Сколько киловатт выдержит СИП?
Просматривая простоты интернета на предмет электромонтажа, обнаружил на одном форуме тему с обсуждением «выдержит ли сип 4х16 15квт». Вопрос возникает потому что на подключение частного дома выделяют 15 кВт 380 вольт. Ну и народ интересуется не маловато ли заложить 16 квадрат на ответвление от воздушной линии? Заглянул я счанала в ПУЭ, но почему то на тему мощности СИПа ничего там не нашел.
Вот есть только табличка 1.3.29 «Допустимый длительный ток для неизолированных проводов по ГОСТ 839-80». И по ней видно что максимальный допустимый ток для сечения 16кв. мм. провода типа АС, АСКС, АСК вне помещения составляет 111 ампер. Ну хоть что то для начала.
Сколько киловатт выдержит СИП 4х16?
Но зато есть ГОСТ 31943-2012 «Провода самонесущие изолированные и защищенные для воздушных линий электропередачи». В конце госта, в пункте 10 указания по эксплуатации, есть табличка
Сколько киловатт выдерживает СИП — таблица:
напряжение 380В (3х фазная нагрузка) | напряжение 220В (1фазная нагрузка) | |
---|---|---|
СИП 4х16 | 62 кВт | 22 кВт |
СИП 4х25 | 80 кВт | 29 кВт |
СИП 4х35 | 99 кВт | 35 кВт |
СИП 4х50 | 121 кВт | 43 кВт |
СИП 4х70 | 149 кВт | 53 кВт |
СИП 4х95 | 186 кВт | 66 кВт |
СИП 4х120 | 211 кВт | 75 кВт |
СИП 4х150 | 236 кВт | 84 кВт |
СИП 4х185 | 270 кВт | 96 кВт |
СИП 4х240 | 320 кВт | 113 кВт |
Методика расчета (update от 19.02.2018)
Берем табличку 10 и по ней находим что одна жила сипа 16 кв.мм. выдерживает — 100 ампер. Далее берем следующие формулы расчета:
для однофазной нагрузки 220В P=U*I
для трехфазной нагрузки 380В P=(I1+I2+I3)\3*cos φ*1,732*0,38
update от 19.02.2018 Что касается расчета мощности для трехфазной нагрузки, необходимо понимать что многое зависит от типа потребителей (точнее какую нагрузку они предоставляют активную или реактивную, от этого зависит какой cos φ нужно подставлять в формулу, в данном случае для расчетов он равен 0.95)
Дорогие посетители сайта и я возможно бы не заметил ваши колкие, но технически верные комментарии к статье если бы мне, как раз сегодня мне позвонил человек с вопросом : «какой сип мне нужен под 120 кВт?». По табличке ему отлично подойдет СИП сечением 50мм кв. Даже если опустить тот факт что длина линии влияет на падение напряжения (у него 150 метров), не стоит забывать что нагрузка по фазам может разниться, что видно из формулы — там берется средняя велечина по трем фазам. Тут просто надо понимать что ток по фазе может превысить предельно допустимые значения для данного сечения провода.
Поэтому если значение необходимой вам нагрузки лежит ближе 10% к табличному, следует выбирать более крупное сечения сипа по списку. Поясню на примере 120 квт. По таблице для этой трехфазной нагрузки подходит СИП сечением токопроводящих жил 50мм, однако это меньше 10%. То есть 121кВт*0.9=109 кВт. Соотвественно нужно выбирать СИП 3х70+1х54.6.
В начале темы поднимался вопрос «выдержит ли сип 4х16 15квт»? Поэтому для частного дома мы умножаем 220Вх100А=22кВт по фазе. Но не забываем что фазы то у нас три. А это уже 66 киловатт суммарно для жилого дома. Что представляет собой
Просматривая простоты интернета на предмет электромонтажа, обнаружил на одном форуме тему с обсуждением «выдержит ли сип 4х16 15квт». Вопрос возникает потому что на подключение частного дома выделяют 15 кВт 380 вольт. Ну и народ интересуется не маловато ли заложить 16 квадрат на ответвление от воздушной линии? Заглянул я счанала в ПУЭ, но почему то на тему мощности СИПа ничего там не нашел. Вот есть только табличка 1.3.29 «Допустимый длительный ток для неизолированных проводов по ГОСТ 839-80». И по ней видно что максимальный допустимый ток для сечения 16кв. мм. провода типа АС, АСКС, АСК вне помещения составляет 111 ампер. Ну хоть что то для начала.
Сколько киловатт выдержит СИП 4х16?
Но зато есть ГОСТ 31943-2012 «Провода самонесущие изолированные и защищенные для воздушных линий электропередачи». В конце госта, в пункте 10 указания по эксплуатации, есть табличка
Сколько киловатт выдерживает СИП — таблица:
Сечение СИП | напряжение 380В | напряжение 220В |
---|---|---|
СИП 4х16 | 38 кВт | 66 кВт |
СИП 4х25 | 50 кВт | 85 кВт |
СИП 4х35 | 60 кВт | 105 кВт |
СИП 4х50 | 74 кВт | 128 кВт |
СИП 4х70 | 91 кВт | 158 кВт |
СИП 4х95 | 114 кВт | 198 кВт |
СИП 4х120 | 129 кВт | 225 кВт |
СИП 4х150 | 144 кВт | 250 кВт |
СИП 4х185 | 166 кВт | 288 кВт |
СИП 4х240 | 195 кВт | 340 кВт |
Методика расчета
Берем табличку 10 и по ней находим что одна жила сипа 16 кв.мм. выдерживает — 100 ампер. И далее самое главное, на сколько надо умножать эти 100А — на 220 или 380? Тут надо посмотреть с точки зрения потребителей которые будут подключены к сипу. Если это обычный жилой дом, то трехфазных приборов не так уж много (ну единственное это индукционная плита или электродуховка приходит на ум, хотя они по сути своей 220В), если это какая то ремонтная мастреская, то трехфазного оборудования уже побольше (подъемники, сварка, компрессора).
В начале темы поднимался вопрос «выдержит ли сип 4х16 15квт»? Поэтому для частного дома мы умножаем 220Вх100А=22кВт по фазе. Но не забываем что фазы то у нас три. А это уже 66 киловатт суммарно для жилого дома. Что представляет собой 4х кратный запас относительно выдаваемых техусловий.
Основным предназначением кабелей СИП является передача электроэнергии по воздушным линиям. Кабель активно используется при отводе электроэнергии от основных магистралей к жилым и хозяйственным сооружениям, при строительстве осветительных сетей на улицах населенных пунктов.
Самонесущий изолированный провод (СИП)
Конструкция СИП
Фазные алюминиевые провода покрыты светостабилизирующим изоляционным покрытием черного цвета. Полиэтиленовое покрытие обладает высокой устойчивостью к влаге и ультрафиолетовым солнечным лучам, которые разрушают резиновую или обычную полимерную изоляцию.
Провода скручиваются в жгут вокруг нулевой алюминиевой жилы, в центре которой стальной провод. Сердечник нулевой жилы является несущей основой всего кабеля. Некоторые конструкции кабелей СИП с малым сечением и небольшим количеством жил имеют легкий вес, т. к. в этих видах отсутствует стальная жила. СИП расшифровывается как самонесущий изолированный провод.
Виды и строение
Производится пять основных типов СИП проводов:
- СИП-1 включает в себя три фазы, каждая из которых скручена в жгут из нескольких алюминиевых проводов вокруг сердечника из алюминиевого сплава. Провода четвертой нулевой жилы скручиваются вокруг стального сердечника. Фазы изолированы термопластиком, устойчивым к ультрафиолетовым лучам. На марке кабеля СИП-1А нулевой провод, как и фазные жилы, в изолированной оболочке. Такие кабели выдерживают продолжительное время нагрева при 70°С.
Конструкция кабеля СИП-1, СИП-1А
- СИП-2 и СИП-2А имеют аналогичную СИП-1 и 1А конструкцию, разница лишь в изоляционной оболочке. Изоляцией служит «сшитый полиэтилен» – соединение полиэтилена на молекулярном уровне в сетку с широкими ячейками с трехмерными поперечными связями. Такая структура изоляции намного прочнее к механическим воздействиям и выдерживает более низкие и высокие температуры при длительном воздействии (до 90°С). Это позволяет использовать такую марку СИП кабеля в холодных климатических условиях при больших нагрузках. Максимальное напряжение передаваемой электроэнергии до 1Кв.
- СИП-3 – одножильный кабель со стальным сердечником, вокруг которого свиты провода из алюминиевого сплава AlMgSi. Изоляционная оболочка из «сшитого полиэтилена» позволяет использовать СИП-3 для строительства воздушных линий передачи электроэнергии с напряжением до 20 кВ. Рабочая температура кабеля 70°С, его можно эксплуатировать длительное время при температурах в диапазоне от минус 20°С до + 90°С. Такие х
Наименование характеристики | Значение |
1. До старения | |
1.1 Прочность при растяжении, МПа, не менее | 12,5 |
1.2 Относительное удлинение при разрыве, %, не менее | 200 |
2. После старения в термостате при температуре (135±3) °С в течение 168 ч | |
2.1 Изменение* значения прочности при растяжении, %, не более | ±25 |
2.2 Изменение* значения относительного удлинения при разрыве, %, не более | ±25 |
3. Тепловая деформация | |
3.1 Относительное удлинение после выдержки при температуре (200±3) °С и растягивающей нагрузке 0,2 МПа, %, не более | 175 |
3.2 Остаточное относительное удлинение после снятия нагрузки и охлаждения, %, не более 15 | 15 |
4. Водопоглощение после выдержки в течение 336 ч в воде при температуре (85±2) °С: изменение массы, мг/см2, не более | 1 |
5. Усадка после выдержки в термостате при температуре (130±3) °С в течение 1 ч, %, не более | 4 |
6. Стойкость к продавливанию при воздействии температуры (90±2) °С в течение 4 ч: глубина продавливания, %, не более | 50 |
7. Содержание сажи, %, не менее | 2,5 |
Сип провод таблица мощности — Морской флот
Сегодня для прокладки воздушных электрических линий вместо нескольких разделённых друг от друга голых алюминиевых проводов, прикрученных к изоляторам, используют провод СИП (Самонесущий Изолированный Провод). СИП представляет собой один или жгут из нескольких изолированных проводов, который крепится к опорам специальными креплениями за одну или за все жилы одновременно (в зависимости от его разновидности).
СИП имеет несколько разновидностей:
- СИП-1 — несущая нулевая жила без изоляции, фазные жилы заизолированы. Изоляция — термопластичный светостабилизированный полиэтилен. Крепится за нулевую жилу. Рабочее напряжение: до 0,66/1 кВ с частотой 50 Гц.
- СИП-1А — то же, что и СИП-1, но все жилы заизолированы
- СИП-2 — несущая нулевая жила без изоляции, фазные жилы заизолированы. Изоляция — сшитый светостабилизированный полиэтилен (полиэтилен с поперечными молекулярными связями). Крепится за нулевую жилу. Рабочее напряжение: до 0,66/1 кВ с частотой 50 Гц.
- СИП-2А — то же, что и СИП-2, но все жилы заизолированы.
- СИП-3 — одножильный провод. Жила выполнена из уплотнённого сплава или уплотнённой сталеалюминевой конструкции проволок. Изоляция — сшитый светостабилизированный полиэтилен. Рабочее напряжение: до 35 кВ.
- СИП-4 — все жилы заизолированы. Изоляция — термопластичный светостабилизированный полиэтилен. Не имеет несущей жилы. Крепится за все жилы одновременно. Рабочее напряжение: до 0,66/1 кВ с частотой 50 Гц.
- СИП-5 — то же, что и СИП-4, но изоляция — сшитый светостабилизированный полиэтилен.
Выбор разновидности СИП для СНТ
Для прокладки воздушных линий в СНТ наиболее приемлемым является провод СИП-2А.
Недостатки других типов СИП:
- У СИП-1 и СИП-2 на неизолированной нулевой жиле при её обрыве возможно присутствие опасного для людей потенциала.
- У СИП-1, СИП-1А и СИП-4 менее прочная изоляция.
- СИП-3 предназначен для напряжений свыше 1000 вольт. Кроме того, это одиночный провод, его не сворачивают в жгут.
- СИП-4 и СИП-5 могут применяться только для отводов к домам. Из-за отсутствия упрочнённой несущей жилы могут растягиваться со временем.
СИП-2А может иметь в своём жгуте жилы как одного, так и разных сечений. Как правило, при сечениях фазных жил до 70 кв.мм. несущая нулевая жила для прочности делается большего сечения, чем фазные, а свыше 95 кв.мм. – меньшего, потому что прочности уже хватает, а электрически (при равномерном распределении нагрузки между фазами) нулевая жила нагрузки практически не несёт. Также распространены жгуты с жилами одинакового сечения. Жилы освещения, если таковые присутствуют в жгуте, делают сечением 16 или 25 кв.мм.
Расчёт сечения фазных жил СИП
При расчёте сечения фазных проводов следует учитывать не только максимальный ток, который они могут держать, а ещё и падение напряжения на конце линии, которое не должно превышать 5% при максимальной нагрузке. При расстояниях свыше 100 метров падение напряжения в линии уже становится узким местом. Провод ещё держит нагрузку, но до конца провода доходит слишком низкое напряжение.
Рассмотрим ситуацию на примере моего СНТ. Длина магистральной линии 340 метров. Максимальная мощность энергопринимающих устройств — 72 кВт. Требуется подобрать соответствующий СИП. Для этого вычислим максимальный ток, который может протекать в проводах:
Вычислим максимальную мощность, приходящуюся на 1 фазу.
72 кВт / 3 фазы = 24 кВт = 24000 Вт.
Вычислим максимальный ток одной фазы. На выходе из трансформатора по стандарту 230 В. При подсчёте учитываем также емкостную и индуктивную нагрузку от бытовых приборов, используя косинус фи = 0,95.
24000 Вт / (230 В * 0,95) = 110 А
Итак, провод должен держать 110 А. Смотрим технические характеристики СИП для разных сечений, и видим, что 110 А вполне выдержит СИП с сечением фазных жил 25 кв.мм.
Казалось бы, что ещё нужно? Но не всё так просто. У нас линия длиной 340 метров, а любой провод имеет своё собственное сопротивление, которое снижает напряжение на его конце. Согласно допускам, падение напряжения на максимальной нагрузке в конце линии не должно превышать 5%. Посчитаем падение напряжения для нашего случая с жилами 25 кв.мм.
Рассчитаем сопротивление 350 м провода сечением 25 кв.мм.:
Удельное сопротивление алюминия в СИП — 0,0000000287 ом·м.
Сечение провода — 0,000025 кв.м.
Удельное сопротивление провода 25 кв.мм = 0,0000000287 / 0,000025 = 0,001148 ом·м
Сопротивление 350 метров провода сечением 25 кв.мм. = 0,001148 * 350 = 0,4018 ом
Рассчитаем сопротивление нагрузки 24 000 Вт:
Выведем удобную для расчёта формулу.
и подставив в последнюю формулу значения, рассчитаем сопротивление нагрузки:
230 В * 230 В * 0,95 / 24000 Вт = 2,094 ом
Рассчитаем полное сопротивление всей цепи, сложив оба полученных выше сопротивления:
0,4018 ом + 2,094 ом = 2,4958 ом
Рассчитаем максимальный ток в проводе, который может возникнуть, исходя из полного сопротивления цепи:
230 В / 2,4958 ом = 92,1564 А
Рассчитаем падение напряжения в проводе, перемножив максимально возможный ток и сопротивление провода:
92,1564 А * 0,4018 ом = 37 В
Падение напряжения в проводе в 37 вольт — это 16% от исходного напряжения 230 вольт, что намного больше допустимых 5%. Вместо 230 вольт на конце линии при полной нагрузке окажется всего 230 – 37 = 193 вольта вместо допустимых 230 – 5% = 218,5. Поэтому сечение жил надо увеличивать.
Для рассматриваемого нами случая подойдёт сечение фазных жил 95 кв.мм. Это существенно больше, чем необходимо по току, но при максимальной нагрузке на конце линии такое сечение даст падение напряжения 10,8 В, что соответствует 4,7% от исходного напряжения, что вписывается в допуск.
Таким образом, нам для линии 350 метров и нагрузки по 24 кВт на фазу, необходим СИП-2А сечением фазных жил 95 кв.мм.
Замечу, что при неравномерной нагрузке на фазы усиливается ток по нулевому проводнику, а значит, его сопротивление тоже начинает играть роль, и его следует включить в расчёт (например, увеличить расчётную длину провода, скажем, в полтора раза). При очень неравномерной нагрузке (например, зимой, когда в СНТ живёт 1-2 человека, отапливающихся электрообогревателями, которые сидят на 1, или пусть даже на 2 фазах) может возникнуть перекос фаз на самом трансформаторе. В этом случае напряжение на нагруженных фазах падает ещё больше, а на не нагруженной – возрастает. Поэтому в идеале таким потребителям следует ставить трёхфазный ввод, и включать разные обогреватели в разные фазы.
Сечения изолированных проводов СИП до 1 кВ выбирают по экономической плотности тока и нагреву при числе часов использования максимума нагрузки более 4000 – 5000, при меньшей продолжительности максимума нагрузки — по нагреву. Если сечение провода, определенное по этим условиям, получается меньше сечения, требуемого другими техническими условиями (механическая прочность, термическая стойкость при токах КЗ, потери напряжения), то необходимо принимать наибольшее сечение, требуемое этими техническими условиями.
При выборе сечений СИП по нагреву следует учитывать материал изоляции провода: термопластичный или сшитый полиэтилен. Допустимые температуры жил проводов с различной изоляцией для различных режимов работы приведены в табл. 1.
Таблица 1. Конструктивные и стоимостные характеристики изолированных проводов
Изоляция из сшитого полиэтилена более термоустойчива, чем из термопластичного полиэтилена. В нормальных режимах работы температура жилы с изоляцией из термопластичного полиэтилена ограничена 70 °С, а с изоляцией из сшитого полиэтилена — 90 °С.
Режим перегрузки СИП допускается до 8 ч в сутки, не более 100 ч в год и не более 1000 ч за весь срок службы провода.
Соответствующие допустимой температуре допустимые длительные токи Iдоп для различных конструкций СИП приведены в табл. 2 и 3. Здесь же указаны омические сопротивления фазной и нулевой жил и предельные односекундные токи термической стойкости.
Табл. 2. Электрические параметры проводов СИП-1, СИП-1А (СИП-2, СИП-2А)
Табл. 3. Электрические параметры проводов СИП-4
Табл. 4. Допустимые длительные токи изолированных проводов
Для сопоставления в табл. 4 приведены допустимые длительные токи неизолированных проводов. Провода СИП напряжением до 1 кВ допускают меньшие токовые нагрузки, чем неизолированные провода. Провода СИП охлаждаются воздухом менее эффективно, поскольку имеют изоляцию и скручены в жгут.
Провода с изоляцией из сшитого полиэтилена в 1,15 – 1,2 раза дороже проводов с изоляцией из термопластичного полиэтилена. Однако, как видно из табл. 2 и 3, СИП с изоляцией из сшитого полиэтилена имеют в 1,3 – 1,4 раза большую пропускную способность, чем провода такого же сечения с изоляцией из термопластичного полиэтилена. Очевидно, что выбор сечения СИП следует проводить на основе технико-экономического сравнения вариантов с различной изоляцией.
Рассмотрим конкретный пример выбора сечения СИП по расчетному току Iрасч = 140 А.
В соответствии с исходными данными табл. 2 можно принять два варианта СИП:
СИП-1А 3×50 + 1×70, I доп = 140 А; изоляция — термопластичный полиэтилен;
СИП-2А 3×35 + 1×50, I доп = 160 А; изоляция — сшитый полиэтилен.
Очевидно, что экономически целесообразно принять СИП-2А 3×35 + 1×50 с изоляцией из сшитого полиэтилена:
Таким образом, фактически осуществляется замена провода СИП-1А на провод СИП-2А меньшего сечения и меньшей стоимости. Благодаря этой замене:
уменьшается масса провода;
уменьшаются габариты провода и соответственно снижаются гололедно-ветровые нагрузки на провод;
увеличивается срок службы ВЛИ, так как сшитый полиэтилен долговечнее термопластичного полиэтилена.
Технические параметры провода СИПн-4 соответствуют параметрам провода СИП-4. Провод СИПн-4 с изоляцией, не распространяющей горение, следует применять в условиях с повышенными требованиями по пожарной безопасности:
для вводов в жилые дома и промышленные постройки;
при прокладке по стенам домов и зданий;
в зонах с повышенной пожарной опасностью.
Если выбор провода СИПн-4 определяется исходя из требований пожарной безопасности, то выбор между проводами марки СИП-4 и СИПс-4 производится технико-экономическим сравнением вариантов.
Для проверки сечений на термическую стойкость при токах КЗ в табл. 2 и 3 приведены допустимые односекундные токи термической стойкости I к1.
При другой продолжительности КЗ допустимый ток термической стойкости определяется умножением тока I к1 на поправочный коэффициент
где t — продолжительность КЗ, с.
По условиям механической прочности на магистралях ВЛИ, линейных ответвлениях и ответвлениях к вводам следует применять провода с минимальными сечениями, указанными в табл. 5. При проверке сечений СИП по допустимой потере напряжения необходимо знать погонные параметры провода. Омические сопротивления СИП приведены в табл. 11 и 2, индуктивные сопротивления — в табл. 6.
Табл. 5. Провода ВЛИ с минимальными сечениями (пример)
Табл. 6. Индуктивные сопротивления многожильных проводов СИП
Следует отметить, что индуктивные сопротивления неизолированных проводов ВЛИ составляют Xо = 0,3 Ом/км.
Благодаря меньшим реактивным сопротивлениям потери напряжения в линии с СИП будут меньше, чем в линии с неизолированными проводами при прочих равных условиях.
Сечения защищенных изоляцией проводов напряжением выше 1 кВ выбираются по экономической плотности тока. Выбранные сечения должны удовлетворять требованиям допустимого нагрева, термической стойкости при токах КЗ, механической прочности, допустимой потере напряжения.
Допустимые температуры нагрева защищенных изоляцией проводов (СИП-3, ПЗВ, ПЗВГ) приведены в табл. 1, электрические параметры этих проводов — в табл. 7 и 8.
Сечения защищенных изоляцией проводов напряжением выше 1 кВ выбираются по экономической плотности тока. Выбран- ные сечения должны удовлетворять требованиям допустимого нагрева, термической стойкости при токах КЗ, механической прочности, допустимой потере напряжения.
Табл. 7. Электр
Самонесущие провода – оптимальное решение для сетей как с высоким, так и с низким напряжением.
Популярность этого вида кабеля связана с простотой их монтажа, удобством и безопасностью эксплуатации и минимальным количеством перебоев в подаче электричества из-за аварийных ситуаций.
Перед тем, как выбрать кабель марки СИП, следует определиться, для каких целей он необходим и в каких условиях будет эксплуатироваться.
Какие виды проводов существуют
- Сип -1 и Сип -2 используются в основном для магистральных ЛЭП либо их ответвлений, имеющих напряжение 0,6-1 кВ;
- Сип – 3 также применяется для воздушных магистралей, но рассчитан на гораздо более высокие нагрузки — в 10 — 35 кВ;
- СИП – 4 не имеет несущей жилы, прокладывается в основном по стенам зданий и сооружений, а основная сфера его использования – ответвления от магистралей для подведения электричества конечным потребителям.
Как выбрать сечение?
Сечение провода должно максимально соответствовать мощности подключаемой нагрузки. Слишком тонкие провода будут иметь более высокое сопротивление, соответственно, сильно нагреваться, что приводит к значительным потерям энергии во время передачи, а также может быть причиной к разрушения изоляции, коротких замыканий и даже пожара.
Как выбрать нужный? Подобрать кабель с необходимыми потребителю характеристиками помогут нормативные документы и таблицы с указаниями напряжения и силы тока для разных видов СИП.
Ключевая характеристика для выбора провода – та сила тока, которая может по нему пройти.
Для разных сечений этот показатель различен:
- 16 мм2 — 100 А;
- 25 мм2 – 130 А;
- 35 мм2 — 160 А;
- 50 мм2 — 195 А;
- 70 мм2 — 240 А;
- 95 мм2 — 300 А;
- 120 мм2 — 340 А;
- 150 мм2 — 380 А;
- 185 мм2 — 436 А;
- 240 мм2 — 515 А;
Пропорционально с увеличением площади сечения изменяется и максимально допустимая сила тока, на нагрузку от которой этот провод рассчитан. Помимо этого, провода разного сечения выдерживают разную интенсивность и длительность нагрева в процессе эксплуатации.
Если стоит задача подвести электричество к дому, используя сип, важно правильно выбрать необходимый вариант. Обычно провода с минимальным сечением в 16 мм2 оказывается более чем достаточно. Кабель меньшего сечения попросту не производится, а большее для бытового энергопотребления и не нужно.
В стандартной бытовой сети электроснабжения не возникает существенных перегрузок, а температура окружающей среды не выходит за рамки — 50 — + 60 градусов.
Выбор изоляции провода
Помимо характеристик токопроводящих и несущих жил стоит обратить внимание и на изоляцию проводов, точнее на материал ее изготовления.
Для регионов с повышенной интенсивностью ультрафиолетового излучения рекомендована изоляция из светостабилизированного полиэтилена. При рисках значительного внешнего нагрева в процессе эксплуатации стоит отдать предпочтение негорючей изоляции. Если возможны значительные резкие перепады температур, есть риск налипания снега или обледенения проводов, то в таких условиях наиболее долговечными и исправно работающими окажутся провода с термопластичной изоляцией.
При эксплуатации в условиях высокой влажности предпочтительно использование герметизированных проводов.
Производство и продажа
Производителей кабеля немало, и только потребителю решать, какой провод выбрать конкретно из всех разновидностей. Что касается качества, то нельзя сказать, что какой-то из крупных отечественных или зарубежных изготовителей существенно выше или ниже по этому показателю.
Все требования к проводам СИП представлены в соответствующем ГОСТе, и если продукция конкретного предприятия не соответствует ему, она просто не попадет на рынок.
Непосредственно производитель осуществляет в основном оптовые продажи кабеля, для небольших объемов придется прибегнуть к услугам дилеров или посредников. И порядочные компании всегда готовы предоставить документацию, подтверждающую их сотрудничество с тем или иным производителем, а также свидетельствующую о качестве товара.
СИП (в расшифровке самонесущий изолированный провод) — это многожильный провод для магистральных воздушных линий электропередачи и линейных ответвлений от них.
Обычно включает в себя 4 скрученных при изготовлении провода, где один является несущим, а остальные предназначены для каждой из 3 фаз.
Также несущая жила может отсутствовать вообще, а количество проводящих – варьироваться от 1 до 4. Пороговые значения всех характеристик самонесущих проводов нормируются ГОСТ Р 52373 – 2005, а конкретные величины у разных производителей могут несколько различаться.
Достоинства кабеля
В сравнении с неизолированными проводами СИП имеет целый ряд преимуществ, он устойчив к различным погодным факторам, имеет минимальную вероятность коротких замыканий при соприкосновении проводов друг с другом или другими объектами, безопасен для людей.
В процессе производства провода проходят целый ряд испытаний, имитирующих всевозможные ситуации, которые могут возникнуть в процессе эксплуатации, что обеспечивает их надежную работу на протяжении всего срока службы.
Типоразмеры
Площадь основных жил и допустимые нагрузки по току для них:
- 16 мм2 — 100 А;
- 25 мм2 — 130 А;
- 35 мм2 — 160 А;
- 50 мм2 — 195 А;
- 70 мм2 — 240 А;
- 95 мм2 — 300 А;
- 120 мм2 — 340 А;
- 150 мм2 — 380 А;
- 185 мм2 — 436 А;
- 240 мм2 — 515 А;
Токовые нагрузки указываются для температуры воздуха в 25 °С, ветра со скоростью 0,6 м/с и ультрафиолетового излучения 1000 Вт/м2, для иных условий применяются поправочные коэффициенты.
Сечение несущей жилы имеет площадь (в мм2):
Марка провода | СИП-1 | СИП-2 | СИП-3 | СИП-4 | СИП-5 |
Количество токопроводящих жил, шт | 1 ÷ 4 | 1 ÷ 4 | 1 | 2 — 4 | 2 — 4 |
Сечение жил, мм2 | 16 ÷ 120 | 16 ÷ 120 | 35 ÷ 240 | 16 ÷ 120 | 16 ÷ 120 |
Нулевая жила, несущая | сплав алюминия (со стальным сердечников) | сплав алюминия (со стальным сердечников) | отсутствует | отсутствует | отсутствует |
Токопроводящая жила | алюминиевая | алюминиевая | сплав алюминия (со стальным сердечников) | алюминиевая | алюминиевая |
Класс напряжения, кВ | 0.4 ÷ 1 | 0.4 ÷ 1 | 10 ÷ 35 | 0.4 ÷ 1 | 0.4 ÷ 1 |
Тип изоляции жил | термопластичный полиэтилен | светостабилизир. полиэтилен | светостабилизир. полиэтилен | термопластичный полиэтилен | светостабилизир. полиэтилен |
Температура эксплуатации | -60оС ÷ +50оС | -60оС ÷ +50оС | -60оС ÷ +50оС | -60оС ÷ +50оС | -60оС ÷ +50оС |
Допустимый нагрев жил при эксплуатации | +70оС | +90оС | +70оС | +90оС | +90оС |
min радиус изгиба провода | не менее 10 Ø | не менее 10 Ø | не менее 10 Ø | не менее 10 Ø | не менее 10 Ø |
Срок службы | не менее 40 лет | не менее 40 лет | не менее 40 лет | не менее 40 лет | не менее 40 лет |
Применение |
| — | — для монтажа ВЛ напряжением 10-35 кВ |
| — |
Читайте также: «Применение и монтаж СИП«
Строение провода
Жилы имеют круглую форму, в готовом проводе скручиваются между собой с шагом от 80 до 150 см в зависимости от их сечения. Токопроводящие жилы выполняются как из алюминия, так и из его сплавов (в случае СИП-3), несущие – исключительно из сплавов алюминия. Для сечений до 95 мм2 жила состоит из 7 проволок, для остальных – из 19. Провод с сечением в 95 мм2 может выполняться в обоих вариантах.
Несущая жила имеет прочность в среднем в 2-2,5 раза больше, чем токопроводящая такого же сечения. Для алюминиевой проволоки устанавливается прочность на растяжение не менее 120 Н/мм2, для проволоки из сплавов алюминия этот показатель существенно выше – не менее 295 Н/мм2.
Изоляция проводов позволяет им быть устойчивыми к воздействию ультрафиолета, как весьма низких, так и высоких температур, а также атмосферных осадков, включая защиту от налипания снега и обледенения. Материал изоляции — сшитый светостабилизированный полиэтилен черного цвета.
Читайте также: «Где купить СИП?»
Условия эксплуатации
Изолированный провод может работать при температуре в окружающей среде в диапазоне от — 60 °С до + 50 °С, но монтаж можно производить при морозах только до -20°С. В процессе эксплуатации допускается нагрев жил провода до 70-90°С. Кратковременно температура может подниматься даже до 130°С. В случае короткого замыкания провод нагревается до 250°С.
Изгибать провод при монтаже можно с радиусом не менее 10 диаметров этого провода.
Виды СИП-кабеля
Провода подразделяются на 4 основные типа.
- СИП-1 и СИП-2 применимы как для магистральных воздушных ЛЭП, так и их ответвлений, рассчитаны на напряжение 0,6-1 кВ. Несущая жила в СИП-1 неизолированная, в отличие от СИП-2.
- В СИП-3 жилы выполнены из алюминиевого сплава с изоляцией из экструдированных полимеров. Такие провода используются для воздушных линий электропередач, где номинальное напряжение имеет показатели в 10, 20 либо 35 кВ.
- В СИП-4 несущая жила отсутствует, поэтому такой тип применяется исключительно для линейных ответвлений воздушных магистралей и прокладывается по поверхности стен зданий и сооружений.
Для регионов с повышенной влажностью выпускаются специальные герметизированные провода, имеющие, соответственно, в маркировке букву «г». Для них ГОСТ устанавливает требования по устойчивости к продольному распространению воды. Этот показатель не должен превышать 3 м вдоль провода от места ее проникновения.
Большинство производителей устанавливает на самонесущие провода гарантию в 3-4 года, при этом срок их службы должен быть не менее 40 лет.
Сип кабель таблица сечений
Виды кабелей СИП, сечение и конструктивные особенности
Главная > Электропроводка > Виды кабелей СИП, сечение и конструктивные особенности
Основным предназначением кабелей СИП является передача электроэнергии по воздушным линиям. Кабель активно используется при отводе электроэнергии от основных магистралей к жилым и хозяйственным сооружениям, при строительстве осветительных сетей на улицах населенных пунктов.
Самонесущий изолированный провод (СИП)
Конструкция СИП
Фазные алюминиевые провода покрыты светостабилизирующим изоляционным покрытием черного цвета. Полиэтиленовое покрытие обладает высокой устойчивостью к влаге и ультрафиолетовым солнечным лучам, которые разрушают резиновую или обычную полимерную изоляцию.
Провода скручиваются в жгут вокруг нулевой алюминиевой жилы, в центре которой стальной провод. Сердечник нулевой жилы является несущей основой всего кабеля. Некоторые конструкции кабелей СИП с малым сечением и небольшим количеством жил имеют легкий вес, т. к. в этих видах отсутствует стальная жила. СИП расшифровывается как самонесущий изолированный провод.
Виды и строение
Производится пять основных типов СИП проводов:
- СИП-1 включает в себя три фазы, каждая из которых скручена в жгут из нескольких алюминиевых проводов вокруг сердечника из алюминиевого сплава. Провода четвертой нулевой жилы скручиваются вокруг стального сердечника. Фазы изолированы термопластиком, устойчивым к ультрафиолетовым лучам. На марке кабеля СИП-1А нулевой провод, как и фазные жилы, в изолированной оболочке. Такие кабели выдерживают продолжительное время нагрева при 70°С.
Конструкция кабеля СИП-1, СИП-1А
- СИП-2 и СИП-2А имеют аналогичную СИП-1 и 1А конструкцию, разница лишь в изоляционной оболочке. Изоляцией служит «сшитый полиэтилен» – соединение полиэтилена на молекулярном уровне в сетку с широкими ячейками с трехмерными поперечными связями. Такая структура изоляции намного прочнее к механическим воздействиям и выдерживает более низкие и высокие температуры при длительном воздействии (до 90°С). Это позволяет использовать такую марку СИП кабеля в холодных климатических условиях при больших нагрузках. Максимальное напряжение передаваемой электроэнергии до 1Кв.
Внутреннее устройство кабеля СИП-2, СИП-2А
- СИП-3 – одножильный кабель со стальным сердечником, вокруг которого свиты провода из алюминиевого сплава AlMgSi. Изоляционная оболочка из «сшитого полиэтилена» позволяет использовать СИП-3 для строительства воздушных линий передачи электроэнергии с напряжением до 20 кВ. Рабочая температура кабеля 70°С, его можно эксплуатировать длительное время при температурах в диапазоне от минус 20°С до + 90°С. Такие характеристики позволяют использовать СИП-3 в различных климатических условиях: при умеренном климате, холодном или в тропиках.
Внутреннее устройство кабеля СИП-3
- СИП-4 и СИП-4Н не имеют нулевого провода со стальным стержнем, они состоят из парных жил. Буква Н указывает, что провода в жиле из алюминиевого сплава. ПВХ изоляция устойчива к ультрафиолетовому облучению.
Конструкция самонесущего изолированного провода СИП-4
- СИП-5 и СИП-5Н – две жилы имеют аналогичную структуру с СИП-4 и СИП-4Н, отличие в изоляционной оболочке. Технология сшитого полиэтилена позволяет увеличить время эксплуатации при максимально допустимой температуре на 30 процентов. ЛЭП с использованием СИП-5 применяют в холодном и умеренном климате, передавая электроэнергию с напряжением до 2,5 кВ.
Внутреннее устройство самонесущего изолированного провода СИП-5
В зависимости от условий эксплуатации и нагрузки потребляемой электроэнергии выбирают марку и сечение СИП кабеля.
Выбор сечения СИП
Выбор и расчет сечения проводов СИП для подключения различных объектов потребления производится по классической методике. Складываются максимальные потребляемые мощности электроустановок, расчет токовой нагрузки осуществляется по формуле:
I = P\U√³, где
— P – суммарная потребляемая мощность;
— I – максимальный потребляемый ток;
— U – напряжение в сети.
Руководствуясь значением максимального тока, по заранее просчитанным таблицам следует выбрать необходимое сечение СИП проводов.
Параметры наиболее используемых кабелей СИП для подключения зданий от основных магистралей линий электропередач (СИП-1, СИП-1А, СИП-2, СИП-2А)
1х16+1х25 | 1.91 | 75 | 105 | 1 |
2х16 | 1.91 | 75 | 105 | 1 |
2х25 | 1.2 | 100 | 135 | 1.6 |
3х16 | 1.91 | 70 | 100 | 1 |
3х25 | 1.2 | 95 | 130 | 1.6 |
3х16+1х25 | 1.91 | 70 | 100 | 1 |
3х25+1х35 | 1.2 | 95 | 130 | 1.6 |
3х120 +1х95 | 0.25 | 250 | 340 | 5.9 |
3х95+1х95 | 0.32 | 220 | 300 | 5.2 |
3х95+1х70 | 0.32 | 220 | 300 | 5.2 |
3х50+1х95 | 0.44 | 180 | 240 | 4.5 |
3х70+1х70 | 0.44 | 180 | 240 | 4.5 |
3х50+1х70 | 0.64 | 140 | 195 | 3.2 |
3х50+1х50 | 0.64 | 140 | 195 | 3.2 |
3х35+1х50 | 0.87 | 115 | 160 | 2.3 |
3х25+1х35 | 1.2 | 95 | 130 | 1.6 |
3х16+1х25 | 1.91 | 70 | 100 | 1 |
4х16+1х25 | 1.91 | 70 | 100 | 1 |
4х25+1х35 | 1.2 | 95 | 130 | 1.2 |
При выборе сечения и марки СИП проводов важно учитывать не только максимальную токовую нагрузку, но и температуру, время, в течение которого можно эксплуатировать кабель в экстремальных условиях. Обычно допустимая продолжительность составляет от 4000 до 5000 часов.
Максимальная температура для проводов
Термопластиковая изоляция СИП-1, СИП-1А, СИП-4 | Сшитый полиэтилен СИП-2, СИП-2А, СИП-3,СИП-5 | |
норма | 70 | 90 |
при перегрузках | 80 | 130 |
при коротком замыкании продолжительностью до 5 секунд | 135 | 250 |
Выбирая марку СИП кабеля и его сечение по нагреву, обязательно нужно учитывать тип изоляции: сшитый полиэтилен или термопластик. С учетом потерь напряжения, термической стойкости при коротком замыкании, механической прочности, при недостаточной величине одного из параметров выбирается кабель с большим сечением.
При эксплуатации СИП кабеля перегрузки допустимы до 8 часов в сутки, 100 часов в год и не более 1000 часов за весь период работы. Чаще всего для подключения жилых домов или хозяйственных объектов применяют СИП-2А, это объясняется некоторыми недостатками остальных моделей кабеля:
- на СИП-1 и СИП-2 нулевая жила не изолирована, при обрыве на ней может быть наведенный, опасный для человека потенциал;
- СИП-1(А), СИП-4 имеет непрочную изоляцию;
- СИП-3 используется только при напряжениях выше 1000В, это одиночный провод;
- СИП-4 или СИП-5 не имеют центральной несущей жилы, поэтому могут применяться только на коротких расстояниях, на больших интервалах кабель растягивается и провисает.
Из вышеприведенной таблицы видно, что кабель СИП-2А может быть с одинаковым или разным сечением жил. Обычно при сечении фазных жил 70 кв./мм, нулевая жила для прочности делается 95мм/кв. При большем сечении фаз несущую фазу не увеличивают, механической прочности вполне хватает. При равномерном распределении электроэнергии по фазам, нулевая жила электрической и тепловой нагрузки практически не испытывает. Для осветительных сетей обычно используют кабели с сечением жил 16 или 25 кв./мм.
EHV / HV Заземление оболочки кабеля (часть 2/2)
Продолжение предыдущей части: EHV / HV Заземление оболочки кабеля (часть 1/2)
Принадлежности для склеивания кабельной оболочки HT
1. Функция Link Box?
Link box Соединительная коробкаявляется электрически и механически одной из неотъемлемых принадлежностей подземного высоковольтного кабеля над заземляющим кабелем . Система соединения , связанная с кабельными системами высокого напряжения из сшитого полиэтилена. Соединительные коробки используются с кабельными соединениями и заделками, чтобы обеспечить легкий доступ к разрывам экрана в целях тестирования и ограничить накопление напряжения на оболочке.
Молния , токи повреждения и операции переключения могут вызвать перенапряжения на оболочке кабеля. Блок связи оптимизирует управление потерями в кабельном экране на кабелях, заземленных с обеих сторон. В HT Cable система соединения спроектирована таким образом, что оболочки кабеля соединяются и заземляются или с помощью SVL таким образом, чтобы устранить или уменьшить циркулирующие токи оболочки.
Соединительные коробкииспользуются с кабельными муфтами и клеммами для обеспечения легкого доступа к разрывам экрана в целях тестирования и для ограничения накопления напряжения на оболочке.Блок связи является частью системы связи, которая необходима для улучшения пропускной способности и защиты человека.
2. Ограничители напряжения оболочки (SVL) (ограничители перенапряжения)
SVL — это защитное устройство для ограничения индуктивных напряжений, возникающих в кабельной системе из-за короткого замыкания.
Необходимо установить SVL между металлическим экраном и землей внутри распределительной коробки. Разделение экрана разъема силового кабеля (изолированное соединение) будет защищено от возможных повреждений в результате индуцированных напряжений, вызванных коротким замыканием / обрывом.
Тип оболочки для кабеля HT
Обычно для экрана кабеля LT / HT существует три типа соединения:- Одиночный пункт
- Система одностороннего точечного скрепления. Сплит-система
- с одной точкой.
- Облицованная на обоих концах система
- Система перекрестных связей
1. Одноточечная связанная система
1а.Система одностороннего скрепления с одной стороны
Система скрепления одной точкой- Система является одноточечной связью, если устройства таковы, что оболочки кабелей не обеспечивают пути для протекания циркулирующих токов или токов внешних повреждений.
- Это самая простая форма специального склеивания. Оболочки трех кабельных секций соединены и заземлены в одной точке только вдоль их длины . Во всех других точках будет иметь место напряжение между оболочкой и землей и между экранами соседних фаз кабельной цепи, которое будет максимальным в самой дальней точке от заземления.
- Это наведенное напряжение пропорционально длине кабеля и току. Одноточечное соединение может использоваться только для ограниченной длины маршрута, но в целом принятый потенциал напряжения экрана ограничивает длину
- Следовательно, оболочки должны быть надлежащим образом изолированы от земли. Поскольку нет замкнутой цепи в оболочке, кроме как через ограничитель напряжения в оболочке, ток обычно не протекает в продольном направлении вдоль оболочки и не происходит потери тока при циркуляции оболочки.
- Разомкнутая цепь на экране кабеля, нет циркулирующего тока.
- Ноль на заземленном конце, постоянное напряжение на незаземленном конце.
- Дополнительный проводник заземления с ПВХ-изоляцией, необходимый для обеспечения пути для тока повреждения, если возврат с земли нежелателен, например, в угольной шахте.
- SVL установлен на незаземленном конце для защиты изоляции кабеля в условиях неисправности.
- Индуцированное напряжение пропорционально длине кабеля и току в кабеле.
- Ноль относительно напряжения заземления на заземленном конце, постоянное напряжение на незаземленном конце.
- Циркуляционный ток в заземляющем проводнике не является значительным, поскольку магнитные поля от фаз частично сбалансированы.
- Величина постоянного напряжения зависит от величины тока, протекающего в сердечнике, намного выше, если имеется замыкание на землю.
- Высокое напряжение на незаземленном конце может вызвать искрение и повредить внешнюю оболочку из ПВХ.
- Напряжение на экране во время неисправности также зависит от состояния заземления.
Постоянное напряжение на незаземленном конце во время замыкания на землю:
- Во время замыкания на землю в энергосистеме ток нулевой последовательности, передаваемый по проводникам кабеля, может возвращаться по любым доступным внешним каналам.Замыкание на землю в непосредственной близости от кабеля может привести к большой разнице в повышении потенциала заземления между двумя концами кабельной системы, создавая опасность для персонала и оборудования.
- По этой причине при прокладке одноточечного кабельного кабеля требуется параллельный заземляющий провод , заземленный на обоих концах кабельной трассы и установленный очень близко к проводникам кабеля, для переноса тока повреждения во время замыканий на землю и ограничения повышение напряжения оболочки при замыканиях на землю до приемлемого уровня.
- Проводник параллельного заземления обычно изолирован, чтобы избежать коррозии, и транспонирован, если кабели не транспонированы, чтобы избежать циркулирующих токов и потерь при нормальных условиях эксплуатации.
- Напряжение на незаземленном конце при замыкании на землю состоит из двух компонентов напряжения. Индуцированное напряжение из-за тока повреждения в сердечнике.
Преимущества
- Циркуляционный ток отсутствует.
- Нет обогрева на экране кабеля.
- Экономичный.
Недостатки
- Постоянное напряжение на незаземленном конце.
- Требуется SVL, если постоянное напряжение во время неисправности является чрезмерным.
- Требуется дополнительный провод заземления для тока повреждения, если ток, возвращаемый на землю, нежелателен. Более высокие магнитные поля вокруг кабеля по сравнению со сплошной системой.
- Постоянное напряжение на экране кабеля пропорционально длине кабеля и величине тока в сердечнике.
- Обычно подходит для сечений кабеля менее 500 м или длины одного барабана .
1б. Сплит одноточечная система
Сплит одноточечная скрепленная система- Она также известна как Система одноточечного скрепления двойной длины .
- Непрерывность экрана кабеля в средней точке прерывается, и SVL должны быть установлены с каждой стороны изолирующего соединения.
- Другие требования идентичны системе с одной точкой соединения, такой как SVL, Проводник заземления, Транспонирование проводника заземления.
- Эффективно два участка одноточечного склеивания.
- Отсутствует циркулирующий ток и нулевое напряжение на заземленных концах, постоянное напряжение на секционирующем соединении.
Преимущества
- Циркуляционный ток на экране отсутствует.
- Нет нагревательного эффекта на экране кабеля.
- Подходит для более длинного сечения кабеля по сравнению с системой одноточечного соединения и однослойной системой с твердым соединением.
- Экономичный.
Недостатки
- Постоянное напряжение существует на экране и в секционном изоляционном соединении.
- Требуется SVL для защиты незаземленного конца.
- Требуется отдельный провод заземления для тока нулевой последовательности.
- Не подходит для кабельных сечений свыше 1000 м.
- Подходит для кабельных сечений длиной 300 ~ 1000 м, вдвое больше длины системы одноточечного соединения.
2. Системы с твердым соединением на обоих концах (одножильный кабель)
Системы с твердым соединением на обоих концах (одножильный кабель)- Самый простой и распространенный метод.
- Кабельный экран связан с заземлением на обоих концах (через блок связи) .
- Устранить наведенные напряжения на экране кабеля — это приклеить (заземлить) оболочку к обоим концам кабельной цепи.
- Это исключает необходимость использования проводника параллельной непрерывности, используемого в системах с одинарным соединением. Это также устраняет необходимость предоставления SVL, например, используемого на свободном конце одноточечной кабельной цепи
- Значительный циркулирующий ток на экране Пропорционально току сердечника и длине кабеля, а также скорости кабеля.
- Может быть проложен кабель в компактной форме трилистника, если это допустимо.
- Подходит для длины маршрута более 500 метров .
- Очень маленькое постоянное напряжение порядка нескольких вольт.
Преимущества
- Минимальный необходимый материал.
- Самый экономичный, если отопление не является главной проблемой.
- Обеспечивает путь для тока повреждения, минимизируя ток возврата заземления и EGVR в месте назначения кабеля.
- Не требует ограничителя напряжения экрана (SVL).
- Меньше электромагнитного излучения.
Недостатки
- Обеспечивает путь для циркулирующего тока.
- Эффекты нагрева на кабельном экране, большие потери. Поэтому может потребоваться снизить номинал кабеля или требуется кабель большего размера.
- Переносит напряжения между сайтами, когда на одном сайте есть EGVR.
- Может прокладывать кабели в виде трилистника, чтобы уменьшить потери на экране.
- Обычно применяется к короткому сечению кабеля длиной в десятки метров.Циркулирующий ток пропорционален длине кабеля и величине тока нагрузки.
3. Кросс-кабельная система
Кабельная система с перекрестными связями с транспонированной- Система является перекрестно связанной, если устройства таковы, что схема обеспечивает электрически непрерывные участки оболочки от заземленной клеммы до заземленной клеммы, но с оболочками, разделенными на части и перекрестно соединенными, чтобы уменьшал циркулирующие токи оболочки.
- В этом типе напряжение будет наведено между экраном и землей, но значительный ток не будет течь.
- Максимальное индуцированное напряжение появится в соединительных коробках для перекрестного соединения. Этот метод обеспечивает пропускную способность кабеля, такую же, как при одноточечном соединении, но большую длину трассы, чем у последнего. Требуется разделение экрана и дополнительные поля ссылок.
- Для перекрестного соединения длина кабеля делится на три примерно равных участка.Каждое из трех переменных магнитных полей индуцирует напряжение с фазовым сдвигом на 120 ° в экранах кабеля.
- Перекрестное соединение происходит в ячейках ссылок. В идеале, векторное сложение индуцированных напряжений приводит к U (Rise) = 0. На практике длина кабеля и условия прокладки изменяются, что приводит к небольшому остаточному напряжению и незначительному току. Поскольку ток отсутствует, потери на экране практически отсутствуют.
- Сумма трех напряжений равна нулю, поэтому концы трех секций могут быть заземлены.
- Суммирование индуцированного напряжения в секционированном экране от каждой фазы, приводящее к нейтрализации индуцированных напряжений в трех последовательных второстепенных секциях.
- Обычно одна длина барабана (около 500 м) на одну вспомогательную секцию.
- Положение секционирования и положение соединения кабеля должны совпадать.
- Прочно заземлен на стыках основных секций.
- Транспонируйте кабельную жилу, чтобы сбалансировать величину индуцированных напряжений, подлежащих суммированию. Соединительная коробка
- должна использоваться на каждом секционируемом соединении и сбалансированном сопротивлении на всех фазах.
- Профиль величины индуцированного напряжения вдоль экрана основного участка в системе поперечных кабелей.
- Фактически нулевой ток и напряжение на удаленном заземлении на заземленных концах.
- Чтобы получить оптимальный результат, существуют два «креста». Одним из них является транспонирование кабельного сердечника, пересекающего кабельную жилу в каждой секции, а вторым — перекрестное скрепление экранов кабелей, эффективно не транспонирование экрана.
- Поперечное скрепление экрана кабеля : отменяется индуцированное напряжение на экране в каждом главном соединении секции.
- Перестановка кабелей: Это гарантирует, что суммируемые напряжения имеют одинаковую величину. Увеличьте постоянное напряжение на экране внешнего кабеля.
- На экране имеется постоянное напряжение, и большинство стыковых соединений кабеля и соединения должны быть установлены в виде изолированной системы экрана.
Требования к транспонированию для кабелей с сердечником
Кабельная система с перекрестными связями без транспонирования- Если сердечник не транспонирован, плохо нейтрализован, что приводит к некоторым циркулирующим токам.
- Кабель должен быть транспонирован, и экран должен быть поперечно скреплен в каждом положении секционирующего соединения для оптимальной нейтрализации
Преимущества
- Не требуется никаких проводников заземления.
- Фактически нулевой циркулирующий ток на экране.
- Постоянное напряжение на экране контролируется.
- Технически превосходит другие методы.
- Подходит для междугородной кабельной сети.
Недостатки
- Технически сложно.
- дороже.
Сравнение методов склеивания
Метод заземления | постоянное напряжение на конце кабеля | Требуется ограничитель напряжения оболочки | Применение |
односторонний склеивание | Да | Да | до 500 метров |
Двухстороннее склеивание | № | № | Короткие соединения до 1 км и подстанции, практически не применяются для кабелей высокого напряжения, а для кабелей среднего и низкого напряжения |
Cross Bonding | Только в точках пересечения | Да | Междугородние соединения там, где требуются стыки |
Потери в оболочке в соответствии с типом склеивания
- Потери в оболочке являются зависящими от тока потерями и генерируются индуцированными токами, когда ток нагрузки протекает в проводниках кабеля.
- Токи оболочки в одножильных кабелях индуцируются эффектом «трансформатора»; то есть посредством магнитного поля переменного тока, протекающего в проводнике кабеля, который индуцирует напряжения в оболочке кабеля или других параллельных проводниках.
- Электродвижущие силы, вызванные оболочкой, создают потери двух типов: потери при циркуляционном токе (Y 1 ) и потери на вихревые токи (Y2), поэтому общие потери в металлической оболочке кабеля: Y = Y1 + Y2
- Вихревые токи, циркулирующие в радиальном и продольном направлении оболочек кабеля, генерируются по аналогичным принципам воздействия на кожу и бесконтактности i.е. они индуцируются токами проводника, токами, циркулирующими в оболочке, и токами, циркулирующими в токопроводящих проводниках в непосредственной близости.
- Они создаются в оболочке кабеля независимо от системы соединения одножильных кабелей или трехжильных кабелей
- Вихревые токи, как правило, имеют меньшую величину по сравнению с токовыми (циркулирующими) токами из прочно связанных оболочек кабелей и могут не учитываться, за исключением случая с большими сегментными проводниками, и рассчитываются в соответствии с формулами, приведенными в МЭК 60287.
- Циркуляционные токи генерируются в оболочке кабеля, если оболочки образуют замкнутый контур при соединении вместе на удаленных концах или промежуточных точках вдоль кабельной трассы.
- Эти потери называются потерями тока при циркуляции оболочки и определяются величиной тока в проводнике кабеля, частотой, средним диаметром, сопротивлением оболочки кабеля и расстоянием между одножильными кабелями.
Заключение
Существует много разногласий относительно того, должен ли экран кабеля заземляться на обоих концах или только на одном конце.Если заземлен только один конец, любой возможный ток короткого замыкания должен пересекать длину от короткого замыкания до заземленного конца, налагая большой ток на обычно очень легкий экранирующий проводник. Такой ток может легко повредить или разрушить экран и потребовать замены всего кабеля, а не только поврежденного участка.
Если оба конца заземлены, ток короткого замыкания будет делиться и протекать к обоим концам, уменьшая нагрузку на экран и, следовательно, уменьшая вероятность повреждения.
Многократное заземление, а не просто заземление на обоих концах, — это просто заземление экрана или оболочки кабеля на всех точках доступа, таких как люки или вытяжные коробки.Это также ограничивает возможное повреждение щита только поврежденным участком.
Рекомендации
- Миттон Консалтинг.
- EMElectricals
Как найти подходящий размер кабеля и провода?
Как определить правильный размер провода и кабеля для монтажа электропроводки?
Падение напряжения в кабелях
Мы знаем, что все проводники и кабели (кроме сверхпроводника) имеют некоторое сопротивление.
Это сопротивление прямо пропорционально длине и обратно пропорционально диаметру проводника, т. Е.
R ∝ L / a … [Законы сопротивления R = ρ (L / a)]
Всякий раз, когда ток проходит через проводник в этом проводнике происходит падение напряжения.Как правило, падение напряжения может пренебречь для проводников небольшой длины, но в случае проводников меньшего диаметра и проводников большой длины мы должны учитывать значительные падения напряжения для правильной установки электропроводки и будущего управления нагрузкой.
Согласно правилу IEEE B-23 , в любой точке между клеммой источника питания и установкой, падение напряжения не должно превышать 2,5% от предоставленного (питающего) напряжения .
Пример:
, если напряжение питания составляет 220 В переменного тока, то значение допустимого падения напряжения должно быть;
- Допустимое падение напряжения = 220 x (2.5/100) = 5,5 В
В цепях электропроводки также могут возникать падения напряжения от распределительной платы к разным подсистемам и конечным подсетям, но для подсхем и конечных подсхем значение падения напряжения должно быть половиной этого допустимого падения напряжения (т.е. 2,75 В при 5,5 В, как рассчитано выше)
Обычно падение напряжения в таблицах описывается в Ампер на метр (А / м) , например Каково будет падение напряжения в однометровом кабеле, по которому проходит один ток Ампера?
Существует два метода определения падения напряжения в кабеле , которые мы обсудим ниже.
В SI ( Международная система и метрическая система ) падение напряжения описывается ампер на метр (А / м) .
В FPS (система фунт-фут) падение напряжения описывается на основе длины, которая составляет 100 футов.
- Обновление : теперь вы также можете использовать следующие электрические калькуляторы, чтобы найти падение напряжения и размер провода в американской системе измерения проволоки .
- Калькулятор размеров электрических проводов и кабелей (медь и алюминий)
- Калькулятор размеров проводов и кабелей в AWG
- Калькулятор падения напряжения в проводе и кабеле
Таблицы и диаграммы для правильного кабеля и провода Размеры
Ниже приведены важные таблицы, которые вы должны соблюдать для определения правильного размера кабеля для монтажа электропроводки.
Нажмите, чтобы увеличить
Нажмите, чтобы увеличить
Нажмите, чтобы увеличить
Нажмите, чтобы увеличить
Нажмите, чтобы увеличить
Как найти падение напряжения в кабеле?
Чтобы найти падение напряжения в кабеле, выполните простые шаги, приведенные ниже.
- Прежде всего, найдите максимально допустимое падение напряжения
- Теперь, найдите ток нагрузки
- Теперь, в соответствии с током нагрузки, выберите подходящий кабель (какой ток должен быть ближайшим к расчетному току нагрузки) из таблицы 1.
- Из таблицы 1 найдите падение напряжения в метрах или 100 футах (какую систему вы предпочитаете) в соответствии с ее номинальным током
(будьте спокойны :), мы будем использовать как методы, так и систему для обнаружения падений напряжения (в метрах и 100 футах). ) в нашем решенном примере на всю электромонтажную проводку).
- Теперь вычислите падение напряжения для фактической длины проводной цепи в соответствии с ее номинальным током с помощью , следуя формулам .
(Фактическая длина цепи x падение напряжения на 1 м) / 100 ->, чтобы найти падение напряжения на метр.
(фактическая длина цепи x падение напряжения на 100 футов) / 100—> чтобы найти падение напряжения на 100 футов.
- Теперь умножьте это расчетное значение падения напряжения на коэффициент нагрузки где;
Коэффициент нагрузки = ток нагрузки, принимаемый кабелем / номинальный ток кабеля, указанный в таблице.
- Это значение падения напряжения в кабелях при прохождении через него тока нагрузки.
- Если рассчитанное значение падения напряжения меньше, чем значение, рассчитанное на шаге (1) (Максимально допустимое падение напряжения), то размер выбранного кабеля является правильным
- Если рассчитанное значение падения напряжения превышает рассчитанное значение на этапе (1) (Максимально допустимое падение напряжения), затем рассчитайте падение напряжения для следующего (большего по размеру) кабеля и т. д. до тех пор, пока расчетное значение падения напряжения не станет меньше максимально допустимого падения напряжения, рассчитанного на этапе (1).
Похожие сообщения:
Как определить правильный размер кабеля и провода для данной нагрузки?
Ниже приведены примеры, показывающие, как найти правильный размер кабеля для данной нагрузки.
Для данной нагрузки, размер кабеля может быть найден с помощью разных таблиц, но мы должны помнить и следовать правилам падения напряжения.
Определяя размер кабеля для данной нагрузки, примите во внимание следующие правила.
Для данной нагрузки, кроме известного значения тока, должен быть дополнительный объем тока на 20% для дополнительных, будущих или аварийных нужд.
От счетчика электроэнергии до распределительной платы падение напряжения должно составлять , 1,25%, , а для конечной подсхемы падение напряжения не должно превышать , 2,5%, от напряжения питания.
Учитывайте изменение температуры, при необходимости используйте температурный коэффициент (Таблица 3)
Также учитывайте коэффициент нагрузки при определении размера кабеля
При определении размера кабеля учитывайте систему проводки, т. Е. В открытой системе проводки, температура будет низкой, но в кабелепроводе температура повышается из-за отсутствия воздуха.
Похожие сообщения:
Решенные примеры правильного размера провода и кабеля
Ниже приведены примеры определения правильного размера кабелей для монтажа электропроводки, которые помогут легко понять метод «как определить правильный размер кабеля для данной нагрузки ».
Пример 1 ……. (британская / английская система)
Для монтажа электропроводки в здании общая нагрузка составляет 4.5 кВт и общая длина кабеля от счетчика электроэнергии до распределительной платы подсхемы составляет 35 футов. Напряжение питания составляет 220 В, а температура составляет 40 ° C (104 ° F). Найдите наиболее подходящий размер кабеля от счетчика электроэнергии до подсхемы, если проводка установлена в кабелепроводах.
Решение: —
- Общая нагрузка = 4,5 кВт = 4,5 х 1000 Вт = 4500 Вт
- Дополнительная нагрузка 20% = 4500 х (20/100) = 900 Вт
- Общая нагрузка = 4500 Вт + 900 Вт = 5400 Вт
- Общий ток = I = P / V = 5400 Вт / 220 В = 24.5A
Теперь выберите размер кабеля для тока нагрузки 24,5A (из таблицы 1), который равен 7 / 0,036 (28 ампер), это означает, что мы можем использовать кабель 7 / 0,036 в соответствии с таблицей 1.
Теперь проверьте выбранный (7 / 0,036) кабель с температурным коэффициентом в таблице 3, поэтому температурный коэффициент составляет 0,94 (в таблице 3) при 40 ° C (104 ° F), а токоподъемность (7 / 0,036) составляет 28А, поэтому пропускная способность этого кабеля при 40 ° C (104 ° F) будет равна;
Номинальный ток при 40 ° C (104 ° F) = 28 x 0.94 = 26,32 амп.
Так как расчетное значение ( 26,32 Ампер ) при 40 ° C ( 104 ° F ) меньше, чем токонесущая способность (7 / 0,036) кабеля, которая составляет 28A , поэтому этот размер кабеля ( 7 / 0,036 ) также подходит по температуре.
Теперь найдите падение напряжения на 100 футов для этого (7 / 0,036) кабеля из Таблица 4 , что составляет 7 В , но в нашем случае длина кабеля составляет 35 футов.Следовательно, падение напряжения на 35-футовом кабеле будет;
Фактическое падение напряжения на 35 футов = (7 x 35/100) x (24,5 / 28) = 2,1 В
А Допустимое падение напряжения = (2,5 х 220) / 100 = 5,5 В
Здесь Фактическое падение напряжения (2,1 В) меньше, чем максимально допустимое падение напряжения 5,5 В. Следовательно, подходящий и наиболее подходящий размер кабеля (7 / 0,036) для данной заданной нагрузки для монтажа электропроводки.
Пример 2 ……. (СИ / Метрическая / Десятичная система)
Какой тип и размер кабеля подходит для данной ситуации
Нагрузка = 5.8 кВт
В = 230 В AV
Длина цепи = 35 метров
Температура = 35 ° C (95 ° F)
Решение: —
Нагрузка = 5,8 кВт = 5800 Вт
Напряжение = 230 В
Ток = I = P / V = 5800/230 = 25.2A
20% дополнительный ток нагрузки = (20/100) x 5.2A = 5A
Общий ток нагрузки = 25.2A + 5A = 30.2A
Теперь выберите размер кабеля для тока нагрузки 30.2A (из Таблицы 1), который равен 7 / 1,04 (31 Ампер), это означает, что мы можем использовать кабель 7 / 0,036 в соответствии с таблицей , таблица 1 .
Теперь проверьте выбранный (7 / 1,04) кабель с температурным коэффициентом в Таблице 3, поэтому температурный коэффициент составляет 0,97 (в таблице 3) при 35 ° C (95 ° F), а допустимая нагрузка по току (7 / 1,04) составляет 31A, следовательно, токонесущая способность этого кабеля при 40 ° C (104 ° F) будет;
Номинальный ток при 35 ° C (95 ° F) = 31 х 0,97 = 30 ампер.
Так как расчетное значение (30 А) при 35 ° C (95 ° F) меньше значения допустимой нагрузки по току (7/1).04) кабель, который является 31A, поэтому этот размер кабеля (7 / 1,04) также подходит по температуре.
Теперь найдите падение напряжения на амперметр для этого (7 / 1,04) кабеля из (Таблица 5), которое составляет 7 мВ, но в нашем случае длина кабеля составляет 35 метров. Следовательно, падение напряжения для 35-метрового кабеля будет:
Фактическое падение напряжения для 35-метрового =
= мВ x I x L
(7/1000) x 30 × 35 = 7,6 В
А Допустимое падение напряжения = (2.5 x 230) / 100 = 5,75 В
Здесь фактическое падение напряжения (7,35 В) больше, чем максимально допустимое падение напряжения в 5,75 В. Следовательно, этот размер кабеля не подходит для данной нагрузки. Поэтому мы выберем следующий размер выбранного кабеля (7 / 1,04), который равен 7 / 1,35, и снова найдем падение напряжения. В соответствии с таблицей (5) номинальный ток 7 / 1,35 составляет 40 ампер, а падение напряжения на амперметр составляет 4,1 мВ (см. Таблицу (5)). Таким образом, фактическое падение напряжения для 35-метрового кабеля будет;
Фактическое падение напряжения на 35 м =
= мВ х I х L
(4.1/1000) x 40 × 35 = 7,35 В = 5,74 В
Это падение меньше, чем максимально допустимое падение напряжения. Так что это наиболее подходящий и подходящий кабель или провод размером .
Пример 3
В здании подключены следующие нагрузки: —
Подсистема 1
- 2 лампы каждая на 1000 Вт и
- 4 вентилятора каждая 80 Вт
- 2 ТВ каждая мощностью 120 Вт
Подсистема 2
- 6 Лампы каждая по 80 Вт и
- 5 розеток каждая по 100 Вт
- 4 лампы каждая по 800 Вт
Если напряжение питания 230 В переменного тока, то рассчитывают ток цепи и Размер кабеля для каждой подсхемы ?
Решение: —
Общая нагрузка подсхемы 1
= (2 x 1000) + (4 x 80) + (2 × 120)
= 2000 Вт + 320 Вт + 240 Вт = 2560 Вт
Ток для подсхемы 1 = I = P / V = 2560/230 = 11.1A
Общая нагрузка подсхемы 2
= (6 x 80) + (5 x 100) + (4 x 800)
= 480 Вт + 500 Вт + 3200 Вт = 4180 Вт
Ток для подчиненного блока -Circuit 2 = I = P / V = 4180/230 = 18.1A
Следовательно, Рекомендуется кабель для подсхемы 1 = 3 / .029 ”( 13 Amp ) или 1 / 1,38 мм ( 13 Amp )
Рекомендуемый кабель для подсхемы 2 = 7 /.029 ”( 21 Ампер ) или 7 / 0,85 мм (24 Ампер)
Суммарный ток, потребляемый обоими подсхемами = 11,1A + 18,1A = 29,27 A
Таким образом, кабель рекомендуется для основного -Circuit = 7 / .044 ”(34 Amp) или 7 / 1.04 мм (31 Amp )
Пример 4
A 10H.P (7,46 кВт) трехфазный короткозамкнутый асинхронный двигатель с короткозамкнутым ротором Непрерывная номинальная мощность при пуске Star-Delta подключается через питание 400 В тремя одножильными ПВХ-кабелями, проложенными в кабелепроводе от 250 футов (76.2м) от платы предохранителей многоходового распределения. Его ток полной нагрузки составляет 19А. Средняя летняя температура в электропроводке составляет 35 ° C (95 ° F). Рассчитать размер кабеля для двигателя?
Решение: —
- Нагрузка двигателя = 10H.P = 10 x 746 = 7460W * (1H.P = 746W)
- Напряжение питания = 400 В (3-фазный)
- Длина кабеля = 250 футов (76,2 м)
- Ток полной нагрузки двигателя = 19A
- Температурный коэффициент для 35 ° C (95 ° F) = 0.97 (из таблицы 3)
Теперь выберите размер кабеля для тока двигателя при полной нагрузке 19 А (из таблицы 4), который составляет 7 / 0,36 ”(23 Ампер) * (помните, что это трехфазная система, т.е. 3 кабель) и падение напряжения составляет 5,3 В на 100 футов. Это означает, что мы можем использовать кабель 7 / 0.036 в соответствии с таблицей (4).
Теперь проверьте выбранный (7 / 0,036) кабель с температурным коэффициентом в таблице (3), поэтому температурный коэффициент составляет 0,97 (в таблице 3) при 35 ° C (95 ° F) и допустимая нагрузка по току (7 / 0,036). ”) Составляет 23 А, следовательно, токоподъемность этого кабеля при 40 ° C (104 ° F) будет:
Номинальный ток при 40 ° C (104 ° F) = 23 x 0.97 = 22,31 Амп.
Так как расчетное значение (22,31 А) при 35 ° C (95 ° F) меньше значения пропускной способности по току (7 / 0,036) кабеля, который составляет 23 А, следовательно, этот размер кабеля (7 / 0,036) также подходит в отношении температуры.
Коэффициент нагрузки = 19/23 = 0,826
Теперь найдите падение напряжения на 100 футов для этого (7 / 0,036) кабеля из таблицы (4), которое составляет 5,3 В, но в нашем случае длина кабеля составляет 250 ноги. Следовательно, падение напряжения на 250-футовом кабеле будет;
Фактическое падение напряжения для 250 футов = (5.3 x 250/100) x 0,826 = 10,94 В
А максимально Допустимое падение напряжения = (2,5 / 100) x 400 В = 10 В
Здесь фактическое падение напряжения (10,94 В) больше, чем у максимально допустимое падение напряжения 10В. Следовательно, этот размер кабеля не подходит для данной нагрузки. Поэтому мы выберем следующий размер выбранного кабеля (7 / 0,036), который равен 7 / 0,044, и снова найдем падение напряжения. В соответствии с таблицей (4) текущий рейтинг 7 / 0,044 составляет 28 ампер, а падение напряжения на 100 футов составляет 4.1 В (см. Таблицу 4). Следовательно, фактическое падение напряжения на 250-футовом кабеле будет;
Фактическое падение напряжения на 250 футов =
= Вольт на 100 футов x длина кабеля x коэффициент нагрузки
(4.1 / 100) x 250 x 0,826 = 8,46 В
А Максимально допустимое падение напряжения = (2,5 / 100) x 400 В = 10 В
Фактическое падение напряжения меньше, чем максимально допустимое падение напряжения. Так что это наиболее подходящий и подходящий размер кабеля для монтажа электропроводки в данной ситуации.
Похожие сообщения:
.Мы не можем найти эту страницу
(* {{l10n_strings.REQUIRED_FIELD}})
{{l10n_strings.CREATE_NEW_COLLECTION}} *
{{l10n_strings.ADD_COLLECTION_DESCRIPTION}}
{{}} L10n_strings.COLLECTION_DESCRIPTION {{AddToCollection.description.length}} / 500 {{l10n_strings.TAGS}} {{$ Пункт}} {{}} l10n_strings.PRODUCTS {{}} L10n_strings.DRAG_TEXT{{l10n_strings.DRAG_TEXT_HELP}}
{{}} L10n_strings.LANGUAGE {{$ Select.selected.display}}{{статья.content_lang.display}}
{{}} L10n_strings.AUTHOR{{l10n_strings.AUTHOR_TOOLTIP_TEXT}}
{{$ Выбора.selected.display}} {{}} L10n_strings.CREATE_AND_ADD_TO_COLLECTION_MODAL_BUTTON {{}} L10n_strings.CREATE_A_COLLECTION_ERROR ,CSS · Bootstrap
Узнайте о ключевых элементах инфраструктуры Bootstrap, включая наш подход к более быстрой, быстрой и сильной веб-разработке.
HTML5 doctype
Bootstrap использует определенные элементы HTML и свойства CSS, которые требуют использования типа документа HTML5. Включите его в начале всех ваших проектов.
...
html>
Мобильный первый
В Bootstrap 2 мы добавили дополнительные мобильные дружественные стили для ключевых аспектов инфраструктуры.С Bootstrap 3 мы с самого начала переписали проект так, чтобы он был мобильным. Вместо добавления дополнительных мобильных стилей, они встроены прямо в ядро. На самом деле, Bootstrap является первым мобильным . Первые стили для мобильных устройств можно найти во всей библиотеке, а не в отдельных файлах.
Для обеспечения правильного рендеринга и масштабирования касанием добавьте метатег области просмотра к вашему
.
Вы можете отключить возможности масштабирования на мобильных устройствах, добавив user-scalable = no
в метатег viewport.Это отключает масштабирование, что означает, что пользователи могут только прокручивать, и в результате ваш сайт будет чувствовать себя немного больше, как нативное приложение. В целом, мы не рекомендуем это на каждом сайте, поэтому будьте осторожны!
Типография и ссылки
Bootstrap устанавливает основные глобальные стили отображения, типографики и ссылок. В частности, мы:
- Установить
цвет фона: #fff;
накузов
- Используйте атрибуты
@ font-family-base
,@ font-size-base
и@ line-height-base
в качестве нашей типографской базы - Установите глобальный цвет ссылки с помощью
@ link-color
и примените подчеркивание ссылки только на: наведите
Эти стили можно найти в лесах .менее
.
Normalize.css
Для улучшения кросс-браузерного рендеринга мы используем Normalize.css, проект Николаса Галлахера и Джонатана Нила.
Контейнеры
Bootstrap требует содержащего элемента, чтобы обернуть содержимое сайта и разместить нашу сеточную систему. Вы можете выбрать один из двух контейнеров для использования в ваших проектах. Обратите внимание, что из-за отступов и
и более ни один контейнер не является вложенным.
Используйте .container
для адаптивного контейнера фиксированной ширины.
...
div> Используйте .container-liquid
для контейнера полной ширины, охватывающего всю ширину вашего окна просмотра.
...
div> Bootstrap включает в себя гибкую мобильную систему первой жидкостной сетки, которая соответствующим образом масштабируется до 12 столбцов по мере увеличения размера устройства или области просмотра. Он включает в себя предопределенные классы для удобных вариантов разметки, а также мощные миксины для создания более семантических разметок.
Введение
Грид-системы используются для создания макетов страниц через ряд строк и столбцов, в которых размещается ваш контент. Вот как работает сеточная система Bootstrap:
- Ряды должны быть размещены в контейнере
.
(фиксированная ширина) или в контейнере .
(полная ширина) для правильного выравнивания и заполнения. - Используйте строки для создания горизонтальных групп столбцов.
- Содержимое должно быть размещено в столбцах, и только столбцы могут быть непосредственными дочерними элементами строк.
- Предопределенные классы сетки, такие как
.row
и .col-xs-4
доступны для быстрого создания сетки. Меньше миксинов также можно использовать для более семантических макетов. - Столбцы создают желоба (промежутки между содержимым столбца) через отступ
. Это заполнение смещается в строках для первого и последнего столбца через отрицательное поле .row
с. - Отрицательная маржа является причиной того, что приведенные ниже примеры устарели. Это так, что содержимое в столбцах сетки выровнено с содержимым, не связанным с сеткой.
- Столбцы сетки создаются путем указания числа двенадцати доступных столбцов, которые вы хотите охватить. Например, три равных столбца будут использовать три
.col-xs-4
. - Если в одной строке размещено более 12 столбцов, каждая группа дополнительных столбцов, как один блок, переносится на новую строку.
- Классы сетки применяются к устройствам с шириной экрана, превышающей или равной размерам точек останова, и переопределяют классы сетки, предназначенные для небольших устройств. Следовательно, е.грамм. применение любого класса
.col-md- *
к элементу повлияет не только на его стиль на средних устройствах, но и на больших устройствах, если класс .col-lg- *
отсутствует.
Посмотрите примеры применения этих принципов в вашем коде.
Мы используем следующие медиазапросы в наших файлах Less, чтобы создать ключевые точки останова в нашей сеточной системе.
/ * сверхмалые устройства (телефоны с разрешением менее 768 пикселей) * /
/ * Нет медиазапроса, так как это значение по умолчанию в Bootstrap * /
/ * Маленькие устройства (планшеты, 768px и выше) * /
@media (min-width: @ screen-sm-min) {...}
/ * Средние устройства (рабочие столы, 992px и выше) * /
@media (min-width: @ screen-md-min) {...}
/ * Большие устройства (большие рабочие столы, 1200px и выше) * /
@media (min-width: @ screen-lg-min) {...}
Мы иногда расширяем эти медиазапросы, чтобы включить max-width
, чтобы ограничить CSS более узким набором устройств.
@media (максимальная ширина: @ screen-xs-max) {...}
@media (min-width: @ screen-sm-min) и (max-width: @ screen-sm-max) {...}
@media (min-width: @ screen-md-min) и (max-width: @ screen-md-max) {...}
@media (min-width: @ screen-lg-min) {...}
Параметры сетки
Посмотрите, как аспекты системы сетки Bootstrap работают на нескольких устройствах с помощью удобной таблицы.
Очень маленькие устройства Телефоны (<768 пикселей) Небольшие устройства Таблетки (≥768px) Средние устройства Рабочие столы (≥992px) Большие устройства Рабочие столы (≥1200 пикселей) Сетка поведения Горизонтально все время Свернуто до начала, горизонтальное положение выше контрольных точек Ширина контейнера Нет (авто) 750px 970px 1170px Префикс класса .col-xs-
.col-sm-
.col-md-
.col-lg-
# столбцов 12 Ширина колонны Авто ~ 62px ~ 81px ~ 97 пикселей Ширина водосточного желоба 30 пикселей (15 пикселей на каждой стороне столбца) Nestable Да Смещения Да Колонка для заказа Да
Пример: с накоплением по горизонтали
Использование одного комплекта .Классы сетки col-md- *
позволяют создать базовую систему сетки, которая вначале размещается на мобильных устройствах и планшетах (от очень маленького до небольшого диапазона), а затем становится горизонтальной на настольных (средних) устройствах. Поместите столбцы сетки в любой .row
.
.col-md-1
.col-md-1
.col-md-1
.col-md-1
.col-md-1
.col-md-1
.col-md-1
.col-md-1
col-md-1
.col-md-1
.col-md-1
.col-md-1
.col-md-4
.col-md-4
.col-md-4
.col-мкр-1 DIV>
.col-мкр-1 DIV>
.col-мкр-1 DIV>
.col-мкр-1 DIV>
.