди или алюминия, используемые в конструкции сильноточных цепей. Соединения, выполняемые с шинами, обычно являются сварными или болтовыми, а шины часто голые (неизолированные), поддерживаемые вдали от металлических каркасов с помощью изоляционных стоек.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ :

FAQ: диаграмма AWG и метрическая система

AWG или американский калибр для проводов — это стандартная мера в США для диаметра электрических проводников.Таблица размеров проволоки American Wire Gauge основана на количестве матриц, изначально необходимых для протяжки меди до необходимого размерного размера. Это означает, что чем выше номер AWG, тем меньше диаметр провода. Наши кабели Belden и пары в кабелях для КИП — это некоторые из электрических кабелей, у которых размер жилы выражается в формате AWG. Наш кабель с тройным номиналом, соответствующий американскому стандарту UL758, при необходимости может быть преобразован в провода сечений AWG.

Самый распространенный метод определения размеров проводов — это площадь поперечного сечения, выраженная в мм².Следующая таблица преобразования AWG в метрическую систему преобразует AWG в миллиметры и дюймы, а также указывает площадь поперечного сечения.

Метрическая таблица преобразования AWG (AWG в мм)

Американский калибр проводов (AWG)

Диаметр (дюйм)

Диаметр (мм)

Площадь поперечного сечения (мм 2 )

0000 (4/0) 0. 460 11,7 107,0
000 (3/0) 0,410 10,4 85,0
00 (2/0) 0,365 9,27 67,4
0 (1/0) 0,325 8,25 53,5
1 0,289 7,35 42,4
2 0,258 6,54 33.6
3 0,229 5,83 26,7
4 0,204 5,19 21,1
5 0,182 4,62 16,8
6 0,162 4,11 13,3
7 0,144 3,67 10,6
8 0,129 3.26 8,36
9 0,114 2,91 6,63
10 0,102 2,59 5,26
11 0,0,907 2,30 4,17
12 0,0808 2,05 3,31
13 0,0720 1,83 2,63
14 0. 0641 1,63 2,08
15 0,0571 1,45 1,65
16 0,0508 1,29 1,31
17 0,0453 1,15 1,04
18 0,0403 1,02 0,82
19 0,0359 0,91 0,65
20 0.0320 0,81 0,52
21 0,0285 0,72 0,41
22 0,0254 0,65 0,33
23 0,0226 0,57 0,26
24 0,0201 0,51 0,20
25 0,0179 0,45 0,16
26 0.0159 0,40 0,13


Если этот калькулятор метрики AWG не предоставит вам необходимую информацию, свяжитесь с техническими экспертами The Cable Lab, которые с удовольствием ответят на ваши вопросы или рассчитают соответствующий размер AWG / метрики для ваша установка.

Вернуться к часто задаваемым вопросам

Выбор дирижера | Техническое руководство IEWC

Даже при проектировании простого одиночного изолированного провода необходимо учитывать множество факторов: температуру, напряжение, сопротивление проводника постоянному току, изоляцию, О.Д., требуемая гибкость, физические свойства проводника (прочность на разрыв , падение напряжения, проводимость, вес ) и, при необходимости, конкретные электрические характеристики, такие как диэлектрические свойства изоляционного материала.

Перед тем, как выбрать конкретный изолированный провод, следует учесть множество факторов. К проводнику относятся: размер, скрутка и материал.

Размер проводника

РАЗМЕР Определено с учетом требований к сопротивлению постоянному току, допустимой нагрузке по току и прочности на разрыв.

ИЗМЕРИТЕЛЬ Наиболее важным фактором при расчете индивидуального размера AWG является минимальная площадь CIRCULAR MIL, установленная ASTM (Американское общество по испытанию материалов) для соответствия требованиям UL, CSA и военным требованиям, а также SAE (Общество автомобильных инженеров) для большинства автомобильных товаров.

Калибр

выражается как AWG (американский калибр проводов) в США и Канаде. Увеличение номера калибра приводит к уменьшению диаметра проволоки.

Размер также может быть выражен как CMA (Circular Mil Area). , термин, используемый для определения площадей поперечного сечения с использованием арифметического сокращения, в котором площадь круглой проволоки принимается как «диаметр в милах (.001 «) в квадрате.

MCM = 1000 круговых милов Пример: 500 MCM — это 133 жилы отдельных проволок размером 0,0613, каждая из которых имеет 3757 круговых милов, это составляет примерно 500000 круглых милов или 500 x 1000, что равно 500MCM.

500 MCM = 133 нити из материала диаметром 3757 мил (примерно 14 AWG) или 499,681 всего круглого мил.

Метрический эквивалент AWG

AWG мм2 AWG мм2 AWG мм2
30 0. 05 14 2,5 3/0 95
28 0,08 12 4,0 4/0 120
26 0,14 10 6.0 300MCM 150
24 0,25 8 10 350MCM 185
22 0,34 6 16 500MCM 240
21 0. 38 4 25 600MCM 300
20 0,50 2 35 750MCM 400
18 0,75 1 50 1000MCM 500
17 1. 0 1/0 55
16 1,5 2/0 70

Скрутка проводника

СТЯЖНЫЕ ПРОВОДНИКИ Многожильные проводники, разработанные как способ преодоления жесткости сплошных проводников, состоят из проводов меньшего калибра, скрученных в пучки или намотанных вместе, чтобы образовать провод большего размера.Калибровочный размер многожильных проводников часто выражается как комбинация общего размера и размера отдельной жилы.

ПРИМЕР: 16 AWG 26/30 — 16 — это общий калибр, 26 — количество жил, 30 — калибр каждого из 26 проводов. Это также можно выразить как 26 / 0,0100 с использованием десятичного размера.

Многожильные проводники предпочтительнее по нескольким причинам:

ГИБКОСТЬ ПРОВОДНИКА намного выше у многожильных проводников, что упрощает их установку.

FLEX LIFE длиннее, чем у одножильных проводов. Многожильные проводники могут выдерживать большую вибрацию и изгиб перед разрывом. Вообще говоря, чем тоньше скрутка, тем гибче будет проводник.

ПОВРЕЖДЕНИЕ ПОВЕРХНОСТИ многожильным проводам, например царапины или надрезы, будет менее серьезным, чем подобное повреждение сплошного провода.

STRAND COUNT влияет как на гибкость, так и на стоимость проводника.Для провода любого размера, чем больше жил, тем гибче и дороже становится проводник.

Материал проводника

МЕДЬ Медь, голая или луженая, является наиболее часто используемым проводящим металлом.

Для приложений, в которых медь не подходит, доступно несколько вариантов:

АЛЮМИНИЙ Этот металл имеет многие свойства, аналогичные свойствам меди; пластичность, пластичность, теплопроводность и электрическая проводимость, а также способность покрывать (выдавливаться) практически любым материалом, подходящим для изоляции меди.Хотя стоимость проводов иногда можно снизить за счет использования алюминия (особенно в случае сечения большего диаметра), экономия уменьшается по мере уменьшения размеров сечения. Алюминий редко используется в OEM-приложениях.

К недостаткам алюминиевых проводников относятся:

  • Алюминий имеет только 61% проводимости меди, поэтому диаметр провода должен быть на 50% больше, чтобы обеспечить эквивалентную пропускную способность по току. Это может привести к значительному увеличению внешнего диаметра проволоки. Срок службы гибкого кабеля также составляет от 1/2 до 1/3 срока службы меди.
  • Основное преимущество использования алюминия — снижение веса; алюминий весит на 1/3 меньше меди.
  • Алюминий трудно паять с другими металлами.
  • Алюминий может вызвать коррозию при контакте с некоторыми металлами.
  • Алюминий требует очистки перед окончательной обработкой, что может занять много времени.
  • Алюминий меньшего размера обычно не вытягивают.

СТАЛЬ С БРОНЗОВЫМ ИЛИ МЕДНЫМ ПОКРЫТИЕМ Если требуется высокая прочность на разрыв, например, коаксиальные кабели или специальные шнуры, лучше всего подойдет сталь с бронзовым или медным покрытием.

СПЛАВЫ ВЫСОКОЙ ПРОЧНОСТИ Хотя эти проводники из медного сплава более дороги, чем стальная проволока с медным или бронзовым покрытием, они позволяют значительно уменьшить размер и / или вес. Высокопрочные сплавы обеспечивают высокую прочность на разрыв и большую долговечность при изгибе при небольшом увеличении сопротивления постоянному току. Чаще всего используются кадмиево-хромовая медь, кадмиевая медь, хром-медь и цирконий.

Понимание многопроволочной и одножильной проводки в современных сетях Технический документ, А также кабельная продукция 2020

Обзор различий между многожильным и одножильным проводом, свойства каждого из них и лучшие типы кабелей для использования в различных типичных условиях.

Загрузить технический документ Общие сведения о многопроволочной и одножильной проводке в современных сетях (PDF)

Содержание


Категория Тип кабеля

Рис. 1. Кабельная система с витой парой стала доминирующей схемой сетевой прокладки, способствуя значительному расширению использования Ethernet.

В конце 1990 года Институт инженеров по электротехнике и радиоэлектронике (IEEE) опубликовал новый набор стандартов, вводящих кабельную витую пару с возможностью передачи данных для использования в системах Ethernet со скоростью 10 Мбит / с. Заменяя топологию коаксиальных кабелей и шин предыдущих сетевых систем, этот новый стандарт 10Base-T установил звездообразную топологию, построенную вокруг центрального «контроллера трафика данных» (концентратора или коммутатора), к которому каждая рабочая станция в локальной сети (LAN) ) могут быть подключены независимо через один выделенный кабель UTP (неэкранированная витая пара).

Звездообразная топология и технология 10Base-T значительно упростили установку и устранение неисправностей в системах Ethernet, а также сделали управление ими намного более эффективным.С тех пор витая пара стала доминирующей схемой сетевых кабелей и внесла свой вклад в обширное расширение использования Ethernet, которое продолжается и по сей день.

Сейчас доступно головокружительное количество типов кабелей с витой парой, соответствующих головокружительному набору стандартов, детализирующих конфигурацию и характеристики производительности, необходимые для поддержки все более высоких скоростей передачи данных и большей полосы пропускания входящих технологий. Представленный как обычный телефонный провод в 10Base-T, развитие этой знакомой и хорошо понятной медной среды можно увидеть в списке кабелей категорийного типа («CAT»), представленных для удовлетворения этих новых требований.

Для кабелей CAT-3 и выше каждый тип кабеля, в свою очередь, бывает двух видов — одножильный и многожильный. Хотя оба типа в каждой категории созданы для соответствия одной и той же конфигурации кабеля и техническим характеристикам электрических характеристик, их физические свойства накладывают разные ограничения на длину сегмента кабеля и ограничивают их использование в определенных областях в системах Ethernet. В результате эти два типа кабелей используются по-разному, и их роли очень редко меняются.

Хотите узнать больше? Дополнительная литература Полное руководство по пониманию патч-кордов Ethernet в современных сетях — технический документ и кабельная продукция

К началу

Жесткие кабельные жилы: отдельные, но не многожильные

Рис. 2. Каждый из проводников, спрятанных внутри сплошного кабеля категории, состоит из одного сплошного проводящего провода.

Для кабелей, используемых в сетевых приложениях, эти проводники обычно состоят из неизолированных медных проводов диаметром от 22 до 24 AWG (American Wire Gauge, или приблизительно 0.51 — 0,64 мм). Кабели UTP категории 5e всегда имеют номинальный диаметр проводника 24 AWG (0,0201 дюйма или 0,511 мм), а в более высокопроизводительных кабелях, таких как UTP категории 6, используются медные провода большего диаметра 23 AWG (0,0226 дюйма или 0,574 мм в диаметре). Помимо того, что они физически прочнее и с ними легче работать, эти провода большего размера обладают превосходными электрическими характеристиками, которые остаются стабильными в более широком диапазоне частот. Эти характеристики делают кабели CAT-6 более подходящими для новых и появляющихся приложений Fast Ethernet.

Как правило, одножильные кабели имеют более низкое сопротивление постоянному току и более низкую подверженность высокочастотным воздействиям, исходя только из их большего диаметра. В следующем разделе мы увидим, что эти свойства позволяют одножильным кабелям поддерживать более длинные участки передачи и более высокие скорости передачи данных, чем их аналоги из многожильных кабелей. Но, пожалуй, наиболее отличительной особенностью твердотельных кабелей категории является хрупкость проводящих проводов и, как следствие, общая негибкость.

Из приведенных выше размеров видно, что «больший» здесь поистине относительный термин, и что все эти провода очень хороши по сравнению с длиной кабелей и размером существ, которые с ними обращаются. Из-за своего небольшого размера они не могут выдерживать большие изгибы или изгибы, не ломаясь и не страдая от неровностей поверхности, которые могут изменить их проводящие свойства. По этой причине эти кабели хорошо упакованы внутри прочного внешнего рукава, который сопротивляется изгибу, что делает их менее гибкими и плохо подходящими для обычного повседневного использования при соединении компонентов рабочей зоны.Их общая жесткость делает их наиболее полезными для использования в качестве горизонтальных или магистральных кабелей в инфраструктуре системы.

К началу

Многожильные жилы кабеля: многопроволочные

Рис. 3. Кабели с многожильными жилами — это наиболее распространенные кабели категорий, с которыми мы чаще всего работаем напрямую.

Внутри витых пар многожильного кабеля каждый отдельный проводник состоит из пучка жил проводов меньшего сечения.Они расположены так, что несколько проводов (обычно 6 или 18) окружают одиночный провод в центре жгута (на Рисунке 3 показано шесть нитей вокруг одной или семь жил). Внешняя проволока спирально наматывается вокруг центральной проволоки в процессе, называемом скручиванием. Скрученные провода вместе образуют один проводник с общим диаметром примерно таким же, как у проводника в сплошном кабеле, но с гораздо меньшей площадью проводимости (исходя из меньшего диаметра жил проводов).

Скрутка проводов служит для их защиты и придает гибкости многожильным кабелям.При заданной длине проводника, чем больше витков каждой жилы вокруг центрального проводника, тем лучше защита и больше общая гибкость кабеля. Эта идея количественно выражается укладкой жил проводника или расстоянием, требуемым для того, чтобы отдельная проволочная жилка полностью обернулась вокруг проводника, сделав один полный оборот вокруг его центрального провода.

Чтобы увидеть, как это работает, сначала рассмотрим «одножильный многожильный провод» — проводник в кабеле прямой свивки, в котором нет скручивания внешних жил (рис. 4).Если этот кабель согнут, каждая жила изгибается почти так, как если бы она была одна внутри кабеля. Наружные жилы могут свободно перемещаться под воздействием механических напряжений, потенциально изменяя конфигурацию проводов кабеля и характеристики передачи каждый раз, когда он изгибается. Продолжительное изгибание в противоположных направлениях без однородной «амортизации» внешних жил ослабляет центральный токопроводящий провод и сокращает срок службы кабеля.

Но спиральное скручивание проводов вокруг центрального провода заставляет все отдельные элементы многожильного проводника тянуться к его центру, когда кабель изгибается, сохраняя конфигурацию всех элементов постоянной. Их траектория вокруг центрального проводящего провода гарантирует, что напряжения на отдельных проводах усредняются по длине свивки, и что общие напряжения распределяются по всем жилам, чтобы минимизировать напряжения на центральном проводе. Чем больше витков скручивают жилы (чем короче их длина свивки), тем больше поддержки обеспечивается каждой из них и центральному проводнику.

Рисунок 4. Кабели прямой свивки и спирально-скрученные

Жилы многожильных кабелей категорийного типа, используемых для сетей и сетей Ethernet, обычно изготавливаются из медных проводов без покрытия или с луженым покрытием.Луженые проводники изготавливают путем погружения отдельных жил в ванну с расплавленным оловом перед их сборкой в ​​один провод. Помимо защиты проводящих поверхностей от окисления, оловянное покрытие облегчает пайку тонких жил проводов на коммутационные панели и настенные розетки, а также предотвращает истирание отдельных жил.

Примечание о размерах проводов

Диаметр медного провода чаще всего указывается в размерах AWG (American Wire Gauge), которые основаны на площади поперечного сечения проводника. В системе AWG размер проводника зависит от его диаметра, если это одиночный сплошной проводник, и от его общего диаметра, если это многожильный провод. Многожильные проводники часто определяются количеством жил и соответствующим размером AWG, т. Е. Многожильный провод 7/38 состоит из 7 проводов (6 вокруг 1) с общим диаметром 38 AWG (0,1524 мм, или 0,018241 дюйма).

Из-за того, что эти провода традиционно изготавливались, большие числа AWG соответствуют меньшим диаметрам проволоки (потому что их приходилось протягивать больше раз).Каким бы безумным ни казалась эта обратная спецификация размера, интересно подумать о продолжении использования такой устаревшей системы для технологий, которые так быстро меняются.

К началу

Сравнение электрических свойств

По мере того, как мы движемся к все более быстрым системам Ethernet, требующим все более высоких частот и скоростей передачи данных, электрическая активность внутри медной среды передачи может стать немного загадочной. К счастью, основные электрические свойства, вызывающие эти загадочные явления, остаются прежними.Для одножильных и многожильных кабелей изменения, наблюдаемые в характеристиках передачи при переходе от одного типа проводника к другому, подпадают под широкую категорию эффектов затухания.

Затухание / вносимые потери

Затухание — это общая потеря мощности (амплитуды) передаваемого сигнала при его перемещении от одного конца кабеля к противоположному. Затухание, также называемое вносимыми потерями, измеряется в децибелах (дБ) — тех же единицах, которые мы используем для измерения амплитуд звуковых волн.При измерении затухания в кабеле более низкие значения в дБ указывают на лучшую производительность и меньшие потери сигнала — среда передачи менее «зашумлена». Более высокие значения в дБ аналогичны потере напряжения внутри кабеля; если сигнал станет слишком ослабленным, он станет неразборчивым, прежде чем его можно будет уловить на другом конце кабеля. На рисунке 5 показаны затухание / вносимые потери, причем вверху показаны исходная форма и амплитуда сигнала, а внизу показано ослабление передаваемого сигнала из-за затухания.

Рис. 5. Затухание / вносимые потери сигнала, передаваемого по медному проводу

Факторы, влияющие на затухание / вносимые потери

Диаметр проводника

Многожильные проводники демонстрируют более высокое затухание, чем сплошные проводники, благодаря меньшему диаметру проводимости. Размер сечения проводящего провода зависит от его площади поперечного сечения, и эта площадь определяет сопротивление постоянному току для данного проводящего материала, такого как медь. Это сопротивление приводит к тому, что часть энергии передаваемого сигнала рассеивается в виде тепла при движении внутри кабеля, так что большая длина кабеля означает большие потери тепла и большее ослабление передаваемого сигнала.По этой причине многожильные кабели нельзя использовать для длинных кабелей, а как одножильные, так и многожильные кабели имеют определенные ограничения по длине.

Высокие частоты

На более высоких частотах проводящие материалы, такие как медь, испытывают постоянное уменьшение своего проводящего сечения, что называется скин-эффектом. По мере увеличения частоты передаваемого сигнала скин-эффект выталкивает электроны наружу к поверхности («коже») проводника. По мере того, как частоты продолжают увеличиваться, глубина скин-слоя продолжает уменьшаться, так что цилиндрический твердый проводящий путь становится полым, а электроны текут только вдоль внешней поверхности цилиндра.Таким образом, меньшая и менее определенная окружность многожильных проводов приводит к более высоким затухающим потерям (на 20% выше) в многожильных кабелях, чем в одножильных кабелях.

Электропроводность

Если внешние поверхности многожильных проводников покрыты оловом, проблема скин-эффекта усугубляется, потому что основная часть электронов вынуждена течь вдоль слоя олова, а олово имеет более высокое сопротивление, чем медь. В то же время образование оксидов меди на поверхностях незакрытых проводов может также увеличивать сопротивление на поверхности проводящего провода, что приводит к постепенному ухудшению рабочих характеристик.

К началу

Выбор правильного кабеля

Новые установки и магистральные кабели

Поскольку включение любого типа кабеля в конструкцию здания является дорогостоящим и лучше всего управляется с учетом долгосрочных применений, превосходные электрические характеристики и более длительные пробеги, которые возможны при использовании одножильных кабелей, делают его более подходящим для стационарного монтажа в зданиях. Его стабильность на более высоких частотах означает, что между переустановками кабеля возможны более длительные периоды времени, и его сравнительная хрупкость не является проблемой, когда он защищен от повреждений самим зданием.Длинные кабельные трассы (до 90 м или 290 футов) можно прокладывать внутри стен, через потолки или через подземные пути, соединяющие соседние здания. Поскольку для таких постоянных кабелей чаще всего используется одножильный кабель, его часто называют сетевым кабелем.

Горизонтальная разводка

Одножильные кабели также используются для «горизонтальных» трасс (трассы на одном этаже), охватывающих расстояния между телекоммуникационными комнатами и рабочими зонами. Помимо того, что они лучше работают на больших расстояниях и на более высоких частотах, одиночные, более крупные проводящие провода одножильных кабелей намного легче заделать, чем несколько тонких проводов многожильных проводников.Кроме того, относительная жесткость одножильного кабеля делает его предпочтительным для использования с перфорированными соединителями типа 110 на задней стороне настенных домкратов или с перфорированными блоками типа 66 на фанерных досках. Напротив, мягкость и гибкость многожильных кабелей категорийного типа очень затрудняют работу с перфорированными разъемами или IDC (разъемами смещения изоляции).

Коммутационные кабели

Характер обсуждаемых выше потерь на затухание означает, что по большей части существует очень небольшая разница между электрическими характеристиками одножильных и многожильных кабелей для очень коротких сегментов (согласно стандарту TIA / EIA 568-B для длин ниже 10 метров).В современных схемах иерархической проводки легко соблюдаются ограничения по длине многожильных кабелей (3 м или 9,8 футов), а повышенная гибкость и долговечность многожильных кабелей делают их идеально подходящими для соединения розеток рабочей зоны с компьютерами рабочих станций и другими конечными пользователями. устройств. Напротив, одножильные кабели слишком хрупки для частого изгиба и манипуляций и слишком сложны в обращении при соединении близко расположенных компонентов.

Проводники внутри многожильного кабеля защищены окружающими их проволочными жилами, так что очень небольшая часть площади проводящей поверхности может быть повреждена, если кабель случайно разрезан или сломан, а проводник не ослаблен из-за многократного сгибания и сгибания.Без этой защиты проводящие поверхности в одножильном кабеле более восприимчивы к царапинам или другим неровностям, которые влияют на характеристики передачи и часто сопровождают их преждевременный выход из строя.

Наконец, более гибкая природа многожильного кабеля облегчает работу с ним и обращение с ним, что позволяет более легко прокладывать его через тесные пространства между соединенным между собой оборудованием или вдоль путей других соединительных кабелей. Он спроектирован таким образом, чтобы его можно было легко переключать между розетками, патч-панелями и оборудованием, и при правильном обращении он не будет поврежден изгибом или сломанными проводниками при частом перемещении.Эти дополнительные практические преимущества и более длительный срок службы многожильного кабеля с жилами делают его идеальным для использования при сборке «предварительно соединенных» соединительных кабелей, используемых для подключения розеток рабочей зоны к устройствам конечного пользователя.

К началу

Загрузить технический документ


Оптимизация пространства в стойке серверного шкафа для повышения эффективности и снижения затрат

Интеллектуальная оптимизация поможет вам увеличить пространство в стойке и существенно сэкономить на стоимости оборудования .Прочтите наше пошаговое руководство, в котором показано, как и сколько вы можете сэкономить.

  • Сколько места в стойке можно сэкономить
  • Как оптимизировать для достижения максимальной эффективности
  • Экономия на новых и модернизированных установках
  • Общая экономия затрат и места после оптимизации

Глоссарий

  • ATTENUATION Затухание, измеряемое в децибелах, является мерой изменения (потерь) мощности сигнала передачи между двумя точками на кабеле.Затухание измеряется в децибелах (дБ).
  • BANDWIDTH Наивысшая частота, для которой положительная сумма мощности ACR (отношение внимания к перекрестным помехам) остается больше нуля. Самый высокий частотный диапазон, используемый системой связи.
  • BASEBAND Сеть основной полосы частот — это сеть, которая предоставляет один канал для связи через физическую среду, например кабель, поэтому только одно устройство может передавать одновременно. Устройствам в сети основной полосы частот разрешается использовать всю доступную полосу пропускания для передачи.Противоположностью Baseband является широкополосный. Типичным примером «широкополосной» сети является кабельное телевидение.
  • DATA RATE Фактическая пропускная способность кабеля. Схемы кодирования и сжатия могут повысить скорость передачи данных выше фактической пропускной способности кабеля, посылая данные по кабелю более эффективным способом; это делает скорость передачи данных лучшим показателем возможностей системы передачи.
  • DB (DECIBEL) Измерение усиления или потери мощности сигнала в цепи связи.Числа в децибелах — это уменьшение мощности сигнала (выраженное в отрицательных дБ) от одного конца кабеля к другому.
  • СОПРОТИВЛЕНИЕ ПОСТОЯННОМУ ТОКУ Функция от площади поперечного сечения проводника. Сопротивление в проводе ограничивает сигнал и рассеивает энергию в виде (небольшого количества) повышенного тепла. Чем длиннее или тоньше провода, тем больше сопротивление.
  • ЧАСТОТА Количество циклов, завершенных за единицу времени, обычно выражается в герцах (Гц) или циклах в секунду.Для кабелей передачи данных часто используется МГц; «M» означает «мега» и означает, что вы можете добавить 6 нулей к данному числу. Таким образом, кабель, рассчитанный на 100 МГц, должен совершать 100000000 циклов в секунду.
  • ИЕРАРХИЧЕСКАЯ СХЕМА ПОДКЛЮЧЕНИЯ Кабельная архитектура, в которой используются последовательные кабельные «слои» для подключения основного кабеля (магистрального кабеля) к промежуточным и горизонтальным кабелям в здании (т. Е. Кабели коммутационного шкафа) и для подключения их по очереди к отдельные сетевые рабочие станции и компоненты через патч-корды.
  • HUB Повторитель, который может транслировать сообщения на все рабочие станции в сети.
  • Мбит / с Мегабит в секунду
  • МАС-АДРЕС Адрес «управления доступом к среде» или физический адрес узла Ethernet.
  • ПУАНСОННЫЙ БЛОК ПЕРВЫЙ БЛОК бывает 110 и 66 разновидностей.
  • SCTP Кабель «экранированная витая пара». ScTP имеет ту же 4-парную (8-проводную) конфигурацию, что и кабель UTP, но в нем используется один кусок металлической пленки или экранирующей оплетки, окружающий все 4 пары.Это дополнительное экранирование сочетается со скручиванием пар проводов для дополнительной защиты от ухудшения сигнала.
  • SSTP Полностью экранированная витая пара. SSTP — это 4-парный (8-жильный) кабель, имеющий металлический или оплеточный экран вокруг каждой пары и другой экран вокруг всей группы из 8 проводов. Дополнительное экранирование обеспечивает дополнительную защиту от ухудшения сигнала, вызванного внешними источниками помех.
  • ЗВЕЗДНАЯ ТОПОЛОГИЯ Топология, допускающая только одно устройство на каждом конце провода, требующая повторителей для более чем двух устройств.
  • SWITCH Повторитель, который перераспределяет сообщения на основе аппаратных MAC-адресов.
  • ТОПОЛОГИЯ Физический формат сети.
  • Кабель UTP «Неэкранированная витая пара». Самый распространенный сетевой кабель LAN в США, кабели UTP не используют никакого дополнительного электрического экранирования, вместо этого полагаясь на электрический баланс, обеспечиваемый их схемой разводки витой пары, для предотвращения перекрестных помех между парами проводников и для устранения помех. электромагнитные и радиочастотные помехи (EMI и RFI) от внешних источников.

Выберите сечение кабеля по нагрузке. Выбор кабельного участка электрической сети

Здравствуйте!

Слышал о трудностях, возникающих при выборе оборудования и его подключении (какая розетка нужна для духовки, варочной поверхности или стиральной машины). Чтобы вы могли быстро и легко ее решить, в качестве полезного совета предлагаю вам ознакомиться с таблицами ниже.

Кабель
Виды техники Входит в комплект Что еще нужно
клеммы
Эл.панель (независимая) клеммы кабель от автомата, с запасом не менее 1 метра (для подключения к клеммам)
Европейский аутлет
Панель газовая шланг газовый, выход евро
Духовка газовая кабель и вилка для электрического зажигания шланг газовый, выход евро
Шайба
Посудомоечная машина кабель, вилка, шланги около 1300мм.(сток, залив) для подключения к выпускному отверстию для воды ¾ или отводного клапана, евро выпускному
Холодильник, Винный шкаф кабель, вилка

европейский аутлет

Вытяжка , вилка может не комплектоваться труба гофрированная (не менее 1 метра) или коробка ПВХ, евророзетка
Кофеварка, пароварка, микроволновая печь кабель, вилка Европейский аутлет
Виды техники Розетка Сечение кабеля АКПП + УЗО в щите
Однофазное подключение Трехфазное подключение
Зависимый комплект: эл.панно, духовка около 11 кВт
(9)
6 мм²
(PVA 3 * 6)
(32-42)
4 мм²
(PVA 5 * 4)
(25) * 3
отдельно минимум 25А
(только 380В)
Эл. панель (независимая) 6-15 кВт
(7)
до 9 кВт / 4 мм²
9-11 кВт / 6 мм²
11-15 кВт / 10 мм²
(PVS 4,6,10 * 3)
до 15 кВт / 4 мм²
(PVA 4 * 5)
отдельный минимум 25А
Эл.духовка (независимая) около 3,5 — 6 кВт Европейский аутлет 2,5 мм² не менее 16А
Панель газовая Европейский аутлет 1,5 мм² 16A
Духовка газовая Европейский аутлет 1,5 мм² 16A
Шайба 2.5 кВт Европейский аутлет 2,5 мм² отдельный минимум 16А
Посудомоечная машина 2 кВт Европейский аутлет 2,5 мм² отдельный минимум 16А
Холодильник, Винный шкаф менее 1 кВт Европейский аутлет 1,5 мм² 16A
Вытяжка менее 1 кВт Европейский аутлет 1,5 мм² 16A
Кофеварка, пароварка до 2 кВт Европейский аутлет 1,5 мм² 16A

⃰ Устройство аварийного отключения

Электрическое подключение 220/380 В

Виды техники Максимальная потребляемая мощность Розетка Сечение кабеля АКПП + УЗО в щите
Однофазное подключение Трехфазное подключение
Зависимый комплект: эл.панно, духовка около 9,5 кВт Рассчитано на потребляемую мощность комплекта 6 мм²
(ПВА 3 * 3-4)
(32-42)
4 мм²
(ПВС 5 * 2,5-3)
(25) * 3
отдельно минимум 25А
(только 380В)
Эл. панель (независимая) 7-8 кВт
(7)
Номинальная потребляемая мощность до 8 кВт / 3.5-4мм²
(ПВА 3 * 3-4)
до 15 кВт / 4 мм²
(ПВС 5 * 2-2,5)
отдельный минимум 25А
Эл. духовка (независимая) около 2-3 кВт Европейский аутлет 2-2,5 мм² не менее 16А
Панель газовая Европейский аутлет 0,75-1,5 мм² 16A
Духовка газовая Европейский аутлет 0.75-1,5 мм² 16A
Шайба 2,5-7 (с сушкой) кВт Европейский аутлет 1,5-2,5 мм² (3-4 мм²) отдельный минимум 16А- (32)
Посудомоечная машина 2 кВт Европейский аутлет 1,5-2,5 мм² отдельный минимум 10-16A
Холодильник, Винный шкаф менее 1 кВт Европейский аутлет 1,5 мм² 16A
Вытяжка менее 1 кВт Европейский аутлет 0.75-1,5 мм² 6-16A
Кофеварка, пароварка до 2 кВт Европейский аутлет 1,5-2,5 мм² 16A

При выборе провода в первую очередь следует обратить внимание на номинальное напряжение, которое не должно быть меньше, чем в сети. Во вторую очередь следует обратить внимание на материал жилок. Медный провод имеет большую гибкость, чем алюминиевый, и его можно паять.Алюминиевые провода нельзя прокладывать по горючим материалам.

Также обратите внимание на сечение проводов, которое должно соответствовать нагрузке в амперах. Определите силу тока в амперах, разделив мощность (в ваттах) всех подключенных устройств на напряжение сети. Например, мощность всех устройств 4,5 кВт, напряжение 220 В, составляет 24,5 ампера. Необходимое сечение кабеля найдем по таблице. Это будет медный провод сечением 2 мм 2 или алюминиевый провод сечением 3 мм 2.Выбирая провод нужного сечения, учитывайте, будет ли он легко подключаться к электроприборам. Изоляция провода должна соответствовать условиям прокладки.

Асфальтирован открыто
S Медные провода Алюминиевые проводники
мм 2 Текущий Мощность, кВт Текущий Мощность, кВт
А 220 В 380 В А 220 В 380 В
0,5 11 2,4
0,75 15 3,3
1 17 3,7 6,4
1,5 23 5 8,7
2 26 5,7 9,8 21 год 4,6 7,9
2,5 30 6,6 11 24 5,2 9,1
4 41 год 9 15 32 7 12
6 50 11 19 39 8,5 14
10 80 17 30 60 13 22
16 100 22 38 75 16 28
25 140 30 53 105 23 39
35 170 37 64 130 28 49
Трубопровод в трубе
S Медные провода Алюминиевые проводники
мм 2 Текущий Мощность, кВт Текущий Мощность, кВт
А 220 В 380 В А 220 В 380 В
0,5
0,75
1 14 3 5,3
1,5 15 3,3 5,7
2 19 4,1 7,2 14 3 5,3
2,5 21 год 4,6 7,9 16 3,5 6
4 27 5,9 10 21 год 4,6 7,9
6 34 7,4 12 26 5,7 9,8
10 50 11 19 38 8,3 14
16 80 17 30 55 12 20
25 100 22 38 65 14 24
35 135 29 51 75 16 28

Маркировка проводов.

1-я буква характеризует материал токоведущей жилы: алюминий
— А, медь — буква опущенная.

2-я буква означает:
P — провод.

Третья буква обозначает изоляционный материал:
B — оболочка из поливинилхлоридного пластика,
P — оболочка из полиэтилена,
P — оболочка из резины,
H — оболочка из азотной.
Маркировка проводов и шнуров также может содержать буквы, характеризующие другие элементы конструкции:
О — оплетка,
Т — для прокладки труб,
П — плоская,
F — металлическая гофрированная оболочка,
D — повышенная гибкость. ,
А — повышенные защитные свойства,
П — тесьма из хлопчатобумажной пряжи, пропитанной антистатическим составом, и так далее.
Например: ПВ — медный провод с поливинилхлоридной изоляцией.

Провода монтажные ПВ-1, ПВ-3, ПВ-4 предназначены для питания электроприборов и оборудования, а также для стационарной прокладки осветительных электрических сетей. ПВ-1 изготавливается с одножильным токоведущим медным сердечником, ПВ-3, ПВ-4 — с витыми медными жилами. Сечение проводов 0,5-10 мм2. Провода окрашены ПВХ изоляцией. Применяются в цепях переменного тока с номинальным напряжением не более 450 В при частоте 400 Гц и в цепях постоянного тока напряжением до 1000 В.Диапазон рабочих температур ограничен -50 … + 70 ° С.

Монтажный провод ПВС предназначен для подключения электрических устройств и оборудования. Количество жил может быть равно 2, 3, 4 или 5. Жила из мягкой медной проволоки имеет сечение 0,75-2,5 мм2. Изготавливается скрученными жилами в ПВХ-изоляции и такой же оболочке.

Применяется в электрических сетях с номинальным напряжением не более 380 В. Провод рассчитан на максимальное напряжение 4000 В, с частотой 50 Гц, прикладываемое в течение 1 минуты.Температура эксплуатации -40 … + 70 ° С.

Монтажный провод ППНП предназначен для прокладки стационарных сетей освещения. Количество жил может быть 2,3 или 4. Жилы имеют поперечное сечение 1,0-6,0 мм2. Жилы из мягкой медной проволоки имеют пластиковую изоляцию в оболочке из ПВХ. Применяется в электрических сетях с номинальным напряжением не более 250 В при частоте 50 Гц. Провод рассчитан на максимальное напряжение 1500 В с частотой 50 Гц в течение 1 минуты.

Кабели силовые марки ВВГ и ВВГнг предназначены для передачи электроэнергии в стационарных установках переменного тока.Жилы изготовлены из мягкой медной проволоки. Количество ядер может быть от 1 до 4. Сечение токопроводящих жил: 1,5-35,0 мм2. Кабели изготавливаются с изоляционной оболочкой из ПВХ (ПВХ) пластика. Кабели ВВГнг имеют пониженную горючесть. Они используются с номинальным напряжением не более 660 В и частотой 50 Гц.

Силовой кабель NYM предназначен для стационарной промышленной и бытовой прокладки внутри и вне помещений. Провода кабеля имеют однопроволочную медную жилу сечением 1.5-4,0 мм2, изолированный ПВХ-пластик. Наружная оболочка, не поддерживающая горение, также выполнена из ПВХ светло-серого цвета.

Вот вроде бы главное, что желательно понимать при выборе оборудования и проводов к ним))

На личном опыте убедился, что чем тоньше провода, тем хуже их использование как для устройств, так и для самой разводки.

Сначала коснусь основных проблем, которые возникают при неправильном выборе проводки:

  • Некоторым аппаратам не хватает силы тока, это хорошо видно на сварочном аппарате, чем тоньше проволока, тем хуже готовить.Но также можно увидеть разницу в освещении лампочки, если подключить, скажем, лампочку мощностью 150 Вт в проводку сечением 0,5 мм и 2,5 мм, то на 0,5 мм лампочка погаснет. 2,5 мм.
  • Чем тоньше провода и чем больше мощность используемого последнего инструмента, тем сильнее они нагреваются до такой степени, что могут воспламениться. Это зависит от того (простым языком), что по проводам сложнее передать определенное количество тока, необходимого для потребления устройства.Это загруженная узкая дорога.
  • Этот абзац выходит из 2 баллов, но я его коснусь отдельно. Места соединения проводов меньшего сечения быстрее окисляются и сгорают, так как проходящие через них потоки большей мощности, чем рассчитанные по сечению, быстрее нагревают эти места, что впоследствии приводит к плохому контакту. Ну там, где плохой контакт, есть вероятность сильного нагрева, вплоть до возгорания изоляции и перегорания проводов.

Всегда используйте провода только того сечения, которое соответствует мощности устройства!

Теперь мы подошли к вашему вопросу.

Сразу хочу предупредить, что провода одного сечения из одного материала могут отличаться техническими характеристиками хотя бы тем, что медных проводов (о которых вы задаете в вопросе) может быть как минимум два варианта — одножильные и застрял.

В электропроводке квартиры используется одножильный медный провод ВВГ, о чем я и хотел рассказать.

Итак, какие у вас примеры:

Медная проволока сечение 1 квадрат

Практически не используется в квартире, но может быть подключен к светодиодной подсветке малой мощности, а также к различным световым индикаторам.

Медный провод сечением 1,5 квадрат

Эти провода используются для освещения в общей стоимости потребителей не более 4 кВт, т.е. учитывают все лампочки по мощности и результат не должен превышать это значение. Также они используются (не рекомендую ставить их на те розетки, где включено много электроприборов) для подключения розеток одного устройства. Например, отдельно светильники, телевизор, компьютер, пылесос, зарядное устройство и т. Д., У которых мощность не более 4 кВт.Конечно, можно использовать несколько устройств в одной розетке, но такие комбинации, как компьютер + пылесос + фен, довольно опасны.

Медная проволока сечением 2 квадрата

Этот раздел практически не используется, в продаже даже не видел, так что нет смысла заострять внимание на нем.

Медная проволока сечением 2,5 квадрата

А вот 2,5 квадрата — это рекомендованная разводка в квартире (кроме как я уже говорил выше — электроплит). Такое сечение подходит для подключения сразу нескольких устройств к одной розетке, но всего не более 5.8 кВт. Либо отдельные устройства, например:

  • Холодильник
  • Водонагреватель
  • Шайба
  • Духовка
  • Машины с двигателем мощностью не более 4,5 — 5,0 кВт

Рано или поздно любой «умелец» сталкивается с тем, что ему случайно потребовалось поменять проводку или просто подключить кухонную электроплиту, как недавно случилось со мной. В то же время в магазине электротехники менеджеры по продажам всегда готовы «подсунуть» все, что угодно, только не то, что вам нужно.Они с умным видом, докажут вам свою правоту, даже не понимая сути вопроса. Бывают и другие случаи, когда необходимо понимать, какой кабель нужен для питания от промышленной сети того или иного электрического устройства или устройства. Это тема статьи.

В конце статьи есть два ярлыка, на которых вы можете найти информацию для себя, какой участок кабеля вам нужно выбрать для публикации, если это делается открыто и тайно.

Сечение любого провода, в том числе сечение кабеля для электропроводки, определяется строго от выбранного значения величины, которая называется допустимой плотностью тока Δ . Единица измерения — А / мм2. Эта величина характеризует нагрузку на провод и выбирается в зависимости от условий эксплуатации электрических проводов. Он может находиться в диапазоне от 2 А / мм² — при закрытой электропроводке до 5 А / мм² — при прокладке проводов в огнестойкой изоляции.Необходимый диаметр провода для данной силы тока и его плотности определяется по формуле:

Для обычной электропроводки плотность тока Δ (норма нагрузки) выбирается около 2 А / мм², поэтому формула принимает вид:

Необходимо выбрать сечение кабеля (найти площадь сечения) проводки, которое определяется из формула:

Почему для проводки выбрана малая плотность тока? И для всех случаев жизни будет очень неприятно выдергивать переваренные провода из стены, потому что сечение не рассчитали, либо переборщили с нагрузкой в ​​сети!

Вот в принципе и вся «математика»!

Таблица выбора кабеля для открытой разводки электрической сети

Сечение жилы кабеля, мм² Диаметр жилы кабеля, мм Электропроводка с медной жилой Электропроводка с алюминиевой жилой
Ток, А Ток, А Мощность, кВт при напряжении 220 В Мощность, кВт при напряжении сети 380 В
0,5 0,8 11 2,4
0,75 0,98 15 3,3
1,0 1,12 17 3,7 6,4
1,5 1,38 23 5,0 8,7
2,0 1,59 26 5,7 9,8 21 4,6 7,9
2,5 1,78 30 6,6 11,0 24 5,2 9,1
4,0 2,26 41 9,0 15,0 32 7,0 12,0
6,0 2,76 50 11,0 19,0 39 8,5 14,0
10,0 3,57 80 17,0 30,0 60 13,0 22,0
16,0 4,51 100 22,0 38,0 75 16,0 28,0
25,0 5,64 140 30,0 53,0 100 23,0 39,0

Таблица выбора кабеля для скрытой проводки электрической сети
(в кабельном канале, трубе)

Сечение жилы кабеля, мм² Диаметр жилы кабеля, мм Электропроводка с медной жилой Электропроводка с алюминиевой жилой
Ток, А Мощность, кВт при напряжении 220 В Мощность, кВт при напряжении сети 380 В Ток, А Мощность, кВт при напряжении 220 В Мощность, кВт при напряжении сети 380 В
1 1,12 14 3,0 5,3
1,5 1,38 15 3,3 5,7
2,0 1,59 19 4,1 7,2 14 3,0 5,3
2,5 1,78 21 4,6 7,9 16 3,5 6,0
4,0 2,26 27 5,9 10,0 21 4,6 7,9
6,0 2,76 34 7,7 12,0 26 5,7 9,8
10,0 3,57 50 11,0 19,0 38 8,3 14,0
16,0 4,51 80 17,0 30,0 55 12,0 20,0
25,0 5,64 100 22,0 38,0 65 14,0 24,0
35,0 6,68 135 29,0 51,0 75 16,0 28,0

Обратите внимание, что для скрытой проводки нужно выбирать сечение кабеля на 25–30% больше, чем для открытой проводки.Это связано с тем, что открытая проводка охлаждается естественным образом, а скрытая проводка, находящаяся в различных «каналах-трубах» или просто «замурованная» в стене, не может охлаждаться, особенно если стена сделана из пористой теплоизоляционные материалы.

Для правильного выбора сечения провода необходимо учитывать значение максимального тока, потребляемого нагрузкой. Токи можно легко определить, зная номинальную мощность потребителей по формуле: I = P / 220, где I — сила тока (A), P — мощность потребителя (Вт), V — напряжение цепи (В). .
Например, для электронагревателя мощностью 2000Вт ток будет 9А, для лампочки 60Вт — 0,3А.
Зная общий ток всех потребителей и учитывая отношение допустимого тока для токового кабеля (разомкнутой проводки) к сечению провода:
— медный провод 10 А на квадратный миллиметр,
— алюминиевый провод 8 А на миллиметр квадрат.
При выборе типа провода необходимо также учитывать допустимое напряжение пробоя изоляции.
При выполнении скрытой проводки (в трубе или в стене) приведенные значения уменьшаются путем умножения на поправочный коэффициент 0,8.
Следует отметить, что открытая проводка обычно выполняется проводом сечением не менее 4 квадратных метров. мм из расчета на достаточную механическую прочность.
Приведенные выше отношения легко запомнить и обеспечивают достаточную точность.
Если требуется знать с большей точностью длительно допустимую токовую нагрузку для медных проводов и кабелей, то можно воспользоваться таблицей.

Таблица 1.


Допустимый ток для алюминиевых и медных проводов.

Медные провода и кабели

Напряжение, 220 В

Напряжение, 380 В

ток, А

мощность, кВт

ток, А

мощность, кВт

Алюминий жилы и кабели

Сечение жилы, мм.

Напряжение, 220 В

Напряжение, 380 В

ток, А

мощность, кВт

ток, А

мощность, кВт

Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами

Сечение жилы, мм.

Открыть

Два одноядерных

Три одноядерных

Четыре одноядерных

Один двухпроводной

Один трехпроводной


Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами

Сечение жилы, мм.

Открыть

Ток, А, для проводов, уложенных в одну трубу

Два одноядерных

Три одноядерных

Четыре одноядерных

Один двухпроводной

Один трехпроводной


Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией из свинца, поливинилхлорида,
в нилитовой или резиновой оболочке, бронированной и небронированной

Сечение жилы, мм.

Ток *, А, для проводов и кабелей

одноядерный

двухпроводной

трехъядерный

при укладке

в воздухе

в воздухе

в воздухе

* Токи относятся к кабелям и проводам с нулевым проводом и без него.

Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластиковой изоляцией в свинцовой, ПВХ и резиновой оболочке, бронированных и небронированных

Сечение жилы, мм.

Ток, А, для проводов и кабелей

одноядерный

двухпроводной

трехъядерный

при укладке

в воздухе

в воздухе

в воздухе


Допустимые длительные токи для четырехжильных кабелей с пластиковой изоляцией на напряжение до 1 кВ можно выбрать по данной таблице для обоих трехжильных кабелей, но с коэффициентом 0.92.

Сводная таблица сечений проводов, тока, мощности

и нагрузочные характеристики

Сечение медных жил проводов и кабелей, кв.м

Допустимый длительный ток нагрузки для проводов и кабелей, А

Номинальный ток выключателя, А

Предельный ток выключателя, А

Максимальная мощность однофазной нагрузки при U = 220 В

Характеристика примерной однофазной бытовой нагрузки

группа освещения и сигнализации

розеточные группы и электрические полы

водонагреватели и кондиционеры

плиты и духовки электрические

линии подачи


В таблице приведены данные на основе ПУЭ, для выбора сечений кабельно-проводниковой продукции, а также номинальные и максимально возможные токи устройств защиты для однофазной бытовой нагрузки, наиболее часто используемой в повседневная жизнь.

  • При перегрузке предохранителя (в случае перегрузки цепи) для его замены удобно использовать упрощенную формулу, которая позволит правильно изготовить предохранитель на любой ток с достаточной точностью. Для сплошного медного провода ток защиты плавким предохранителем определяется по упрощенной формуле: Iпр. = 80√ d3, где d — диаметр проволоки в миллиметрах.


В таблице приведены результаты расчетов для некоторых часто используемых проводов.


Для изготовления предохранителя провод нужного диаметра можно взять из многожильных монтажных проводов, аккуратно сняв изоляцию.

  • Какой кабель выбрать для разводки внутри жилища?


Если озадачиться прокладкой электрокабеля внутри жилого дома, то, кажется, удобнее работать с так называемым «мягким» проводом. Самое интересное, что его легче гнуть и вообще адаптировать к конкретным особенностям помещения.Но у мягкого проводника есть ряд особенностей, которые также необходимо учитывать при его выборе.

Как выбрать кабель?
Как известно, мягкий провод состоит из набора тонких проводников. А потому при подключении тонкие провода, составляющие провод, необходимо как следует обжать. То есть заделать или прижать специальный наконечник, превратив конец тонкой проволоки в монолит. Для этого можно даже спаять тонкие проводники. И это определенный недостаток при использовании «мягкой» проволоки.Потому что есть дополнительная операция. Если, конечно, все делать по правилам. С другой стороны, вы можете найти изделия, которые предназначены для правильной фиксации и надежного зажима именно мягких проводов в соответствии с требованиями электромонтажа.
Кабель, в котором каждый проводник состоит из одной жилы, называется «жестким». Его нельзя использовать в местах, где возможны частые изгибы или вибрации. В бытовых целях с одинаковым успехом могут использоваться как «мягкие» проводники, так и «жесткие».«Главное — надежность монтажа и соответствие электропроводки той нагрузке, которую она должна выдерживать. Если ваш дом давно построен, и у него нет заземляющего провода в половицах, приобретайте трехпроводной дом с дополнительный провод заземления. Он понадобится вам в будущем.
Последнее, что вам нужно решить, это марка кабеля. Типы кабелей, наиболее часто используемых для проводки, перечислены ниже.

Круглый кабель

NYM (NUM), образованный медные однопроволочные жилы, имеющие ПВХ изоляцию, и две оболочки, что делает его более пожаробезопасным.
Благодаря своей мягкости очень удобен в установке.

ПВС — гибкий кабель круглой формы, состоящий из многопроволочных отожженных медных жил с ПВХ изоляцией. Хорошая гибкость делает этот провод отличным выбором для использования в качестве сетевого кабеля для бытовой техники. Однако для монтажа электропроводки ПВС вполне подойдет.

ВВГ — кабель состоит из медных однопроводных жил и покрыт ПВХ изоляцией, форма круглая или плоская, по сравнению с NYM, этот кабель более компактный, его легко прокладывать в стробах или каналах.Имеет негорючий внешний вид, имеет этикетку BBGng, в его оболочку и изоляцию входят огнезащитные добавки, что делает его использование более безопасным. Кабель можно использовать во влажных и сухих помещениях, он хорошо подходит для монтажа электропроводки квартир и отличается невысокой стоимостью.

Часто используется при монтаже квартирной электропроводки и провода ПУНП, аналогичные двойной изоляции из ПВХ, но имеющие однопроводные жилы из меди. Более тонкая изоляция PPPP компенсируется его более низкой стоимостью по сравнению с BBG.Цвет изоляции ПНПП может быть разным.
При выборе производителя кабеля не ориентируйтесь на московские компании, так как у них изоляция немного толще, чем у других компаний.

Делая электропроводку в новом доме или заменяя старый при ремонте, каждый домашний мастер задается вопросом: какое сечение провода нужно? И этот вопрос имеет большое значение, поскольку именно от правильного выбора сечения кабеля, а также материала его изготовления зависит не только надежная работа электроприборов, но и безопасность всех элементов семья во многом зависит.

Проволоку какую выбрать — материал изготовления на первом месте

Самые распространенные типы проводки в наших домах — алюминиевая и медная. Что лучше — вопрос, который до сих пор не дает покоя пользователям многочисленных форумов. Для одних медь является приоритетом, другие говорят, что переплачивать не нужно и алюминий будет использоваться для домашней сети. Чтобы не быть голословным, давайте проведем небольшой анализ этих вариантов, и тогда каждый сможет выбрать вариант для себя.

Алюминиевая проводка имеет небольшой вес, благодаря чему нашла широкое распространение в электроэнергетике. Применяется для прокладки ЛЭП, потому что таким образом можно минимизировать нагрузку на опоры. К тому же он завоевал популярность благодаря дешевизне. Алюминиевый кабель в несколько раз меньше медного аналога. Во времена Советского Союза алюминиевая проводка была очень распространена, ее до сих пор можно встретить в домах, построенных 15-20 лет назад.

Однако у алюминиевого кабеля есть и отрицательные стороны.Один из таких моментов, о котором стоит упомянуть, — это небольшой срок службы. Алюминиевая проводка через два десятилетия становится очень склонной к окислению и перегреву, что часто приводит к пожарам. Поэтому, если у вас дома остались такие кабели, подумайте о их замене. Кроме того, окисление, которому подвергается алюминий, уменьшает полезное поперечное сечение кабеля с одновременным увеличением сопротивления, что приводит к перегреву. Еще один существенный недостаток алюминия — его хрупкость.Он быстро рвется, если кабель несколько раз перегибать.

Важно! ПУЭ запрещает использование алюминиевого кабеля для прокладки в электрических сетях, если его сечение менее 16 мм.


Медный кабель хорошо гнется и не ломается

Что касается медной проволоки, то к ее преимуществам можно отнести большой срок службы — более полувека, отличную проводимость и механическую прочность. С медным кабелем работать намного проще, потому что он гнется, не ломается и выдерживает многократные перекручивания.Минус такой же проводки из медного кабеля — это стоимость. Для замены кабеля питания по всей квартире потребуется значительная сумма денег. Некоторые мастера в целях экономии совмещают прокладки алюминиевых проводов с медными. Вся световая часть смонтирована из алюминия, а розетка — из меди, так как освещение не требует такой большой нагрузки, как электроприборы, включенные в сеть.

Выбор раздела — что нужно знать и обратить внимание на

Если раньше оборудование в квартире ограничивалось холодильником и телевизором, то теперь в квартире ничего не найдешь: пылесосы, компьютеры, фены, микроволновые печи и т. Д.Все это требует питания, и в зависимости от времени суток нагрузка от устройств, включенных в сеть, может сильно варьироваться. И чтобы правильно подобрать кабель для каждой точки, которая подводится к устройству, нужно знать.

.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *