Расчет электродвигателя онлайн: Расчет КПД электродвигателя онлайн калькулятор

Содержание

Крутящий момент и зависимость крутящего момента

Как рассчитать крутящий момент, зная обороты и мощность двигателя?

Крутящий момент напрямую зависит от мощности и числа оборотов двигателя в минуту. Имеется общепринятая формула расчета крутящего момента, выражаемого в Ньютон-метрах ( русское обозначение Н·м, международное N·m ) 

 

M = P х 9550 / N

 

Где P — это мощность двигателя в киловаттах (кВт)

N — обороты вала в минуту

 

 

Как рассчитать мощность двигателя, зная крутящий момент и обороты?


Для такого расчета существует формула:

 

P = M х N / 9550

 

Где M — это крутящий момент двигателя

N — это обороты двигателя

 

Для скорости и простоты расчета воспользуйтесь удобным калькулятором крутящего момента. Впишите в ячейки калькулятора имеющиеся значения и калькулятор автоматически проставит результаты расчета.

 

Калькулятор крутящего момента

Выбор электродвигателя и расчет его рабочих параметров

Правильность подбора электродвигателя, учитывающая специфику приводного механизма, условия работы и окружающей среды, определяет длительность безаварийной работы и надежность системы «двигатель – нагрузка».

Далее приведены рекомендации по выбору электродвигателя (последовательность, в которой они представлены, не является обязательной).

На первом этапе необходимо определиться с типом электрического двигателя. Ниже даны краткое описание, преимущества и недостатки, сферы предпочтительного применения основных типов двигателей.

Типы электрических двигателей
  1. Двигатели постоянного тока

Основным преимуществом данных двигателей, которое определяло повсеместное их использование на этапе развития электрических приводов, является легкость плавного регулирования скорости в широких пределах. Поэтому с развитием полупроводниковой промышленности и появлением относительно недорогих преобразователей частоты процент их использования постоянно уменьшается. Там, где это возможно двигатели постоянного тока заменяются приводами на основе асинхронных двигателей с короткозамкнутым ротором.

Основные недостатки двигателя постоянного тока (невысокая надежность, сложность обслуживания и эксплуатации) обусловлены наличием коллекторного узла. Кроме того, для питания двигателя необходим источник постоянного тока или тиристорный преобразователь переменного напряжения в постоянное. При всех своих недостатках двигатели постоянного тока обладают высоким пусковым моментом и большой перегрузочной способностью. Что определило их использование в металлургической промышленности, станкостроении и на электротранспорте.

  1. Синхронные двигатели

Основным преимуществом данных двигателей является то, что они могут работать с коэффициентом мощности cosφ=1, а в режиме перевозбуждения даже отдавать реактивную мощность в сеть, что благоприятно сказывается на характеристиках сети: увеличивается ее коэффициент мощности, уменьшаются потери и падение напряжения. Кроме того, синхронные двигатели устойчивы к колебаниям сети. Максимальный момент синхронного двигателя пропорционален напряжению, при этом момент асинхронного двигателя пропорционален квадрату напряжения. Следовательно, при снижении напряжения синхронный двигатель сохраняет большую перегрузочную способность, а возможность форсировки возбуждения увеличивает надежность их работы при аварийных понижениях напряжения. Больший воздушный зазор по сравнению с асинхронным двигателем и применение постоянных магнитов делает КПД синхронных двигателей выше. Их особенностью также является постоянство скорости вращения при изменении момента нагрузки на валу.

При всех достоинствах синхронного двигателя основными недостатками, ограничивающими их применение являются сложность конструкции, наличие возбудителя, высокая цена, сложность пуска. Поэтому синхронные двигатели преимущественно используются при мощностях свыше 100 кВт.

Основное применение – насосы, компрессоры, вентиляторы, двигатель-генераторные установки.

  1. Асинхронные двигатели

По конструктивному принципу асинхронные двигатели подразделяются на двигатели с короткозамкнутым и фазным ротором. При этом большинство используемых электродвигателей являются асинхронными с короткозамкнутым ротором. Столь широкое применение обусловлено простотой их конструкции, обслуживания и эксплуатации, высокой надежностью, относительно низкой стоимостью. Недостатками таких двигателей являются большой пусковой ток, относительно малый пусковой момент, чувствительность к изменениям параметров сети, а для плавного регулирования скорости необходим преобразователь частоты. Кроме того, асинхронные двигатели потребляют реактивную мощность из сети. Предел применения асинхронных электродвигателей с короткозамкнутым ротором определяется мощностью системы электроснабжения конкретного предприятия, так как большие пусковые токи при малой мощности системы создают большие понижения напряжения.

Использование асинхронных двигателей с фазным ротором помогает снизить пусковой ток и существенно увеличить пусковой момент, благодаря введению в цепь ротора пусковых реостатов. Однако, ввиду усложнения их конструкции, и как следствие, увеличения стоимости их применение ограничено. Основное применение – приводы механизмов с особо тяжелыми условиями пуска. Для уменьшения пусковых токов асинхронного двигателя с короткозамкнутым ротором может быть использовано устройство плавного пуска или преобразователь частоты.

В системах, где необходимо ступенчатое изменение скорости (например, лифты) используют многоскоростные асинхронные двигатели. В механизмах, требующих остановки за определенное время и фиксации вала при исчезновении напряжения питания, применяются асинхронные двигатели с электромагнитным тормозом (металлообрабатывающие станки, лебедки). Существуют также асинхронные двигатели с повышенным скольжением, которые предназначены для работы в повторно-кратковременных режимах, а также режимах с пульсирующей нагрузкой.

После того, как определен тип электродвигателя, полностью учитывающий специфику рабочего механизма и условия работы, необходимо определиться с рабочими параметрами двигателя: мощностью, номинальным и пусковым моментами, номинальными напряжением и током, режимом работы, коэффициентом мощности, классом энергоэффективности.

Мощность и моменты

В общем случае для квалифицированного подбора электродвигателя должна быть известна нагрузочная диаграмма механизма. Однако, в случае постоянной или слабо меняющейся нагрузки без регулирования скорости достаточно рассчитать требуемую мощность по теоретическим или эмпирическим формулам, зная рабочие параметры нагрузки. Ниже приведены формулы для расчета мощности двигателя P2 [кВт] некоторых механизмов.

  1. Вентилятор

где Q3/с] – производительность вентилятора,

Н [Па] – давление на выходе вентилятора,

ηвент, ηпер – КПД вентилятора и передаточного механизма соответственно,

kз – коэффициент запаса.

  1. Насос

где Q3/с] – производительность насоса,

g=9,8 м/с2 – ускорение свободного падения,

H [м] – расчетная высота подъема,

ρ [кг/м3] – плотность перекачиваемой жидкости,

ηнас, ηпер – КПД насоса и передаточного механизма соответственно,

kз – коэффициент запаса.

  1. Поршневой компрессор

где Q3/с] – производительность компрессора,

А [Дж/м3] – работа изотермического и адиабатического сжатия атмосферного воздуха объемом 1 м3 давлением 1,1·105 Па до требуемого давления,

ηкомпр, ηпер – КПД компрессора и передаточного механизма соответственно,

kз – коэффициент запаса.

Кроме того, необходимо сопоставить пусковой момент двигателя (особенно в случае асинхронного с короткозамкнутым ротором) и рабочего механизма, так как некоторые механизмы имеют повышенное сопротивление в момент трогания. Следует иметь в виду и то обстоятельство, что при замене трехфазного асинхронного двигателя на однофазный пусковой момент последнего почти в три раза меньше и механизм, успешно функционировавший ранее, может не тронуться с места.

Развиваемый электродвигателем момент M [Нм] и полезная мощность на валу Р2 [кВт] связаны следующим соотношением

Полная мощность, потребляемая из сети:

для двигателей постоянного тока (она же активная)

для двигателей переменного тока


 

 

при этом потребляемые активная и реактивная мощности соответственно

В случае синхронного двигателя значение Q1 может получиться отрицательным, это означает, что двигатель отдает реактивную мощность в сеть.

Важно отметить следующее. Не следует выбирать двигатель с большим запасом по мощности, так как это приведет к снижению его КПД, а в случае двигателя переменного тока также к снижению коэффициента мощности.

Напряжение и ток

При выборе напряжения электродвигателя необходимо учитывать возможности системы энергоснабжения предприятия. При этом нецелесообразно при больших мощностях выбирать двигатель с низким напряжением, так как это приведет к неоправданному удорожанию не только двигателя, но и питающих проводов и коммутационной аппаратуры вследствие увеличения расхода меди.

Если при трогании момент сопротивления нагрузки невелик и для уменьшения пусковых токов асинхронного двигателя с короткозамкнутым ротором может быть применен способ пуска с переключением со «звезды» на «треугольник», необходимо предусмотреть вывод в клеммную коробку всех шести зажимов обмотки статора. В общем случае применение схемы соединения «звезда» является предпочтительным, так как в схеме «треугольник» имеется контур для протекания токов нулевой последовательности, которые приводят к нагреву обмотки и снижению КПД двигателя, в соединении «звезда» такой контур отсутствует.

Режим работы

Нагрузка электродвигателя в процессе работы может изменяться различным образом. ГОСТом предусмотрены восемь режимов работы.

  1. Продолжительный S1 – режим работы при постоянной нагрузке в течение времени, за которое температура двигателя достигает установившегося значения. Мощность двигателя, работающего в данном режиме, рассчитывается исходя из потребляемой механизмом мощности. Формулы расчета мощности некоторых механизмов (насос, вентилятор, компрессор) приведены выше.
  2. Кратковременный S2 – режим, при котором за время включения на постоянную нагрузку температура двигателя не успевает достичь установившегося значения, а за время отключения двигатель охлаждается до температуры окружающей среды. В случае использования двигателя S1 для работы в режиме S2 необходимо проверить его только по перегрузочной способности, так как температура не успевает достичь допустимого значения.
  3. Повторно-кратковременный S3 – режим с периодическим отключением двигателя, при котором за время включения температура не успевает достичь установившегося значения, а за время отключения – температуры окружающей среды. Расчет мощности электродвигателя обычного исполнения для работы в режиме S3 производится по методам эквивалентных величин с учетом пауз и потерь в переходных режимах. Кроме того, двигатель необходимо проверить на допустимое число включений в час. В случае большого числа включений в час рекомендуется использовать двигатели с повышенным скольжением. Данные электродвигатели обладают повышенным сопротивлением обмотки ротора, а, следовательно, меньшими пусковыми и тормозными потерями.
  4. Повторно-кратковременный с частыми пусками S4 и повторно-кратковременный с частыми пусками и электрическим торможением S5. Данные режимы рассматриваются аналогично режиму S3.
  5. Перемежающийся S6 – режим, при котором работа двигателя под нагрузкой, периодически заменяется работой на холостом ходу. Большинство двигателей, работающих в продолжительном режиме, имеют меняющийся график нагрузки.

При этом для обоснованного выбора двигателя с целью оптимального его использования рекомендуется применять методы эквивалентных величин.

Класс энергоэффективности

В настоящее время вопросам энергоэффективности уделяется огромное внимание. При этом под энергоэффективностью понимается рациональное использование энергетических ресурсов, с помощью которого достигается уменьшение потребления энергии при том же уровне мощности нагрузки. Основным показателем энергоэффективности двигателя является его коэффициент полезного действия

где Р2 – полезная мощность на валу, Р1 – потребляемая активная мощность из сети.

Стандартом IEC 60034-30 для асинхронных электродвигателей с короткозамкнутым ротором были установлены три класса энергоэффективности: IE1, IE2, IE3.

 

Рис. 1. Классы энергоэффективности

Так, например, использование двигателя мощностью 55 кВт повышенного класса энергоэффективности позволяет сэкономить около 8000 кВт в год от одного двигателя.

Степень защиты IP, виды климатических условий и категорий размещения

ГОСТ Р МЭК 60034-5 – 2007 устанавливает классификацию степеней защиты, обеспечиваемых оболочками машин.

Обозначение степени защиты состоит из букв латинского алфавита IP и последующих двух цифр (например, IP55).

Большинство электродвигателей, выпускаемых в настоящее время, имеют степени защиты IP54 и IP55.

Категория размещения обозначается цифрой:

1 – на открытом воздухе;

2 – под навесом при отсутствии прямого солнечного воздействия и атмосферных осадков;

3 – в закрытых помещениях без искусственного регулирования климатических условий;

4 – в закрытых помещениях с искусственно регулируемыми климатическими условиями.

Климатические условия:

У – умеренный климат;

УХЛ – умеренно холодный климат;

ХЛ – холодный климат;

Т – тропический климат.

Таким образом, при выборе электродвигателя необходимо учитывать условия окружающей среды (температура, влажность), а также необходимость защиты двигателя от воздействия инородных предметов и воды.

Например, использование электродвигателя с типом климатического исполнения и категорией размещения У3 на открытом воздухе является недопустимым.

Усилия, действующие на вал двигателя со стороны нагрузки

Наиболее нагруженными в двигателе являются подшипниковые узлы. Поэтому при выборе двигателя должны быть учтены радиальные и осевые усилия, действующие на рабочий конец вала двигателя со стороны нагрузки. Превышения допустимых значений сил приводит к ускоренному выходу из строя не только подшипников, но и всего двигателя (например, задевание ротора о статор).

Обычно допустимые значения сил для каждого подшипника приведены в каталогах. Рекомендуется в случае повышенных радиальных усилий (ременная передача) на рабочий конец вала установить роликовый подшипник, при этом предпочтительным является двигатель с чугунными подшипниковыми щитами.

Особенности конструкции двигателя при работе от преобразователя частоты

В настоящее время все большее распространение приобретает использование частотно-регулируемого привода (ЧРП), выполненного на основе асинхронного электродвигателя с короткозамкнутым ротором.

При использовании частотно-регулируемого привода достигается:

1. экономия электроэнергии;

2. плавность пуска и снижение пусковых токов;

3. увеличение срока службы двигателя.

В общем случае стандартный электродвигатель нельзя использовать в составе частотно-регулируемого привода, так как при уменьшении скорости вращения снижается эффективность охлаждения. При регулировании скорости вверх от номинальной резко увеличивается нагрузка от собственного вентилятора. В обоих случаях уменьшается нагрузочная способность двигателя. Кроме того, в случае использования двигателя в системах точного регулирования необходим датчик положения ротора двигателя.

При работе электродвигателя от преобразователя частоты в контуре вал – фундаментная плита могут протекать токи. При этом возникает точечная эрозия на шариках и роликах, на беговых кольцах подшипников качения, а также на баббитовой поверхности подшипников скольжения. От электролиза смазка чернеет, подшипники греются. Для разрыва контура прохождения подшипниковых токов на неприводной конец вала устанавливается изолированный подшипник. При этом по условиям безопасности установка изолированных подшипников с двух сторон двигателя не допустима.

Величина подшипниковых токов становится опасной для безаварийной работы двигателя при напряжении между противоположными концами вала более 0,5 В. Поэтому установка изолированного подшипника обычно требуется для электродвигателей с высотой оси вращения более 280 мм.

 Примечание

Необходимо отметить, что в случае отклонения условий эксплуатации двигателя (например, температуры окружающей среды или высоты над уровнем моря), мощность нагрузки должна быть изменена. Кроме того, при снижении мощности нагрузки в определенные моменты времени для рационального использования двигателя может быть изменена схема соединения обмотки, а, следовательно, и фазное напряжение.

 

Популярные товары

Шины медные плетеные

Шины изолированные гибкие и твердые

Шинодержатели

Изоляторы

Индикаторы наличия напряжения

Расчет характеристик трехфазного асинхронного двигателя

 

В электроприводе производственного агрегата используется асинхронный двигатель трехфазного тока с короткозамкнутым ротором. Двигатель работает в номинальном режиме при линейном напряжении Uл = 380 В и при промышленной частоте f = 50 Гц.
Используя данные электродвигателя, выбрать сечение питающих проводов и номинальный ток плавких вставок предохранителей. Построить график зависимости вращающего момента от скольжения М = f(s), предварительно вычислив номинальное и максимальное значения момента, пусковой момент, а также значения вращающего момента при скольжении, равном 0,2; 0,4; и 0,6.  

Смотреть видео: асинхронный двигатель  Исходные данные:
Iпуск/Iном = 6,5; Ммакс/Мно = 2,0; КПДном = 0,82; сosjном = 0,83;
Тип двигателя4А80А2У3; Рном = 1,5 кВТ; Sном = 7,0 %.

 

Решение Заказать у нас работу!

  • Определим номинальный ток двигателя:


По найденному значению тока из табл. Приложения 2 выбираем сечение питающего провода для двигателя. При номинальном токе 3,35 А подойдут провода сечением 2,5 кв. мм трехжильные медные с резиновой или полихлорвиниловой изоляцией или трехжильные алюминиевые провода с резиновой или полихлорвиниловой изоляцией.

  • Определим величину пускового тока из известного по условию задачи соотношения Iпуск/Iном = 6,5:

  • Определим номинальный ток плавкой вставки:

Если принять, что двигатель работает с тяжелыми условиями пуска (большая длительность разгона, частые пуски):

Из ряда стандартных плавких вставок на номинальные токи 6, 10, 15, 20, 25, 30, 50, 60, 80, 100, 120, 150 А выбираем вставку на номинальный ток 15 А.

В обозначении двигателя (4А80А2У3) после буквы «А» указано количество полюсов, количество пар полюсов вдвое меньше, т.е. в данном случае Р = 1.

  • Определим частоту вращения ротора двигателя:

  • Определим вращающий момент при номинальном режиме работы:

  • Из заданной по условию задачи перегрузочной способности двигателя (Ммакс/Мно = 2,0) определим максимальный вращающий момент:

  • Определим величину скольжения, при которой момент наибольший:

Из двух полученных значений по условию устойчивой работы двигателя выбираем .

  • Определим пусковой момент двигателя (при S = 1):

  • Определим момент при S = 0,2:

  • Момент при S = 0,4:

  • Момент при S = 0,6:

  • Построим график зависимости вращающего момента от скольжения:

Заказать у нас работу!

 

 

 

Расчет реактивной мощности КРМ

Спасибо за интерес, проявленный к нашей Компании

Расчет реактивной мощности КРМ

Отправить другу


НЕОБХОДИМА КОНСУЛЬТАЦИЯ?


Теория расчета реактивной мощности КРМ

Q = Pa

· ( tgφ1-tgφ2)-  реактивная мощность установки КРМ (кВАр)

Q = Pa · K

Pa -активная мощность (кВт)

K- коэффициент из таблицы

Pa= S· cosφ

S -полная мощность(кВА)

cos φ — коэффициент мощности

tg(φ12) согласуются со значениями cos φ в таблице.  

Таблица определения реактивной мощности конденсаторной установки  — КРМ (кВАр), необходимой для достижения заданного cos(φ).

Текущий (действующий)
Требуемый (достижимый) cos (φ)
tan (φ) cos (φ) 0.80 0.82 0.85 0.88 0.90
0.92
0. 94 0.96 0.98 1.00
Коэффициент K
3.18 0.30 2.43 2.48 2.56 2.64 2.70 2.75 2.82 2.89 2. 98 3.18
2.96
0.32
2.21 2.26 2.34 2.42 2.48 2.53 2.60 2.67 2.76 2.96
2.77 0. 34 2.02 2.07 2.15 2.23 2.28 2.34 2.41 2.48 2.56 2.77
2.59 0.36 1.84 1.89 1. 97 2.05 2.10 2.17 2.23 2.30 2.39 2.59
2.43 0.38 1.68 1.73 1.81 1.89 1.95 2. 01 2.07 2.14 2.23 2.43
2.29 0.40 1.54 1.59 1.67 1.75 1.81 1.87 1.93 2.00 2. 09 2.29
2.16 0.42 1.41 1.46 1.54 1.62 1.68 1.73 1.80 1.87 1.96 2.16
2.04 0. 44 1.29 1.34 1.42 1.50 1.56 1.61 1.68 1.75 1.84 2.04
1.93 0.46 1.18 1.23 1. 31 1.39 1.45 1.50 1.57 1.64 1.73 1.93
1.83 0.48 1.08 1.13 1.21 1.29 1.34 1. 40 1.47 1.54 1.62 1.83
1.73 0.50 0.98 1.03 1.11 1.19 1.25 1.31 1.37 1.45 1. 63 1.73
1.64 0.52 0.89 0.94 1.02 1.10 1.16 1.22 1.28 1.35 1.44 1.64
1.56 0. 54 0.81 0.86 0.94 1.02 1.07 1.13 1.20 1.27 1.36 1.56
1.48 0.56 0.73 0.78 0. 86 0.94 1.00 1.05 1.12 1.19 1.28 1.48
1.40 0.58 0.65 0.70 0.78 0.86 0.92 0. 98 1.04 1.11 1.20 1.40
1.33 0.60 0.58 0.63 0.71 0.79 0.85 0.91 0.97 1.04 1. 13 1.33
1.30 0.61 0.55 0.60 0.68 0.76 0.81 0.87 0.94 1.01 1.10 1.30
1.27 0.62 0.52 0.57 0.65 0.73 0.78 0.84 0.91 0.99 1.06 1.27
1.23 0.63 0.48 0.53 0.61 0.69 0.75 0.81 0.87 0.94 1.03 1.23
1.20 0.64 0.45 0.50 0.58 0.66 0.72 0.77 0.84 0.91 1.00 1.20
1.17 0.65 0.42 0.47 0.55 0.63 0.68 0.74 0.81 0.88 0.97 1.17
1.14 0.66 0.39 0.44 0.52 0.60 0.65 0.71 0.78 0.85 0.94 1.14
1.11 0.67 0.36 0.41 0.49 0.57 0.63 0.68 0.75 0.82 0.90 1.11
1.08 0.68 0.33 0.38 0.46 0.54 0.59 0.65 0.72 0.79 0.88 1.08
1.05 0.69 0.30 0.35 0.43 0.51 0.56 0.62 0.69 0.76 0.85 1.05
1.02 0.70 0.27 0.32 0.40 0.48 0.54 0.59 0.66 0.73 0.82 1.02
0.99 0.71 0.24 0.29 0.37 0.45 0.51 0.57 0.63 0.70 0.79 0.99
0.96 0.72 0.21 0.26 0.34 0.42 0.48 0.54 0.60 0.67 0.76 0.96
0.94 0.73 0.19 0.24 0.32 0.40 0.45 0.51 0.58 0.65 0.73 0.94
0.91 0.74 0.16 0.21 0.29 0.37 0.42 0.48 0.55 0.62 0.71 0.91
0.88 0.75 0.13 0.18 0.26 0.34 0.40 0.46 0.52 0.59 0.68 0.88
0.86 0.76 0.11 0.16 0.24 0.32 0.37 0.43 0.50 0.57 0.65 0.86
0.83 0.77 0.08 0.13 0.21 0.29 0.34 0.40 0.47 0.54 0.63 0.83
0.80 0.78 0.05 0.10 0.18 0.26 0.32 0.38 0.44 0.51 0.60 0.80
0.78 0.79 0.03 0.08 0.16 0.24 0.29 0.35 0.42 0.49 0.57 0.78
0.75 0.80   0.05 0.13 0.21 0.27 0.32 0.39 0.46 0.55 0.75
0.72 0.81     0.10 0.18 0.24 0.30 0.36 0.43 0.52 0.72
0.70 0.82     0.08 0.16 0.21 0.27 0.34 0.41 0.49 0.70
0.67 0.83     0.05 0.13 0.19 0.25 0.31 0.38 0.47 0.67
0.65 0.84     0.03 0.11 0.16 0.22 0.29 0.36 0.44 0.65
0.62 0.85       0.08 0.14 0.19 0.26 0.33 0.42 0.62
0.59 0.86       0.05 0.11 0.17 0.23 0.30 0.39 0.59
0.57 0.87         0.08 0.14 0.21 0.28 0.36 0.57
0.54 0.88         0.06 0.11 0.18 0.25 0.34 0.54
0.51 0.89         0.03 0.09 0.15 0.22 0.31 0.51
0.48 0.90           0.06 0.12 0.19 0.28 0.48
0.46 0.91           0.03 0.10 0.17 0.25 0.46
0.43 0.92             0.07 0.14 0.22 0.43
0.40 0.93             0.04 0.11 0.19 0.40
0.36 0.94               0.07 0.16 0.36
0.33 0.95                 0.13 0.33

Пример:

Активная мощность двигателя : P=100 кВт

Действующий cos φ = 0.61 

Требуемый cos φ = 0.96

Коэффициент K из таблицы = 1.01

Необходимая реактивная мощности КРМ (кВАр):

Q = 100 · 1.01=101 кВАр

НЕОБХОДИМА КОНСУЛЬТАЦИЯ?


Возврат к списку

124165 (Расчет и проектирование привода ленточного конвейера) — документ

Федеральное агентство образования РФ

Санкт-Петербургская Государственная

Лесотехническая академия

Кафедра теории механизмов, деталей машин

и подъемно-транспортных устройств.

Дисциплина:

“Детали машин и основы конструирования”

курсовой проект

расчетно-пояснительная записка

Факультет МТД

Курс III группа 3

Студент Афанасьев А.В.

Санкт-Петербург

Содержание

Введение

1. Расчетная схема привода. Исходные данные

2. Определение требуемой мощности электродвигателя приводной станции конвейера

3. Определение кинематических, силовых и энергетических параметров механизмов привода

4. Расчет клиноременной передачи

5. Выбор Редуктора

6. Выбор зубчатой муфты

Список используемой литературы

Приложение А

Введение

Курсовой проект выполняется по дисциплине “Детали машин и основы конструирования” и включает кинематический расчет, проектирование и выбор основных узлов привода ленточного конвейера.

В пояснительной записке приводится последовательность кинематического расчета привода с выбором типоразмеров стандартных узлов: электродвигателя, редуктора, а также расчет дополнительной клиноременной передачи с клиновым ремнем нормального сечения.

Выходной вал редуктора соединяется с валом приводного барабана при помощи компенсирующей зубчатой муфты. Выбор зубчатой муфты осуществляется по каталогу.

Регулирование скорости конвейера в процессе работы не предусмотрено.

Курсовой проект состоит:

  1. пояснительная записка

  2. чертеж привода конвейера в двух проекциях.

  1. Расчетная схема привода. Исходные данные

Схема привода ленточного конвейера представлена на рисунке 1.

Рисунок 1 — Схема привода ленточного конвейера.

  1. Асинхронный электродвигатель серии АИР 132 М4

  2. Клиноременная передача

  3. Одноступенчатый редуктор с цилиндрическими зубчатыми колесами типа ЦУ

  4. Зубчатая муфта типа МЗ

  5. Вал приводного барабанного конвейера

Данные по заданию на курсовой проект:

Тяговое усилие на барабане

Ft ,кН

3.8

Скорость ленты конвейера

V, м/с

2,1

Диаметр приводного барабана

ДБ, м

0,30

Число пар полюсов электродвигателя

2

Режим работы двигателя

легкий

Срок службы привода

Zh,часов

10 000

  1. Определение требуемой мощности электродвигателя приводной станции конвейера

Выбор электродвигателя.

Мощность на валу приводного барабана определяется по формуле (1).

РБ = Ft∙ V (1)

где:

Ft =3,8 кН

тяговое усилие на барабане

V =2,1 м/с

скорость ленты конвейера

Подставляя значения в формулу (1) имеем:

РБ = 3,8 ∙ 2,1 = 7,98 кВт

Значение общего КПД приводной станции конвейера определяется по формуле (2).

общ = кл.рем. ред. муф. Б (2)

где:

кл.рем. = 0,95

КПД клиноременной передачи

ред. = 0,98

КПД редуктора

муфт. = 0,99

КПД муфты

Б = 0,98

КПД барабана

Подставляя значения в формулу (2) имеем:

общ = 0,95 ∙ 0,98 ∙ 0,99 ∙ 0,98 = 0,90

Требуемая мощность электродвигателя (кВт) определяется по формуле (3).

Ртреб.эл. = РБ / общ (3)

Подставляя значения в формулу (3) имеем:

Ртреб.эл. = 7,98 / 0,90 = 8,87 кВт

Синхронная частота вращения вала электродвигателя (мин -1) определяется по формуле (4).

nc = (60 ∙ f) / р (4)

где:

f =50Гц

частота промышленного тока

р =2

число пар полюсов электродвигателя

Подставляя значения в формулу (2) имеем:

nc = (60 ∙ 50) / 2 = 1500 мин -1

Исходя из вышеприведенных расчетов принимаем типоразмер двигателя – АИР 132 М4 (n = 1500 мин -1 ; Рдв = 11 кВт). При выборе электродвигателя учитывалось, что асинхронные двигатели самые распространенные в промышленности и могут допускать длительную перегрузку не более 5 –10 %. А также номинальная мощность электродвигателя должна быть – Рдв Ртреб.эл.

С учетом коэффициента скольжения двигателя S (%), определяем частоту вращения вала электродвигателя по формуле (5).

nэл = nc – (nc ∙ S) / 100 (5)

Подставляя значения в формулу (5) имеем:

nэл = 1500 – (1500 ∙ 3,5) / 100 = 1447,5 мин -1

  1. Определение кинематических, силовых и энергетических параметров механизмов привода

Частота вращения вала приводного барабана (мин -1) определяется по формуле (6).

nБ = (60 ∙ V) / ( ∙ ДБ) (6)

где:

V = 2,1 м/с

Скорость ленты конвейера

ДБ = 0,3 м

Диаметр приводного барабана

Подставляя значения в формулу (6) имеем:

nБ = (60 ∙ 2,1) / (3,14 ∙ 0,3) = 134 мин -1

Общее передаточное отношение привода определяется по формуле (7).

Uпр = nэл / nБ (7)

Подставляя значения в формулу (7) имеем:

Uпр = 1447,5 / 134 = 10,8

Предварительно примирим передаточное отношение клиноременной передачи равным 2, тогда используя формулу (8) найдем передаточное отношение редуктора.

Uпр = Uкл.рем. ∙ Uред. (8)

Имеем:

Uред. = Uпр / Uкл.рем. = 10,8 / 2 = 5,4

Стандартное значение передаточного отношения зубчатого редуктора Uред.ст = 5,6. Уточним полученное значение передаточного отношения клиноременной передачи:

Uкл.рем.ст. = Uпр / Uред.ст. = 10,8 / 5,6 = 1,93

Определим значения мощности на каждом из валов привода конвейера.

Мощность на выходном валу электродвигателя (кВт) определяется по формуле (9).

Ртреб.эл. = Ррем1 = 8,87 кВт (9)

Мощность на входном валу редуктора (кВт) определяется по формуле (10).

Р1ред. = Р2рем. = Ртреб. кл.рем. (10)

Подставляя значения в формулу (10) имеем:

Р1ред. = Р2рем. = 8,87 ∙ 0,95 = 8,43 кВт

Мощность на выходном валу редуктора (кВт) определяется по формуле (11).

Р2ред. = Р1ред.ред. (11)

Подставляя значения в формулу (11) имеем:

Р2ред. = 8,43 ∙ 0,98 = 8,26 кВт

Мощность на валу барабана определена ранее по формуле (1) и равна:

РБ = 7,98 кВт

Определяем частоту вращения на каждом из валов редуктора.

nэл = n1рем. = 1447,5 мин -1

Частота вращения на входном валу редуктора (мин -1) определяется по формуле (12).

n1ред = n2рем. = nэл. / Uкл.рем.ст. (12)

Подставляя значения в формулу (12) имеем:

n1ред = 1447,5 / 1,93 = 750 мин -1

Частота вращения на выходном валу редуктора (мин -1) определяется по формуле (13).

n2ред. = n1ред. / Uред.ст. (13)

Подставляя значения в формулу (13) имеем:

n2ред. = 750 / 5,6 = 134мин -1

Частота вращения вала барабана равна:

nБ = n2рем. = 134мин -1

Определяем крутящие моменты на каждом из валов редуктора.

Крутящий момент (Нм) электродвигателя находится по формуле (13).

Тэл. = Т1рем = 9550 ∙ (Ртреб.эл / nэл.) (13)

Подставляя значения в формулу (13) имеем:

Тэл. = Т1рем. = 9550 ∙ (8,87 / 1447,5) = 58,52 Нм

Крутящий момент (Нм) на входном валу редуктора определяется по формуле (14).

Т1ред. = Т2рем. = Тэл. ∙ Uкл.рем.ст. кл.рем. (14)

Подставляя значения в формулу (14) имеем:

Т1ред. = 58,52∙ 1,93 ∙ 0,95 = 107,3 Нм

Крутящий момент (Нм) на входном валу редуктора определяется по формуле (15).

Т2ред. = Т1ред. ∙ Uред.ст. ред (15)

Подставляя значения в формулу (15) имеем:

Т2ред. = 107,3∙ 5,6 ∙ 0,98 = 588,86Нм

Крутящий момент (Нм) на приводном барабане определяется по формуле (16).

ТБ. = Т2ред.муф.Б (16)

Подставляя значения в формулу (16) имеем:

ТБ. = 588,82 ∙ 0,99 ∙ 0,98 = 571,31 Нм

  1. Расчет клиноременной передачи.

Расчетная схема клиноременной передачи представлена на рис. 2.

Рисунок 2 — Расчетная схема клиноременной передачи.

Исходные данные для расчета:

Т1рем. = Тэл.

= 58,52 Нм

Uкл.рем.

= 1,93

nэл = n1рем.

= 1447,5 мин -1

Б = 0,98

КПД барабана

Расчет проводим для клиноременной передачи нормального сечения.

Осуществим выбор сечения ремня по величине крутящего момента. Так как (50 рем.1 = 58,52

Диаметр d1 (мм) меньшего (ведущего) шкива определяем по формуле (17).


d1 = kd3√ Трем.1 = (30…40) 3√ Трем.1 (17)

Подставляя значения в формулу (17) имеем:

d1 = 40 ∙ 3,89 = 155,6 мм

Принимаем стандартный диаметр шкива по ГОСТ 17383-73

d1ст. = 160 мм.

Скорость ремня (м/с) определяется по формуле (18).

U1 = ∙ d1ст. ∙ (n1рем. / 60) (18)

Подставляя значения в формулу (18) имеем:

U1 = 3,14 ∙ 0,16 ∙ (1447,5 / 60) = 12,12 м/с

Диаметр d2 (мм) большего (ведомого) шкива ременной передачи определяется по формуле (19).

d2 = d1 ∙ Uкл.рем ∙ (1 – ε) (19)

где:

ε – коэффициент упругого проскальзывания, ε = 0,01…0,02. Для расчетов принимаем значение ε равное 0,015

Подставляя значения в формулу (19) имеем:

d2 = 160 ∙ 1,93 ∙ (1 – 0,015) = 304,17 мм.

150>

Калькулятор параметров электромобиля | Сайт об электромобилях

Итак, выполняя намеченные планы, мы можем продолжить тестирование предварительной версии калькулятора электромобилей. Часть возможностей можно применять для расчета параметров автомобиля. На данный момент вы сможете потестировать предварительную версию калькулятора. Для получения возможности проводить вычисления в вашем браузере должна быть включена поддержка JavaScript. При введении дробных величин используйте дробную точку как разделитель.

  • 12.12.12 — уточнен расчет пиковой мощности электродвигателя
  • 21.04.17 — добавлены электромоторы Golden Motor

Теперь для самодельщиков появился интернет-магазин комплектующих для малого электротранпорта — ecovel.ru — аккумуляторные батареи, электродвигатели, колеса, велокомпьютеры, амортизаторы, контроллеры, аксессуары — все что нужно для творчества прямо от производителя по достойной цене.

Калькулятор параметров электромобиля v0.81
Параметры шасси для расчетов
Полная масса автомобиля с нагрузкой, m (кг)
Коэффициент сопротивления воздуха для кузова шасси, Cx (Н*с24)
Лобовая площадь кузова шасси, S (м2)
Радиус ведущего колеса, r (м)
Передаточное число коробки передач, uкп
Передаточное число главной передачи, uгп
Коэффициент трения качения, ƒ
Угол уклона дороги, α (°)
Требуемая скорость, ν (км/ч)
Время разгона до скорости ν, t (сек)
Рассчитать параметры двигателя

Параметры двигателя

Частота вращения вала двигателя, n (об/мин)
Номинальный крутящий момент, Н*м
Пиковый крутящий момент, Н*м
Номинальная мощность, Вт
Пиковая мощность, Вт

Выберите автомобиль — донор1969 Volkswagen BeetleЗАЗ 968М1983 Volkswagen Rabbit GTI1986 Mazda RX-7 GXL1986 Porshe 911 Carrera1992 Ford Festiva GL’1995 Mazda Protege ES1997 Hyundai Tiburon1998 Mazda Miata2003 Honda Insight 5spd2004 Toyota Prius

Описание донора …

Передаточные числа коробки передач

1 2345

Предупреждение:

  • параметр радиуса ведущих колес вам нужно вводить в соответствующее поле самостоятельно.
  • вес электромобиля с нагрузкой необходимо скорректировать
Перевод л.с. в КВт
Л.с.
↓Перевести л.с. в КВт
↑Перевести КВт в л.с.
КВт
Расчет крутящего момента электродвигателя
Мощность (Вт)
Частота вращения (об/мин)
Рассчитать крутящий момент
Крутящий момент (Н*м)

Подбор реального электромотора(ов)

Выберите электромоторPerm-Motor PMG-132LEMCO LEM-200Brushless EtekPerm-Motor PMS-156ADC #203-06-4001AADC FB1-4001Golden Motor HPM3000BGolden Motor HPM5000BGolden Motor HPM-10KWGolden Motor HPM-20KW

Количество (шт.)
Описание электромотора…

Подсказка о подходящих конфигурациях движка

———————————

Параметры контроллера электродвигателя

КПД (%)
Подбор аккумулятора для батареи

Выберите аккумулятор для батареиTS-IC24v90

Номинальное напряжение, U (В)
Емкость при 20 часовом разряде, C (А*ч)
Внутреннее сопротивление, r (Ом)
Экспонента Пекерта
Емкость Пекерта
Глубина разряда DoD, φ (%)
Количество рабочих циклов
Масса (кг)
Стоимость (USD)
Конечные результаты расчета электромобиля…

Пересчитать

Copyright © Дмитрий Спицын, 2007-2017.

Расчет привода тележки | Блог Александра Воробьева

…транспортных или крановых тележек, но и при проектировании различных приводных кареток в станках и нестандартном оборудовании.

Создав небольшую таблицу в Excel, можно научиться быстро и просто определять главные параметры привода за считанные секунды. Изменяя диаметры колес, частоту вращения вала двигателя, схему привода, при помощи этой программы вы за несколько минут сможете перебрать целый ряд всевозможных вариантов двигателей и выбрать наиболее подходящий. Расчет в Excel позволяет поэкспериментировать с уклоном пути и с ускорением при стартовом разгоне.

В первоначальном варианте статьи, которая «прожила» на блоге в неизменном виде почти 4 года, результатом расчетов была статическая мощность двигателя привода. В обновленном варианте добавлены возможность задания в исходных данных уклона пути и приближенный учет сил инерции, приводимых в движение масс. Результат вычислений – расчетная мощность двигателя с учетом динамики разгона и уклона пути.

Расчет в Excel мощности двигателя.

На расчетной схеме показаны исходные данные для расчета, приведенные к колесу тележки.

Напомню, что в ячейки программы Excel со светло-бирюзовой заливкой помещены исходные данные, а в ячейках со светло-желтой заливкой выведены результаты вычислений по формулам алгоритма.

Внимание!!! Для упрощения и облегчения выполнения задачи ввода исходных данных в таблицу Excel в примечаниях ко многим ячейкам столбца D (смотри красный уголок в правом верхнем углу) приведены рекомендации, пояснения и некоторые необходимые справочные материалы.

Расчетные формулы:

  1. u=π*D*nд/(60*v)
  2. nк=nд/u
  3. Wск=QΣ*((2*μ+f*d)/D*kp+SIN(γ))
  4. Tск=Wск*D/2
  5. Pсд=Wск*v/η
  6. tп=v/a
  7. Tдк=Pд*η*u*ψ*30/(π*nд)
  8. Pд=(Wск+1,3*QΣ/9,81*a)*v/(η*ψ)

Результат расчета: чтобы разогнать по рельсовому пути в подъем с уклоном 0,3º тележку с грузом общей массой 1 тонна за 4 секунды до скорости 3,6 км/ч, допуская в этот период времени двукратную перегрузку двигателя, необходим мотор мощностью не менее 500 Вт с частотой вращения вала 1500 об/мин. При этом привод (редуктор и/или открытые передачи) должен иметь передаточное число 15,7 и создавать на выходном валу крутящий момент не менее 50 Нм.

Для дальнейшего после разгона равномерного движения тележки с грузом с постоянной скоростью 3,6 км/ч в уклон 0,3º необходимая мощность двигателя – 337Вт (67% от расчетной и 34% от пиковой мощности).

Итоговые замечания.

Примененный в расчете алгоритм является слегка упрощенным вариантом давно широко и успешно используемой классической методики расчета приводов тележек подъёмно-транспортных машин. Он, конечно же, не претендует на «абсолютную точность». Широкие диапазоны значений коэффициентов не располагают к этому, а, скорее, предполагается для получения адекватного результата наличие определенного инженерного опыта у пользователя.

Ознакомившись с методами расчетов сопротивления от трения качения автомобилей и поездов, можно заметить, что большинство используемых в них формул являясь эмпирическими, то есть выведенными по результатам экспериментов, также не блещут точностью в широком диапазоне…

Желающим углубиться в тему могу порекомендовать монографию В.А. и В.В. Анисимовых «Тяговые расчеты», Хабаровск, 2013

(sites.google.com/site/tagapoezd/monografia/)

и статью доцента, кандидата технических наук из МГТУ «МАМИ» Чебанюка А.М. «О сопротивлении качению пневмоколес»

(mami.ru/science/mami145/scientific/article/s09/s09_17.pdf).

Комментарии, уважаемые читатели, оставляйте в разделе «Отзывы», расположенном внизу страницы. Для прямой конфиденциальной связи с автором используйте страницу «Обратная связь».

Для подписки на анонсы статей введите адрес своей электронной почты, нажмите на кнопку «Получать анонсы статей» и  подтвердите подписку в письме, которое тут же придет к вам на указанную почту.

Прошу уважающих труд автора  скачивать файл после подписки на анонсы статей!

Ссылка на скачивание файла: raschet-privoda-telezhki (58.5KB).

Другие статьи автора блога

На главную

Автоматический расчет КПД электродвигателя, формула и таблица

С помощью этого калькулятора КПД для мототехники вы можете автоматически конвертировать и рассчитывать в режиме онлайн всего за 3 шага, легко, быстро и бесплатно при любой мощности, связанной с электродвигателями.

Для простоты поясняем, что в формуле используется калькулятор с таблицей основных значений КПД для двигателей с различными процентами нагрузки.

Мы также показываем наиболее распространенные коэффициенты мощности различных двигателей.

  • Формулы для расчета КПД двигателей постоянного, переменного тока, однофазных, двухфазных и трехфазных двигателей:
  • Формула КПД двигателя постоянного тока:
  • Формула КПД двигателя переменного тока, однофазный:
  • Формула КПД двигателя переменного тока, двухфазный:
  • Формула КПД двигателя переменного тока, трехфазный:
  • Как рассчитать за 3 шага КПД трехфазного двигателя:
  • Шаг 1:
  • Шаг 2:
  • Шаг 3:
  • Определения КПД, л.с. , FP, Iac, Idc и Volts:
  • Типичный коэффициент мощности двигателя:
  • КПД электрических двигателей NEMA, конструкция B

Формулы для расчета КПД двигателей постоянного, переменного тока, однофазных, двухфазных и трехфазных двигателей :

КПД двигателя формулы по постоянному току:

КПД двигателя формулы переменного тока, однофазный:

КПД двигателя формулы переменного тока, двухфазный ic:

Формула КПД двигателя переменного тока, трехфазный:


Как рассчитать КПД трехфазного двигателя за 3 шага:


Шаг 1:

Умножить На 746 л.с. (лошадиных сил).Например, если у вас 20 л.с., умножьте на 746 и получите 14 920 (100Hpx746 = 74600).

Шаг 2:

Умножьте линейное напряжение переменного тока на корень квадратный из 3, коэффициента мощности и тока двигателя. Например, если мощность двигателя 480 В переменного тока, коэффициент мощности 0,86 и ток 23,4 А, необходимо умножить √3 (квадратный корень из 3), 480 В переменного тока, 23,4 А, 0,86, чтобы получить 16 710 ( √3×480 В x0, 86 × 23,4A = 16,710 ).

Шаг 3:

Наконец, как вы можете видеть, ввод больше, чем вывод, поэтому просто разделите шаг 1 и шаг 2.Например, Ef = (20hpx746) / (√3x480Vx0,86 × 23,4A) = 0,89, затем умножьте это значение на 100% и получите приблизительный КПД 89%.


Определения Эффективность, Hp, FP, Iac, Idc и Вольт:

E (КПД) = КПД двигателя — это соотношение между объемом выполненной механической работы и электрической энергией, потребляемой для выполнения работа, представленная в процентах. Более высокий процент означает более эффективный двигатель. Эффективность электродвигателя зависит (но не ограничивается ими) от условий конструкции, материалов, конструкции, классификации, нагрузки, качества электроэнергии и эксплуатации.
КПД любого электродвигателя — это его выходная мощность, деленная на общую потребляемую мощность. Чтобы быть действительным, ввод и вывод должны выражаться в одних и тех же физических единицах.

Входная мощность двигателя переменного тока — это электрическая мощность в ваттах (или киловаттах), а выходная мощность двигателя — это механическая энергия, передаваемая валом, поэтому крутящий момент на валу зависит от скорости (об / мин). Исходя из того, что выходной крутящий момент двигателя не является электрической величиной, он обычно измеряется в механических единицах мощности.

Чтобы разделить это на потребляемую электрическую мощность на ватты, необходимо преобразовать мощность (л.с.) в электрический эквивалент посредством ее эквивалента (746 ватт). (В метрической системе ватт или киловатт является мерой выходной и входной мощности, поскольку используются разные единицы крутящего момента.)

Входная мощность всегда должна превышать выходную мощность, разница заключается в потерях внутренней энергии в двигателе. Таким образом, выход, деленный на вход, никогда не может быть равен или превышать единицу (100%).

FP = Коэффициент мощности — это разница между полной мощностью S (ВА) и фактической или активной мощностью P (Вт), этот коэффициент можно определить по формуле: P (Вт) / S (ВА) = На практике ФП коэффициент мощности определяется характеристиками оборудования.

HP = Лошадиная сила, также называемая «лошадиной силой» — поскольку это мера мощности, а не силы — в английском языке «лошадиная сила» — это название нескольких единиц измерения мощности, используемых в англо-саксонской системе.Он обозначается как «л.с.», «л.с.» или «л.с.» английского термина «лошадиная сила» — выражения, которое было придумано Джеймсом Ваттом в 1782 году для сравнения мощности паровых двигателей с мощностью тягловых лошадей. Позже он был расширен, чтобы включить выходную мощность других типов поршневых двигателей, а также турбин, электродвигателей и других типов оборудования.

Iac = Переменный ток описывается как поток нагрузки, который периодически меняет направление, в результате чего уровень напряжения также меняется на противоположный вместе с током.Переменный ток переменного тока используется для питания домов, офисных зданий, магазинов и т. Д. Эту форму электроэнергии потребители обычно используют при подключении кухонных приборов, телевизоров и электроприборов к электрической розетке.

Idc = Под постоянным током понимается непрерывный поток электрического заряда через проводник между двумя точками с разным потенциалом, который не меняет направление со временем. Постоянный ток вырабатывается такими источниками, как батареи, источники питания, термопары, солнечные элементы или динамо-машины.Постоянный ток может течь в проводнике, таком как провод, но он также может течь через полупроводники, изоляторы или даже через вакуум, например, в электронных или ионных пучках. Постоянный ток используется для зарядки аккумуляторов и в качестве источника питания для электронных систем.

Вольт = Вольт — это единица измерения разности электрических потенциалов (напряжения). Volt назван в честь итальянского физика Алессандро Вольта (1745-1827), который изобрел гальваническую батарею, возможно, первую химическую батарею.

Типичный коэффициент мощности двигателя: 1/2 нагрузка 9137 1800 Ссылка // Коэффициент мощности в управлении электроэнергией-А. Bhatia, B.E.-2012
Требования к коэффициенту мощности для электронных нагрузок в Калифорнии — Брайан Фортенбери, 2014
http: // www.engineeringtoolbox.com

NEMA Design B Электродвигатели КПД

Электрические двигатели, сконструированные в соответствии с NEMA Design B, должны соответствовать приведенным ниже КПД:

Мощность Скорость Коэффициент мощности
(л.с.) (об / мин)
  • 7
  • 3/4 нагрузки полная нагрузка
    0-5 1800 0,72 0,82 0,84
    5-20 1800 074 0,84 0,86
    20-100 1800 0,79 0,86 0,89
    100-300 1800 0,81 0,81
    Мощность
    (л.с.)
    Минимальный номинальный КПД 1)
    1-4 78,8
    5-9 84,0
    10-19 85,5
    20-49 88.5
    50-99 90,2
    100-124 91,7
    > 125 92,4

    1) NEMA Design Об / мин. Двигатели с защитой от капель (ODP) или полностью закрытым вентилятором (TEFC) мощностью 1 л.с. и больше, которые работают более 500 часов в год.

    Квалификационный калькулятор КПД для электродвигателя: [kkstarratings]

    Формулы и расчеты двигателя, Указатель полезных инструментов

    Формулы и расчеты, приведенные ниже, должны использоваться только для целей оценки.Заказчик обязан указать требуемые мощность двигателя, крутящий момент и время разгона для своего приложения. Продавец может пожелать проверить указанные заказчиком значения с помощью формул в этом разделе, однако, если есть серьезные сомнения относительно приложения заказчика или если заказчик требует гарантированной производительности двигателя / приложения, заказчик должен нанять инженера-электрика для точного определения расчеты.

    Чтобы получить подробное описание каждой формулы, щелкните ссылки ниже, чтобы перейти к ней.


    Практические правила (приближение)

    Механические формулы
    Крутящий момент, фунт-фут. = л.
    5250

    преобразование температуры
    ° C = (° F — 32) x 5/9

    ° F = (° C x 9/5) + 32 Частота и количество полюсов электродвигателей переменного тока

    преобразование температуры Формула

    R = 1.8 K + 0,6
    .K = 5 / 9 (R-0,6)
    F = 1,8C + 32
    C = 5 / 9 (F-32)
    R = F + 460
    .K = C + 273

    C = Цельсий, градусы
    F = Фаренгейт, градусы
    .K = Кельвин
    R = Ранкин, градусы
    90
    по C Темп. к F
    -17,8
    10,8
    37,8
    65,6
    93,3
    0
    50
    100
    150
    200
    32,0
    122,0
    212,0
    302,04 392,0 901,9 901,9
    176,7
    204,4
    232,2
    250
    300
    350
    400
    450
    482,0
    572,0
    662,0
    752,0
    842,0
    260,0
    287,7
    315.6
    343,3
    500
    550
    600
    650
    932,0
    1022,0
    1112,0
    1202,0
    по C Темп. по F
    371,1
    398,9
    426,7
    454,4
    482,2
    700
    750
    800
    850
    900
    1292,0
    1382,0
    1472,072 1562,090
    537,8
    565,6
    593,3
    621,1
    950
    1000
    1050
    1100
    1150
    1742,0
    1832,0
    1922,0
    2012,0
    2102,0
    648,9
    676,7
    704
    648,9
    676,7
    704
  • 1350
  • 2192,0
    2282,0
    2372,0
    2462,0
    по C Темп. по телефону
    760.0
    787,8
    815,6
    843,3
    872,1
    1400
    1450
    1500
    1550
    1600
    2552,0
    2642,0
    2732,0
    2822,0
    2912,0
    1072
    927,7
    955,4 98421 899,9
    927,7
    955,4 1750
    1800
    1850
    3002,0
    3092,0
    3182,0
    3272,0
    3362,0
    1038,8
    1066,6
    1094,3
    1121,1
    1900
    1950
    2000
    2050
    3452.0
    3542.0
    3632.0
    3722.0

    Высокая инерционная нагрузка
    t = WK 2 x об / мин

    308 x T ср.
    —— WK 2 = инерция в фунт-фут. 2
    t = время разгона в сек.
    T = Av. ускоряющий момент фунт-фут.
    T = WK 2 x об / мин

    308 xt
    инерция, отраженная двигателю = инерция нагрузки Об / мин нагрузки

    Об / мин двигателя
    40
    n s = 120 xf

    P
    —— f = P xn s

    120
    — — P = 120 xf

    n s

    Взаимосвязь между мощностью, крутящим моментом и скоростью
    77 —— 90
    л.с. = T xn

    5250
    T = 5250 л. С.

    n
    —— n = 5250 л.

    n s
    x 100
    -31.0-15,99
    Код кВА / л. С.
    Код кВА / л. кВА / л.с.
    A 0-3.14
    F 5,0 -5,59
    L 9,0-9,99
    S 16,0-17,99
    B 5,6 -6,29
    M 10,0-11,19
    T 18,0-19,99
    C 3,55-3,99

    3-7,09
    N 11,2-12,49
    U 20,0-22,39
    D 4,0 -4,49


    P 12,5-13,99
    V 22,4 и более поздних версий
    E 4,5 -4,99
    K 8,0 -8,9977




    Символы
    0 частота в циклах в секунду (CPS) 9 0677 EFF
    I = ток в амперах
    E 9013 вольт40 напряжение = мощность в киловаттах
    кВА = полная мощность в киловольт-амперах
    л.с. скорость в оборотах в минуту (об / мин)
    нс = синхронная скорость в оборотах в минуту (об / мин)
    P = количество полюсов
    =
    T = крутящий момент в фунт-футах
    = КПД в десятичном виде
    PF = Коэффициент мощности в десятичном формате

    Эквивалентная инерция

    В механических системах все вращающиеся части обычно не работают с одинаковой скоростью .Таким образом, нам нужно определить «эквивалентную инерцию» каждой движущейся части при определенной скорости первичного двигателя.

    Общий эквивалент WK 2 для системы представляет собой сумму WK 2 каждой части, относящуюся к скорости первичного двигателя.

    Уравнение говорит:


    WK 2 EQ = WK 2 часть N часть

    9014

    Это уравнение становится общим знаменателем, на котором могут основываться другие вычисления.Для устройств с регулируемой скоростью инерция сначала должна быть рассчитана на низкой скорости.

    Давайте посмотрим на простую систему, которая имеет первичный двигатель (PM), редуктор и нагрузку.

    WK 2 = 100 фунт-фут. 2
    WK 2 = 900 фунт-фут. 2
    (вид на выходном валу)

    WK 2 = 27000 фунт-фут. 2

    Формула утверждает, что эквивалент системы WK 2 равен сумме WK 2 частей при оборотах первичного двигателя, или в данном случае:

    Примечание: Обороты редуктора = Обороты нагрузки

    Эквивалент WK 2 равен WK 2 первичного двигателя плюс WK 2 нагрузки.Это равно WK 2 первичного двигателя, плюс WK 2 времен редуктора (1/3) 2 , плюс WK 2 времени загрузки (1/3) 2 .

    Это отношение редуктора к ведомой нагрузке выражается формулой, приведенной ранее:


    WK 2 EQ = WK 2 часть часть N

    N первичный двигатель
    2

    Другими словами, когда деталь вращается со скоростью (N), отличной от первичного двигателя, WK 2 EQ равен WK 2 квадрата передаточного отношения детали.

    В этом примере результат может быть получен следующим образом:

    Эквивалент WK 2 равен:

    Наконец:


    WK 2 EQ = фунт-фут. 2 pm + 100 фунт-футов 2 Красный + 3000 фунт-футов 2 Нагрузка

    WK 2 EQ = 3200 фунт-фут. 2

    Общий эквивалент WK 2 — это WK 2 , видимый тягачом на его скорости.


    Электрические формулы (Дополнительные формулы см. В разделе «Формулы»)

    I = Амперы; E = Вольт; Eff = Эффективность; pf = коэффициент мощности; кВА = Киловольт-амперы; кВт = киловатт


    Ток заторможенного ротора (IL) из данных паспортной таблички
    Трехфазный: I L = 577 x л.с. x кВА / л.с.

    E
    См .: диаграмму кВА40 / л.с.
    Однофазный: I L = 1000 x HP x kVA / HP

    E
    Название двигателя:
    HP Название двигателя: , 3 фазы, 460 Вольт, код F.
    I L = 577 x 10 x (5,6 или 6,29)

    460

    21 902
    Влияние линейного напряжения на ток заторможенного ротора (IL) (прибл.)
    I L = 70,25 или 78,9 Ампер (возможный диапазон)
    I L @ E LINE = I L @ E N / P x E LINE

    E N / P
    ПРИМЕР: Двигатель имеет ток заторможенного ротора (пусковой ток 100 ампер (I L ) при номинальном напряжении N на паспортной табличке 903 (E 903) / P ) 230 вольт.

    Что такое I L с напряжением 245 В (E LINE ), приложенным к этому двигателю?

    I L при 245 В. = 100 x 254 В / 230 В

    I L при 245 В. = 107 ампер


    Основные расчеты мощности в лошадиных силах

    Лошадиная сила — это работа, выполненная в единицу времени. Один HP равен 33 000 фут-фунт работы в минуту. Когда источник крутящего момента (T) выполняет работу по вращению (M) вокруг оси, выполняемая работа составляет:


    радиус x 2 x об / мин x фунт.или 2 TM

    При вращении со скоростью N об / мин доставленное HP составляет:


    HP = радиус x 2 x об / мин x фунт

    33000
    = TN

    5250

    Для вертикального или подъемного движения:


    л.с.
    W = общий вес в фунтах.поднимается двигателем
    S = скорость подъема в футах в минуту
    E = общий механический КПД подъемника и зубчатой ​​передачи. Для оценки
    E = 0,65 для эфф. подъемника и связанного механизма.

    Для вентиляторов и нагнетателей:


    л.с.

    Или


    л.с. = Объем (куб. Фут / мин) x давление (фунт.На квадратный фут)

    3300 x Механический КПД вентилятора

    Или


    HP = Объем (куб. )

    229 x Механический КПД вентилятора

    Для оценки эфф. вентилятора или нагнетателя можно принять равным 0,65.

    Примечание: Объем воздуха (куб. Фут / мин) напрямую зависит от скорости вентилятора.Развиваемое давление зависит от скорости вращения вентилятора в квадрате. Hp зависит от скорости вращения вентилятора.

    Для насосов:


    л. Или


    л. где общий динамический напор = статический напор + напор трения

    Для оценки КПД насоса можно принять равным 0.70.


    Ускоряющий момент

    Эквивалентная инерция привода с регулируемой скоростью указывает энергию, необходимую для поддержания работы системы. Однако запуск или ускорение системы требует дополнительной энергии.

    Крутящий момент, необходимый для ускорения кузова, равен WK 2 кузова, умноженному на изменение оборотов в минуту, деленному на 308-кратный интервал (в секундах), в котором происходит это ускорение:


    МОМЕНТ УСКОРЕНИЯ = WK 2 Н (фунт-сила)фут.)

    308 т

    Где:


    90bs327 W 90bs327 W39 Invertia
    N = Изменение оборотов в минуту
    K = Радиус вращения
    t = Время ускорения (сек.)
    WK 2 = 901 = Константа пропорциональности

    Или


    T Acc = WK 2 9021 902 902 902 902 902 (308) выводится путем преобразования линейного движения в угловое с учетом ускорения свободного падения.Если, например, у нас есть просто первичный двигатель и груз без регулировки скорости:

    Пример 1

    WK 2 = 200 фунт-фут. 2
    WK 2 = 800 фунт-фут. 2

    WK 2 EQ определяется, как и раньше:


    WK 2 EQ = WK 2 W pm нагрузки
    WK 2 EQ = 200 + 800
    WK 2 EQ = 1000 футов.фунт 2

    Если мы хотим разогнать эту нагрузку до 1800 об / мин за 1 минуту, доступно достаточно информации, чтобы определить величину крутящего момента, необходимого для ускорения нагрузки.

    В формуле указано:


    T Acc = WK 2 EQ N

    308t
    или или 1000 x32 900 1800000

    18480

    Другими словами, 97.4 фунт-фут. крутящего момента необходимо приложить, чтобы эта нагрузка вращалась со скоростью 1800 об / мин за 60 секунд.

    Обратите внимание, что T Acc — это среднее значение ускоряющего момента во время рассматриваемого изменения скорости. Если требуется более точный расчет, может оказаться полезным следующий пример.

    Пример 2

    Время, необходимое для разгона асинхронного двигателя с одной скорости на другую, можно найти из следующего уравнения:


    t = WR 2 x изменение оборотов в минуту

    308 x T

    Где:


    T = Среднее значение ускоряющего момента во время рассматриваемого изменения скорости.
    t = Время, необходимое двигателю для разгона от начальной до конечной скорости.
    WR 2 = Эффект маховика или момент инерции для ведомого оборудования плюс ротор двигателя в фунто-футах. 2 (WR 2 ведомого оборудования должно относиться к валу двигателя).

    Теперь мы рассмотрим применение приведенной выше формулы на примере.На рисунке A показаны кривые скорость-крутящий момент асинхронного двигателя с короткозамкнутым ротором и вентилятора, который он приводит в действие. При любой скорости нагнетателя разница между крутящим моментом, который двигатель может передать на валу, и крутящим моментом, необходимым для нагнетателя, представляет собой крутящий момент, доступный для ускорения. Ссылка на рисунок A показывает, что ускоряющий момент может сильно изменяться в зависимости от скорости. Когда кривые скорость-крутящий момент для двигателя и нагнетателя пересекаются, крутящий момент отсутствует для ускорения. Затем двигатель приводит в движение вентилятор с постоянной скоростью и просто передает крутящий момент, необходимый для нагрузки.

    Для определения общего времени, необходимого для разгона двигателя и нагнетателя, область между кривой «скорость-крутящий момент» двигателя и кривой «скорость-крутящий момент» вентилятора разделена на полосы, концы которых приблизительно равны прямым линиям. Каждая полоса соответствует приросту скорости, происходящему в течение определенного интервала времени. Сплошные горизонтальные линии на рисунке А представляют границы полос; длины пунктирных линий — средние ускоряющие моменты для выбранных интервалов скорости.Чтобы рассчитать общее время разгона двигателя и воздуходувки с прямым подключением, необходимо найти время, необходимое для разгона двигателя от начала одного интервала скорости до начала следующего интервала, и сложить инкрементальные времена для все интервалы, чтобы получить общее время разгона. Если WR 2 двигателя, чья кривая скорость-крутящий момент приведена на рисунке A, составляет 3,26 фут-фунт. 2 и WR 2 воздуходувки, относящейся к валу двигателя, имеют длину 15 футов.фунтов 2 , общий WR 2 составляет:


    15 + 3,26 = 18,26 фут-фунт. 2 ,

    И общее время разгона составляет:

    или

    Рисунок A
    Кривые, используемые для определения времени, необходимого для разгона асинхронного двигателя и нагнетателя

    1 = 46 фунт-фут.
    Ускоряющие моменты
    T 4 = 43,8 фунт-фут. Т 7 = 32.8 фунт-фут.
    T 2 = 48 фунт-фут. T 5 = 39,8 фунт-фут. T 8 = 29,6 фунт-фут.
    T 3 = 47 фунт-фут. T 6 = 36,4 фунт-фут. T 9 = 11 фунт-фут.




    Рабочие циклы

    Заказы на продажу часто вводятся с пометкой под такими специальными функциями, как:

    —— «Подходит для 10 пусков в час»
    или
    —- » Подходит для 3 реверсов в минуту «
    или
    ——» Мотор, способный развивать скорость до 350 фунтов.ft. 2 «
    или
    ——» Подходит для 5 пусков и остановок в час «

    Заказы с такими примечаниями не могут быть обработаны по двум причинам.

    1. Соответствующая группа продуктов должна быть проконсультировались, чтобы увидеть, доступна ли конструкция, которая будет выполнять требуемый рабочий цикл, и, если нет, чтобы определить, подпадает ли требуемый тип конструкции под нашу нынешнюю линейку продуктов. расчет цикла.Для проверки рабочего цикла информация о рабочем цикле должна включать следующее:
      1. Инерция, отраженная на валу двигателя.
      2. Моментная нагрузка на двигатель на всех этапах рабочего цикла, включая пуски, время работы, остановки или реверсирование.
      3. Точное время каждой части цикла.
      4. Информация о том, как выполняется каждый шаг цикла. Например, остановка может осуществляться выбегом, механическим торможением, динамическим торможением постоянным током или закупоркой.Обратное движение может быть выполнено путем заглушки, или двигатель может быть остановлен каким-либо образом, а затем снова запущен в противоположном направлении.
      5. Когда двигатель многоскоростной, цикл для каждой скорости должен быть полностью определен, включая метод переключения с одной скорости на другую.
      6. Любые особые механические проблемы, особенности или ограничения.

    Получение этой информации и проверка группы продуктов перед вводом заказа могут сэкономить много времени, средств и переписки.

    Рабочий цикл относится к подробному описанию рабочего цикла, который повторяется в определенный период времени. Этот цикл может включать в себя частые запуски, остановки, реверсирование или остановку. Эти характеристики обычно используются в процессах периодического действия и могут включать в себя барабанные бочки, определенные краны, лопаты и драглайны, демпферы, приводы для позиционирования затвора или плуга, подъемные мосты, грузовые лифты и подъемники для персонала, прессовые экстракторы, некоторые питатели, прессы и т.д. определенные типы, подъемники, индексаторы, сверлильные станки, машины для шлакоблоков, сиденья для ключей, тестомесильные машины, тянущие машины, шейкеры (литейные или автомобильные), обжимные и стиральные машины, а также определенные грузовые и легковые автомобили.Список не исчерпывающий. Приводы для этих нагрузок должны быть способны поглощать тепло, выделяемое во время рабочих циклов. Соответствующая теплоемкость потребуется в муфтах скольжения, сцеплениях или двигателях для ускорения или остановки этих приводов или для выдерживания остановок. Это произведение скорости скольжения и крутящего момента, воспринимаемого нагрузкой в ​​единицу времени, которое выделяет тепло в этих компонентах привода. Все события, происходящие во время рабочего цикла, генерируют тепло, которое компоненты привода должны рассеивать.

    Из-за сложности расчетов рабочего цикла и обширных технических данных для конкретной конструкции двигателя и номинальных характеристик, необходимых для расчетов, заказчику необходимо обратиться к инженеру-электрику для определения размера двигателя с приложением рабочего цикла.

    eCalc — надежное моделирование электропривода

    новости

    — 13 октября

    28.09.21 — База данных электромобилей обновлено: BYD Dolphin, Seat Born

    28.09.21 — База данных двигателей обновлено: SunnySky X3530 Series

    16.09.21 — новая публикация: как использовать w & b Calc (немецкий)

    12.09.21 — База данных двигателей обновлено: Emax Eco, Turnigy C50xx, SK8, Т-Мотор У13ИИ

    28.08.21 — perf Calc 1.1: — анализ многомоторных летно-технических характеристик самолета

    27.08.21 — База данных двигателей обновлено: несколько производителей

    17.07.21 — База данных двигателей обновлено: T-Motor P80 Pro Series, Turnigy G90

    21.07.19 — perf Расчет 1.01: — исправлен перевод английских единиц, исправлена ​​ошибка для класса AC оценка

    30.06.21 — База данных двигателей обновлено: T-Motor AM480, Солнечное небо X3120

    24.06.21 — Обновление ESC : EP Продукция Aer-Series добавлена ​​

    23.06.21 — Большой страх Проект с использованием eCalc.См. Стендовые испытания …

    09.05.21 — База данных двигателей обновлено: Surpass X35xx, X41xx, MT22xx, iFlight XING2, Фиксированное крыло SunnySky

    31.05.21 — База двигателей: Tunigy SK3-5055-280, превзойти X11xx и X14xx, Flywoo NIN 2303,5

    18.05.21 — База двигателей: Leomotion и Dualsky обновили

    12.05.21 — w & b Расчет 1.0: все новый Расчет веса и баланса для оценки фактического CG и CG исправление

    11.05.21 — База двигателей: добавлены Leomotion L4031 F5B Competition, Eachine, T-Motor V&U

    5/6/21 — 200 миллионов установок рассчитано

    12.04.21 — e Calc Версия 7.25 — Что нового?

    • Сервисное обновление
    • опора Calc, вентилятор Расчет: Время ESC можно изменить, перетащите на основе размаха крыльев в качестве справки площадь
    • perf Расчет: Версия 1.0 — введение анализа характеристик полета инструмент
    Если у вас возникли проблемы с запуском новой версии, продолжайте согласно Общему Порядку здесь…

    26.11.20 — 10-миллионный посетитель — вау!

    Измерение и анализ мощности электродвигателя

    Билл Гэтеридж, менеджер по продукции, Power Measuring Instruments, Yokogawa Corporation of America

    Часть 1: Основные измерения электрической мощности

    Электродвигатели — это электромеханические машины, преобразующие электрическую энергию в механическую. Несмотря на различия в размере и типе, все электродвигатели работают примерно одинаково: электрический ток, протекающий через катушку с проволокой в ​​магнитном поле, создает силу, которая вращает катушку, создавая крутящий момент.

    Понимание выработки электроэнергии, потерь мощности и различных типов измеряемой мощности может быть пугающим, поэтому давайте начнем с обзора основных измерений электрической и механической мощности.

    Что такое мощность? В самом простом виде мощность — это работа, выполняемая в течение определенного периода времени. В двигателе мощность передается на нагрузку путем преобразования электрической энергии в соответствии со следующими законами науки.

    В электрических системах напряжение — это сила, необходимая для перемещения электронов.Ток — это скорость потока заряда в секунду через материал, к которому приложено определенное напряжение. Умножив напряжение на соответствующий ток, можно определить мощность.

    P = V * I, где мощность (P) в ваттах, напряжение (V) в вольтах, а ток (I) в амперах

    Ватт (Вт) — единица мощности, определяемая как один джоуль в секунду. Для источника постоянного тока вычисление представляет собой просто умножение напряжения на ток: W = V x A. Однако определение мощности в ваттах для источника переменного тока должно включать коэффициент мощности (PF), поэтому W = V x A x PF для переменного тока. системы.

    Коэффициент мощности представляет собой безразмерное отношение в диапазоне от -1 до 1 и представляет собой количество реальной мощности, выполняемой при работе с нагрузкой. При коэффициенте мощности меньше единицы, что почти всегда имеет место, будут потери в реальной мощности. Это связано с тем, что напряжение и ток цепи переменного тока имеют синусоидальную природу, а амплитуда тока и напряжения цепи переменного тока постоянно смещается и обычно не идеально совмещена.

    Поскольку мощность равна напряжению, умноженному на ток (P = V * I), мощность является максимальной, когда напряжение и ток выстраиваются вместе, так что пики и нулевые точки на сигналах напряжения и тока возникают одновременно.Это типично для простой резистивной нагрузки. В этой ситуации две формы сигналов находятся «в фазе» друг с другом, а коэффициент мощности будет равен 1. Это редкий случай, поскольку почти все нагрузки не просто обладают идеальным сопротивлением.

    Говорят, что два сигнала «не в фазе» или «сдвинуты по фазе», если два сигнала не коррелируют от точки к точке. Это может быть вызвано индуктивными или нелинейными нагрузками. В этой ситуации коэффициент мощности будет меньше 1, и реальная мощность будет меньше.

    Из-за возможных колебаний тока и напряжения в цепях переменного тока мощность измеряется несколькими способами.

    Реальная или истинная мощность — это фактическая мощность, используемая в цепи, и измеряется в ваттах. В цифровых анализаторах мощности используются методы оцифровки сигналов входящего напряжения и тока для расчета истинной мощности в соответствии с методом, показанным на Рисунке 1.

    В этом примере мгновенное напряжение умножается на мгновенный ток (I), а затем интегрируется за определенный период времени (t).Истинный расчет мощности будет работать с любым типом сигнала независимо от коэффициента мощности (рисунок 2).

    Гармоники создают дополнительную сложность. Несмотря на то, что электрическая сеть номинально работает на частоте 60 Гц, существует много других частот или гармоник, которые потенциально могут существовать в цепи, а также может присутствовать составляющая постоянного или постоянного тока. Общая мощность рассчитывается путем рассмотрения и суммирования всего содержимого, включая гармоники.

    Методы расчета, показанные на Рисунке 2, используются для обеспечения истинного измерения мощности и истинных измерений среднеквадратичного значения для любого типа сигнала, включая все гармонические составляющие, вплоть до полосы пропускания прибора.

    Измерение мощности

    Далее мы посмотрим, как на самом деле измерить мощность в данной цепи. Ваттметр — это прибор, который использует напряжение и ток для определения мощности в ваттах. Теория Блонделя утверждает, что общая мощность измеряется минимум на один ваттметр меньше, чем количество проводов. Например, однофазная двухпроводная схема будет использовать один ваттметр с одним измерением напряжения и одним измерением тока.

    Однофазная трехпроводная двухфазная система часто встречается в проводке общего корпуса.Эти системы требуют двух ваттметров для измерения мощности.

    В большинстве промышленных двигателей используются трехфазные трехпроводные схемы, которые измеряются двумя ваттметрами. Таким же образом потребуются три ваттметра для трехфазной четырехпроводной схемы, при этом четвертый провод является нейтралью.

    На рисунке 3 показана трехфазная трехпроводная система с нагрузкой, подключенной с использованием метода измерения двух ваттметров. Измеряются два линейных напряжения и два связанных фазных тока (с помощью ваттметров Wa и Wc).Четыре измерения (линейный и фазный ток и напряжение) используются для достижения общего измерения.

    Поскольку этот метод требует контроля только двух токов и двух напряжений вместо трех, установка и конфигурация проводки упрощаются. Он также может точно измерять мощность в сбалансированной или несбалансированной системе. Его гибкость и низкая стоимость установки делают его подходящим для производственных испытаний, при которых требуется измерить только мощность или несколько других параметров.

    Для инженерных и научно-исследовательских работ лучше всего подходит трехфазный трехпроводной метод с тремя ваттметрами, поскольку он предоставляет дополнительную информацию, которая может использоваться для балансировки нагрузки и определения истинного коэффициента мощности. В этом методе используются все три напряжения и все три тока. Измеряются все три напряжения (от a до b, от b до c, от c до a), и контролируются все три тока.

    Рис. 4. При проектировании двигателей и приводов ключевым моментом является просмотр всех трех значений напряжения и тока, что делает метод трех ваттметров на рисунке выше лучшим выбором.

    Измерение коэффициента мощности

    При определении коэффициента мощности для синусоидальных волн коэффициент мощности равен косинусу угла между напряжением и током (Cos Ø). Это определяется как коэффициент мощности «смещения» и подходит только для синусоидальных волн. Для всех других форм сигналов (несинусоидальных волн) коэффициент мощности определяется как активная мощность в ваттах, деленная на полную мощность в напряжении-амперах. Это называется «истинным» коэффициентом мощности и может использоваться для всех форм сигналов, как синусоидальных, так и несинусоидальных.

    Однако, если нагрузка несимметрична (фазные токи разные), это может привести к ошибке при вычислении коэффициента мощности, поскольку в расчете используются только два измерения ВА. Два VA усредняются, потому что предполагается, что они равны; однако, если это не так, будет получен ошибочный результат.

    Следовательно, лучше всего использовать метод трех ваттметров для несимметричных нагрузок, поскольку он обеспечит правильный расчет коэффициента мощности как для сбалансированных, так и для несбалансированных нагрузок.

    Анализаторы мощности

    от Yokogawa и некоторых других компаний используют описанный выше метод, который называется методом подключения 3V-3A (три напряжения и три тока). Это лучший метод для инженерных и проектных работ, поскольку он обеспечивает правильные измерения общего коэффициента мощности и ВА для симметричной или несимметричной трехпроводной системы.

    Основные измерения механической мощности

    В электродвигателе механическая мощность определяется как скорость, умноженная на крутящий момент.Механическая мощность обычно определяется как киловатты (кВт) или лошадиные силы (л.с.), причем один ватт равен одному джоулю в секунду или одному ньютон-метру в секунду.

    Лошадиная сила — это работа, выполняемая за единицу времени. Один л.с. равен 33 000 фунт-футов в минуту. Преобразование л.с. в ватт достигается с использованием этого соотношения: 1 л.с. = 745,69987 Вт. Однако преобразование часто упрощается, используя 746 Вт на л.с. (Рисунок 9).

    Для асинхронных двигателей переменного тока фактическая скорость вращения ротора — это скорость вращения вала (ротора), обычно измеряемая с помощью тахометра.Синхронная скорость — это скорость вращения магнитного поля статора, рассчитанная как 120-кратная частота сети, деленная на количество полюсов в двигателе. Синхронная скорость — это теоретическая максимальная скорость двигателя, но ротор всегда будет вращаться немного медленнее, чем синхронная скорость из-за потерь, и эта разница скоростей определяется как скольжение.

    Скольжение — это разница в скорости ротора и синхронной скорости. Для определения процента скольжения используется простой процентный расчет синхронной скорости минус скорость ротора, деленная на синхронную скорость.

    КПД можно выразить в простейшей форме как отношение выходной мощности к общей входной мощности или КПД = выходная мощность / входная мощность. Для двигателя с электрическим приводом выходная мощность является механической, в то время как входная мощность является электрической, поэтому уравнение эффективности выглядит следующим образом: КПД = механическая мощность / входная электрическая мощность.

    Часть 2: Выбор приборов для измерения и анализа мощности электродвигателя

    Различные ассоциации разработали стандарты тестирования, которые определяют точность приборов, необходимых для соответствия их стандарту: IEEE 112 2004, NVLAP 160 и CSA C390.Все три включают стандарты для измерения входной мощности, напряжения и тока, датчиков крутящего момента, скорости двигателя и т. Д. Трансформаторы тока (CT) и трансформаторы напряжения (PT) являются одними из основных контрольно-измерительных приборов, используемых для выполнения этих измерений.

    Соответствующие стандарты очень похожи, за некоторыми исключениями. Допустимые инструментальные ошибки для стандартов IEEE 112 2004 и NVLAP 150 идентичны; однако CSA C390 2006 имеет некоторые отличия в отношении температуры и показаний.

    Например, требования к входной мощности для CSA C390 2006 составляют ± 0,5% от показания и должны включать ошибки CT и PT, тогда как для IEEE 112 2004 и NVLAP 150 требуется только ± 0,5% от полной шкалы.

    Датчики тока

    Датчики тока обычно требуются для тестирования, потому что сильный ток не может быть подан непосредственно в измерительное оборудование. Существует множество датчиков, подходящих для конкретных приложений. Накладные датчики могут использоваться с анализаторами мощности.Также можно использовать щупы для осциллографа, но при их использовании следует соблюдать осторожность, чтобы убедиться, что прибор не подвергается воздействию высоких токов.

    Для трансформаторов тока подводящий провод может быть подключен через окно (трансформаторы тока обычно имеют форму пончика или продолговатую, с отверстием или внутренней частью, называемыми окном), или слаботочные соединения могут быть выполнены с клеммами в верхней части устройство. Шунты обычно используются для приложений постоянного тока, но не переменного тока или искаженных частот, хотя их можно использовать для синхронных двигателей с частотой до нескольких сотен Гц.Доступны специализированные трансформаторы тока, которые хорошо работают на высоких частотах, которые чаще встречаются в осветительных приборах, а не в двигателях и приводах.

    Yokogawa вместе с LEM Instruments разработали уникальную систему трансформаторов тока, которая обеспечивает высокую точность в диапазоне от постоянного тока до кГц. Это трансформатор активного типа, который использует блок кондиционирования источника питания и обеспечивает точность приблизительно от 0,05 до 0,02% от показаний. Этот тип системы трансформатора тока обеспечивает очень высокую точность измерений, особенно для частотно-регулируемых приводов, которая может изменяться от 0 Гц до рабочей скорости подключенного двигателя.

    Трансформаторы напряжения просто преобразуют напряжение с одного уровня на другой. В измерительных приложениях иногда требуются понижающие трансформаторы для снижения напряжения, подаваемого на измерительный прибор, хотя многие приборы могут работать с относительно высокими напряжениями и не требуют понижающего трансформатора.

    Измерительные трансформаторы обычно представляют собой комбинацию трансформатора тока и трансформатора напряжения и могут уменьшить количество требуемых преобразователей в некоторых измерительных приложениях.

    Рекомендации по выбору и меры предосторожности

    При принятии решения, какое устройство использовать, первым вопросом является частотный диапазон измеряемых параметров. Для синусоидальных волн постоянного тока можно использовать шунты постоянного тока, которые обеспечивают высокую точность и простую установку. Для приложений переменного и постоянного тока можно использовать эффект Холла или измерительный трансформатор активного типа. Технология эффекта Холла имеет более низкий уровень точности, в то время как активный тип обеспечивает большую точность. Различные измерительные трансформаторы могут работать на высоких частотах 30 Гц и более, но их нельзя использовать для постоянного тока.

    Следующее соображение — требуемый уровень точности. Для измерительного трансформатора это обычно указывается как точность передаточного числа витков. Фазовый сдвиг — еще один важный фактор, и он очень важен, потому что многие трансформаторы предназначены только для измерения тока и не имеют компенсации фазового сдвига.

    Фазовый сдвиг в основном зависит от коэффициента мощности для измерения мощности и, таким образом, влияет на расчет мощности. Например, трансформатор тока, который имеет максимальный фазовый сдвиг 2 ° как часть его спецификации, внесет ошибку косинуса (2 °) или 0.06% ошибка. Пользователь должен решить, приемлем ли этот процент ошибок для приложения.

    Источником тока является трансформатор тока. Согласно закону Ома, напряжение (E) равно току через проводник (I), умноженному на сопротивление (R) проводника в единицах Ом. Открытие вторичной обмотки трансформатора тока фактически увеличивает сопротивление до бесконечности. Это означает, что внутренний ток насыщает катушку, напряжение также стремится к бесконечности, и устройство повреждается или разрушается.Что еще хуже, трансформатор тока со случайно разомкнутой вторичной обмоткой может серьезно травмировать рабочих.

    Никогда не размыкайте вторичную обмотку трансформатора тока. Пользователи могут получить серьезные травмы, а CT может быть поврежден или разрушен.

    Совместимость приборов

    Чтобы определить совместимость прибора, необходимо определить выходной уровень ТТ. Клеммные и другие трансформаторы тока обычно имеют выходную мощность, указанную в милливольтах на ампер, миллиампер на ампер или в амперах.Типичный выходной ток измерительного ТТ может быть указан в диапазоне от 0 до 5 ампер.

    Необходимо учитывать импеданс и нагрузку на ТТ, которые являются факторами, на которые влияет количество проводов, используемых для подключения ТТ к прибору. Эта проводка является сопротивлением или нагрузкой на прибор и, следовательно, может повлиять на измерения.

    Пробники

    при неправильном использовании могут создавать собственный набор проблем. Многие пробники осциллографа рассчитаны на работу с входным сопротивлением осциллографа, но диапазоны входного сопротивления анализатора мощности могут отличаться, и это необходимо учитывать.

    Еще один аспект, который следует учитывать при определении совместимости прибора, — это физические требования к устройству. Размер необходимо учитывать вместе с типом трансформатора тока, например, зажимного или кольцевого типа, каждый из которых будет лучше работать в конкретной ситуации.

    Пример системы трехфазного двигателя

    Теперь мы рассмотрим типичное трехфазное трехпроводное измерение мощности двигателя с использованием метода двух ваттметров. Теорема Блонделя утверждает, что количество требуемых измерительных элементов на единицу меньше количества токонесущих проводников.Это позволяет измерять мощность в трехфазной трехпроводной системе с использованием двух преобразователей при отсутствии нейтрали. Однако, когда есть нейтраль, используются три преобразователя, поскольку теперь имеется четыре проводника.

    Трехфазное питание используется в основном в коммерческих и промышленных средах, особенно для питания двигателей и приводов, поскольку более экономично эксплуатировать большое оборудование с трехфазным питанием. Для расчета трехфазной мощности напряжение каждой фазы умножается на ток каждой фазы, который затем умножается на коэффициент мощности, и это значение умножается на квадратный корень из трех (квадратный корень из 3 равен равно 1.732).

    Для измерения трехфазной мощности, потребляемой нагруженным двигателем, подключается анализатор мощности. На рисунке 1 показано типичное соединение с дисплеем, на котором показаны все три напряжения, все три тока, общая мощность и коэффициент мощности.

    На рисунке 2 показано трехфазное трехпроводное измерение мощности, выполненное с использованием метода двух ваттметров. Перечислены все три тока и напряжения, а также общие ВА и ВАР. Эта конфигурация может отображать отдельные показания мощности фазы, но их не следует использовать напрямую, потому что для этого метода измерения только полная мощность является точным показанием.

    В основном, при использовании метода двух ваттметров в трехпроводной трехфазной системе невозможно измерить мощность отдельной фазы или измерить какие-либо параметры фазы, включая коэффициенты мощности фазы. Однако можно измерить все параметры фазы.

    Для трехфазного двигателя с трехпроводным соединением в треугольник можно измерять линейные напряжения и токи отдельных фаз. Поскольку нейтрали нет, измерять фазные напряжения невозможно.Эта ситуация приводит к некоторым показаниям, которые необходимо пояснить.

    Глядя на отображение формы сигнала на Рисунке 3, можно увидеть линейные напряжения Vab, Vbc и Vac. Линейные напряжения, измеряемые прибором, в сбалансированной системе разнесены на 60 °. Токи — это фазные токи, которые приборы видят под углом 120 °.

    Другое представление этой системы изображено на векторной диаграмме Phasor, показанной на рисунке 4. Треугольник в верхней части этого рисунка показывает измерения межфазного напряжения черным цветом, значения фазного напряжения — красным (но это теоретические потому что нейтрали нет), а фазные токи синим цветом.

    В нижней части рисунка показаны разности фаз между напряжениями и токами. Опять же, обратите внимание, что линейные напряжения разнесены на 60 °, а фазные токи разнесены на 120 °. Еще одна деталь заключается в том, что если бы верхняя диаграмма представляла чисто резистивную нагрузку, то синие токи были бы синхронизированы с красными напряжениями. Однако при индуктивной нагрузке (например, в двигателе) синие векторы тока не совпадают по фазе с напряжениями.

    Кроме того, для этого метода измерения на нижней диаграмме векторы тока всегда будут иметь дополнительный сдвиг на 30 ° от напряжений.Суть в том, что правильно настроенный анализатор мощности учтет все эти условия.

    Что, если фазовая мощность и фазовый коэффициент мощности должны быть точно измерены в трехфазной трехпроводной системе, а не просто приблизительно? На рисунке 5 показан метод, позволяющий измерять фазовые параметры трехфазного трехпроводного двигателя путем создания плавающей нейтрали.

    Однако у этой техники есть ограничения. Он будет хорошо работать на входе асинхронного двигателя, синхронного двигателя или аналогичного двигателя без привода с регулируемой скоростью.Следует соблюдать осторожность при использовании этого метода в системе привода с регулируемой скоростью, поскольку высокочастотные искаженные формы сигналов и гармоники могут привести к несогласованным измерениям.

    Более того, метод плавающей нейтрали работает только для оборудования с сигналами синусоидального типа. С помощью привода с широтно-импульсной модуляцией (ШИМ) можно включить линейный фильтр 500 Гц (фильтр нижних частот), который затем позволит отображать показания для основной частоты, но не для общей частоты.

    Трехпроводные и четырехпроводные измерения мощности

    Важно понимать, что мощность будет считываться одинаково независимо от того, измерена ли она трехфазным трехпроводным или трехфазным четырехпроводным методом.Однако при трехфазном четырехпроводном соединении измеряемые значения напряжения представляют собой фазные напряжения от линии к нейтрали.

    Рисунок 6 — снимок экрана анализатора мощности, который показывает, насколько похожи показания мощности и коэффициента мощности для привода с ШИМ, работающего с двигателем, сравнивая трехфазный трехпроводной вход с фильтром 500 Гц с трехфазным четырехпроводным. вход с плавающей нейтралью.

    В альтернативном решении используется функция измерения дельты, которая есть в анализаторах мощности Yokogawa.Функция измерения дельты использует мгновенные измерения линейного напряжения и фазного тока для получения истинного межфазного напряжения, даже если фазы не сбалансированы. Это возможно благодаря вычислению векторной амплитуды внутри процессора. Эта функция также обеспечивает измерения фазной мощности в трехпроводной цепи. Решение для измерения дельты также обеспечивает нейтральный ток.

    Часть 3: Измерения электрической мощности для трехфазного двигателя переменного тока

    Полное тестирование системы привода и двигателя на основе ШИМ (широтно-импульсной модуляции) представляет собой трехэтапный процесс.Шаг 1 — это точное измерение входной и выходной мощности привода с регулируемой скоростью ШИМ для определения эффективности привода и потерь мощности. Шаг 2 — это точное измерение входной мощности двигателя, а шаг 3 — точное измерение механической мощности двигателя.

    Оптимальный метод — объединить все три шага с помощью одного анализатора мощности, чтобы исключить временной сдвиг. Это также обеспечивает отличные расчеты эффективности в едином программно-аппаратном решении.

    Рисунок 7: Этот снимок экрана анализатора мощности показывает, как функцию измерения дельты можно использовать для получения истинных показаний и мощности фазы, даже если фазы не сбалансированы.

    Некоторые анализаторы мощности имеют опцию двигателя, в которой сигналы скорости и момента могут быть интегрированы таким образом. Эти анализаторы мощности могут измерять электрическую мощность и механическую мощность и отправлять данные на ПК с запущенным программным обеспечением от оригинального производителя анализатора или заказным программным обеспечением от системного интегратора.

    Измерения привода ШИМ для двигателей переменного тока

    При использовании частотно-регулируемого привода с ШИМ для управления двигателем часто бывает необходимо измерить как входной, так и выходной сигнал частотно-регулируемого привода с помощью шестифазного анализатора мощности.Эта установка может не только измерять трехфазную мощность, она также может измерять постоянную или однофазную мощность. См. Рисунок 1.

    В зависимости от анализатора режим настройки будет выполняться в нормальном или среднеквадратичном режиме. Конфигурация проводки должна соответствовать применению, например, трехфазный вход и трехфазный выход.

    Любой линейный фильтр или фильтр нижних частот должны быть отключены, поскольку фильтрация затрудняет измерения. Однако фильтр пересечения нуля или частотный фильтр должен быть включен, потому что он будет фильтровать высокочастотный шум, чтобы можно было измерить основную частоту.Это измерение необходимо при отслеживании частоты привода.

    На рис. 2 показана форма выходного напряжения ШИМ с сильно искаженным напряжением, срезанными высокими частотами и с большим количеством шумов на токовой стороне, что затрудняет измерение. Высокочастотное переключение сигнала напряжения создает сильно искаженную форму волны с высоким содержанием гармоник. Частота варьируется от 0 Гц до рабочей скорости.

    Для такого зашумленного сигнала нужны специальные датчики тока для измерения.Для точных измерений мощности с ШИМ также необходимы анализаторы мощности с широкой полосой пропускания, способные измерять эти сложные сигналы.

    На рисунке 3 показан пример содержания гармоник напряжения на выходе ШИМ. Присутствуют частоты биений, а содержание гармоник напряжения превышает 500 порядков (примерно 30 кГц). Большая часть гармоник приходится на нижние частоты на токовой стороне.

    Проблемы измерения привода двигателя с ШИМ

    Напряжение инвертора обычно измеряется одним из двух способов.Можно использовать истинное среднеквадратичное измерение, которое включает полное содержание гармоник. Однако, поскольку основная форма волны — это в первую очередь то, что способствует крутящему моменту двигателя, можно выполнить и использовать более простые измерения. Для большинства приложений требуется только измерение основной формы волны.

    Существует два основных метода измерения основной амплитуды волны напряжения. Первый и самый простой — использовать фильтр нижних частот для удаления высоких частот. Если в анализаторе мощности есть этот фильтр, просто включите его.Правильная фильтрация даст среднеквадратичное значение напряжения основной частоты инвертора. Однако этот тип фильтрации не обеспечивает истинного измерения полной мощности, поэтому фильтрация — не самый требовательный метод.

    Второй метод — это метод измерения выпрямленного среднего, который выдает среднеквадратичное значение напряжения основной волны без фильтрации с использованием определения среднего значения напряжения, масштабированного до среднеквадратичного напряжения. Алгоритм выпрямленного среднего среднего за цикл обеспечит эквивалент основного напряжения, который будет очень близок к среднеквадратичному значению основной волны.

    С помощью этого метода можно измерить полную мощность, общий ток и напряжение основной гармоники.

    Измерение амплитуды основной волны с помощью гармонического анализа

    Функцию гармонического анализа можно использовать для определения истинного основного напряжения с помощью быстрого преобразования Фурье (БПФ) для определения амплитуды каждой гармонической составляющей, включая основную волну. Это дает точное измерение среднеквадратичного напряжения основной волны. Новейшие анализаторы мощности могут выполнять одновременные измерения истинных среднеквадратических значений и гармонических составляющих.

    На рисунке 4 Urms2 (среднеквадратичное значение на выходе ШИМ) является очень большим числом, а F2 (среднее значение основной гармоники) несколько ниже. Значение Urms3 (фильтрация основного) дает аналогичный результат. Наконец, U2 (1) получается из анализа гармоник или вычислений FFT основной гармоники. F2, Urms3 и U2 (1) дают очень близкие результаты, но расчет U2 (1) FFT считается наиболее точным.

    Инверторный ток обычно измеряется только одним способом, и это как истинный среднеквадратичный сигнал, потому что все гармонические токи вносят вклад в повышение температуры в двигателе и ответственны за него, поэтому все они должны быть измерены.

    Еще одно важное измерение связано с приводом В / Гц (Вольт-на-Герц). Привод с ШИМ должен поддерживать постоянное соотношение В / Гц по сравнению с рабочей скоростью двигателя. Анализатор мощности может рассчитывать В / Гц, используя среднеквадратичное значение или значение основного напряжения. Определенная пользователем математическая функция анализатора используется для построения уравнения для этого измерения.

    Измерение напряжения шины постоянного тока

    Напряжение на шине постоянного тока в ШИМ может быть измерено для проверки условий повышенного и пониженного напряжения.Это измерение может быть выполнено внутри привода на клеммах конденсаторной батареи. Однако более простой способ — использовать отображение формы сигнала анализатора мощности с измерением курсора.

    При отображении формы сигнала с помощью курсорного измерения необходимо убедиться, что курсор не находится прямо над небольшими выступами на дисплее. Вместо этого курсор должен находиться поперек осциллограммы, чтобы выполнить точное измерение. На рисунке 5 показано измерение напряжения ШИМ с высокоскоростным переключением.Курсор устанавливается для чтения значения, например 302,81 В.

    Измерения механической мощности

    Механическая мощность измеряется как скорость двигателя, умноженная на крутящий момент двигателя. На рынке существует множество различных типов датчиков скорости и крутящего момента, которые работают с различными двигателями. Хотя анализаторы Yokogawa могут взаимодействовать с большинством датчиков скорости и крутящего момента, все же целесообразно подтверждать совместимость в каждом случае. Эти датчики могут использоваться для предоставления информации о механических измерениях для расчета измерений механической мощности в анализаторе мощности.

    Многие датчики поставляются с интерфейсной электроникой для правильной обработки сигнала для работы с анализаторами мощности или другим оборудованием. Условный сигнал может быть аналоговым выходом или выходом последовательной связи, который идет на ПК и его прикладное системное программное обеспечение.

    Одним из вариантов измерения механической мощности является использование как датчика, так и соответствующего измерительного прибора от данного производителя. Такой подход имеет преимущества, поскольку датчики будут точно согласованы с прибором.Будут доступны показатели крутящего момента, скорости и мощности, и, вероятно, будут варианты подключения к ПК вместе с соответствующим прикладным программным обеспечением.

    Более интегрированный подход изображен на рисунке 6. В этой конфигурации выходные сигналы скорости и крутящего момента от измерительных приборов датчика подключаются непосредственно к входам скорости и крутящего момента анализатора мощности. Это дает большое преимущество, заключающееся в том, что измерения электрической и механической мощности могут оцениваться одновременно, а расчеты эффективности могут выполняться непрерывно.

    КПД двигателя, привода и системы

    КПД инвертора в простейшей форме рассчитывается как выходная мощность, деленная на входную мощность, и выражается в процентах. Один из методов, используемых для измерения входной и выходной мощности, заключается в простом подключении измерителей мощности на входе и выходе, при этом показания двух измерителей используются для расчета эффективности.

    Более комплексным методом является использование анализатора мощности с несколькими входами для одновременного измерения входа и выхода, как показано на рисунке 1.Это приводит к более точному расчету эффективности, поскольку в нем используется один анализатор мощности для устранения потенциальных ошибок, вызванных измерениями временного сдвига.

    С помощью внутренних математических вычислений, предоставляемых анализатором, можно настроить очень простое вычисление через меню для расчета потерь привода и эффективности привода.

    Какой метод мне следует использовать?

    IEEE 112 — это промышленный стандарт США для тестирования двигателей, в котором описаны несколько методов.На рисунке 7 показан дисплей анализатора мощности, поддерживающий «Метод А» стандарта IEEE 112, в котором вся механическая мощность делится на общую мощность, потребляемую двигателем. Стандарт определяет многие параметры, помимо измерений тока и напряжения двигателя, и предоставляет инструкции по проведению общепринятых испытаний многофазных и асинхронных двигателей и генераторов и составлению отчетов по ним. Кроме того, стандарт содержит 11 методов испытаний, чтобы определить, как проводить измерения эффективности двигателей.

    Метод испытаний A — ввод-вывод, определенный IEEE 112: КПД рассчитывается как отношение выходной мощности измерения к измеренной входной мощности после корректировки температуры и динамометра, если применимо.Испытания проводятся при номинальной нагрузке с помощью механического тормоза или динамометра. Этот рейтинг должен быть ограничен двигателями с номинальной полной нагрузкой не более 1 кВт.

    Метод испытаний B — ввод-вывод с разделением потерь: в методе B выполняются измерения как входной, так и выходной мощности, но различные потери разделяются. Большинство этих потерь просто производят тепло, которое должно рассеиваться двигателем в сборе, и представляют собой энергию, недоступную для выполнения работы. Этот метод является признанным стандартом тестирования U.S. автомобилестроение для двигателей с полной нагрузкой от 1 до 300 кВт.

    Хотя оба метода A и B работают, метод B требует большого количества приборов и обычно выполняется только производителями двигателей. Поскольку большинство производителей используют метод B, а большинство пользователей предпочитают метод A, расчеты эффективности между ними могут отличаться. Данные производителей двигателей и приводов могут использовать разные скорости двигателя, испытательные нагрузки или другие условия испытаний.

    Заключение

    При измерении мощности электродвигателя необходимо учитывать множество факторов, например, полный и истинный коэффициент мощности.Эти измерения включают сложные уравнения, поэтому большинство компаний используют анализаторы мощности для автоматического получения результатов.

    После принятия решения об использовании анализатора мощности необходимо принять решение о частотном диапазоне и уровне точности. Совместимость приборов — еще один важный аспект безопасного получения точных показаний, особенно с трансформаторами тока, и это та область, где необходимо учитывать ввод / опции анализатора. При правильных входных сигналах датчиков измерения механической мощности также можно проводить с помощью анализатора мощности.Выбор правильных датчиков скорости и крутящего момента — это первый шаг в определении механической мощности.

    Некоторые анализаторы мощности также позволяют выполнять измерения с широтно-импульсной модуляцией. Однако настройка анализатора для измерения ШИМ также требует знания о том, как токи и напряжения будут влиять на измерения мощности.

    Прецизионный высокочастотный анализатор мощности — важный инструмент для измерения как механической, так и электрической мощности. Его функции анализа и показания могут помочь улучшить работу и даже продлить срок службы двигателя.Выбор подходящего анализатора и его правильная реализация требуют знаний; однако при правильном использовании данные анализатора мощности предоставят точные и очень ценные данные.

    Расчетная комбинация электродвигателя и стойки

    Расчетная комбинация электродвигателя и стойки
    Прочтите РУКОВОДСТВО , ​​которое поможет вам выбрать систему питания вашего самолета — Последнее обновление: 15 января — 2018
    АККУМУЛЯТОР: Выберите элемент из раскрывающегося списка или выберите «Пользовательский», чтобы ввести свои данные.
    Обычай серии Параллельный
    Емкость ячеек Максимальный ток
    мАч A
    Вольт на элемент
    В
    Вес ячейки
    унции г
    Ячейка Сопротивление
    Ом
    Напряжение блока
    В
    Вес упаковки
    унции г
    Электронный регулятор скорости ESC:
    Обычай
    ESC Сопротивление
    Ом
    Максимальный ток
    A
    ESC Вес
    унции г
    ДВИГАТЕЛЬ: (посмотрите наш БАЗА ДАННЫХ для сортировки по мощности и бренду)
    Обычай
    Kv
    об / мин / V
    Io
    А при В
    Rm Kt
    Ом InOz / A
    Максимальный ток Максимальная мощность
    A W
    Масса двигателя
    унции г
    ВИНТ:
    Обычай № из Лезвия: 1 Передаточное число
    Константы
    Tk Pk
    Диаметр
    дюйма в см
    Шаг
    дюйма в см
    Введите температуру окружающей среды и высоту (или барометрическое давление):
    Температура
    F C
    Высота
    футов м
    Барометрическое давление
    inHg мбар
    MOTOR Результаты:
    Входная мощность
    Вт
    Вольт для статического тока, потребляемого двигателем
    В A
    Статическая частота вращения двигателя
    об / мин
    Выходная мощность Максимальная выходная мощность
    Вт W
    Статический КПД Макс КПД
    % %
    PROP Результаты:
    Стойка статическая Обороты
    об / мин
    Статическая скорость тангажа
    миль / ч Км / ч
    Если это не планер, то Статическая скорость шага
    должна быть> 2.В 5 раз превышает скорость сваливания самолета
    Статический наконечник стойки Скорость
    MACH (макс. запись 0,92)
    Статическое усилие
    унции г
    Приблизительное время работы в режиме полного открытия дроссельной заслонки
    минуты
    Система питания Вес + 10%
    унции г

    Статическое усилие должно быть> 1/3 от общей массы
    для ROG, статическое усилие должно быть> 1/2 от AUW
    Авторские права © 2004-2018, rcplanes.онлайн
    Участок КПД — Выходная мощность — Потери мощности и частота вращения в зависимости от тока в зависимости от настройки выше:

    Калькулятор мощности двигателя — ElectricScooterParts.com

    • Мощность — номинальная мощность двигателя в ваттах.

    • Вес всадника и груза — это общий вес всадника (ов) и груза.

    • Вес автомобиля — это вес автомобиля без водителя или груза.

    • Уклон — это процент уклона для расчета.

    • Встречный ветер — это скорость ветра, дующего к передней части транспортного средства.

    • КПД двигателя — КПД двигателя. Щеточный двигатель имеет КПД около 75-80%, а бесщеточные двигатели — около 85-90%.

    • Скорость — максимальная скорость расчета.

    Этот калькулятор позволяет оценить необходимый размер электродвигателя. вести машину по ровная поверхность или подъем по склону с определенной скоростью. Он оценивает нормальный сопротивление качению электросамокатов, велосипедов и картинг поэтому, если сопротивление качению выше нормы из-за шин с низким давлением воздуха или песок или грязь затем уменьшают процент КПД двигателя, чтобы учесть это.Он вычисляет пользователя входы с гравитацией, сопротивлением качению, эффективностью цепной или ременной трансмиссии и сопротивлением воздуха чтобы получить результат скорости.

    Этот калькулятор можно использовать для оценки размера двигателя и передаточного числа, когда строительство или модификация электросамокатов, велосипедов, картингов и других типов электрические транспортные средства.

    Электродвигатели создают высокий крутящий момент под нагрузкой, например, электрический скутер, велосипед или картинг с двигателем мощностью 500 Вт, и один гонщик может быть настроен на разогнаться до 20 миль в час по ровной поверхности и с той же передачей он сможет подняться на 7% уклон на скорости 10 миль в час.

    Имейте в виду, что если введен уклон 0% и автомобиль настроен на результат расчета скорости, то автомобиль следует использовать только на ровной поверхности.

    Расчетные формулы и калькулятор для расчета размеров электродвигателя

    Расчетные уравнения и калькулятор для расчета размеров электродвигателя

    Генерал Меню технических и проектных данных
    Industrial Применение электродвигателя, конструкция
    Поставка промышленного электродвигателя

    Требования к пусковому и рабочему крутящему моменту, расчеты для электродвигателей

    При определении требований к крутящему моменту для электродвигателя следует учитывать требования к нагрузке и времени пуска в течение продолжительности пуска, рабочего крутящего момента и крутящего момента пиковой нагрузки.Пусковой крутящий момент зависит от количества запусков электродвигателя за заданное время, а также от продолжительности цикла запуска. Фактический приложенный пусковой крутящий момент должен быть во много раз больше, чем фактический пусковой крутящий момент, требуемый приложением. Чем больше разница в крутящем моменте, прилагаемом двигателем, и пусковом моменте, требуемом приложением, тем быстрее прикладывается ускорение электродвигателя. Время, необходимое для ускорения приложения от полной остановки до рабочей скорости, определяется следующим образом:

    T = [N x WR 2 ] / [T a x 308]

    Открыто: Калькулятор времени запуска электродвигателя

    Где:

    T = время до пуска (секунды)
    N = скорость при нагрузке (об / мин)
    T a = средний крутящий момент во время пуска (фут-фунты)
    W = вес (фунты)
    R = радиус вращения (футы 2 )
    [WR 2 = инерция вращения (фунт-фут 3 )]
    308 = производная константа для преобразования минут в секунды, массу от веса и радиуса до окружности


    Рабочий или рабочий крутящий момент определяется по следующему уравнению:

    T o = [5250 x HP] / N

    Открыто: Калькулятор требований к крутящему моменту электродвигателя

    Где:

    T o = рабочий или рабочий Крутящий момент (фут-фунт)
    л.

    Вам может понравится

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *