Калькулятор потери напряжения: Расчёт потерь напряжения | Онлайн калькулятор

Содержание

Падение напряжения по длине кабеля: методы расчета, природа явления

Любой кабель ограничен в своей пропускной способности. По этой причине могут появиться такие условия в электросети, когда для нормальной работы оборудования величина напряжения окажется недостаточной. Такое явление часто встречается, и по этой причине заслуживает более детального рассмотрения, что и будет сделано далее в нашей статье.

Основные причины падения напряжения

Итак, на пропускную способность кабеля оказывают влияние два его главных параметра:

  • площадь поперечного сечения;
  • длина.

Но сила тока в жилах – это как раз та физическая величина, с которой перечисленные параметры находятся в неразрывной связи по закону Ома для участка электрической цепи:

Теория

Среди указанных составляющих формулы сопротивления не хватает еще одной, связывающей силу тока и его неравномерное распределение по поперечнику жилы кабеля.

Напоминаем, что это явление именуется поверхностным эффектом или скин-эффектом. Чем больше сила тока, тем заметнее скин-эффект. От него можно избавиться в кабеле, только делая жилы многопроволочными.

Скин-эффект и распределение тока по сечению токопроводящей жилы

Но рассмотренные явления в полной мере соответствуют кабелям с постоянным током, используемым в основном для электрического транспорта. В остальном – это лишь часть того, что входит в понятие падения напряжения (ΔU) по длине кабеля, работающего в промышленной электросети, в которой действует переменное напряжение. В этих условиях любой проводник характеризуется импедансом, учитывающим его индуктивность и емкость, образующих реактивную составляющую напряжения и тока. Поэтому в целом получается комплексная проблема, которая, по сути, сводится к потерям электроэнергии. А ΔU – это их объективное проявление (см. поясняющее изображение далее):

Скин-эффект и распределение тока по сечению токопроводящей жилы

Напоминаем, что в электротехнике для расчетов напряжений и токов с участием нагрузки, исчисляемой по импедансу, используются комплексные числа. Индуктивность и емкость вызывают сдвиг между током и напряжением. Поэтому комплексное число может быть представлено графически. Один вектор – это активная составляющая, другой – реактивная. Сдвиг между током и напряжением характеризуется углом между упомянутыми двумя векторами, выходящими из общей точки. На изображении выше изложенное представляют векторные диаграммы, выполненные красным цветом.

Варианты определения ΔU

Метод векторов

В ходе проектирования электрической сети в основе лежит нагрузка, работоспособность которой необходимо обеспечить. Если кабель будет выбран неправильно, ΔU на нем не позволит правильно работать этой нагрузке. Асинхронные двигатели не достигнут заданных оборотов, трансформаторы на вторичных обмотках не обеспечат номинальные напряжения и т.д., и т.п. Для однофазной сети нагрузка разделяется на активную и реактивную составляющие.

Трехфазная сеть представляется как три самостоятельные однофазные сети. Они называются схемами замещения. Этот метод обеспечивает достаточно точные результаты, если нагрузка симметрична. Если симметрия нарушается, то анализ причин, которые этот процесс вызвали, также можно выполнить, используя этот метод. На основании известных величин можно построить векторную диаграмму и, меняя длину векторов соответственно поставленной задаче, определять те величины, которые необходимы.

Схема 1

Например, известны параметры, которые необходимы для нормальной работы нагрузки. Параметры линии также известны. Следовательно, задача сводится к определению векторного напряжения U1. Шаги, приводящие к появлению искомого вектора, показаны далее.  

Схема 2

Длина вектора и его направление определяются исходя из закона Ома и направления вектора напряжения, определяющего ток (векторы тока и напряжения по направлению совпадают). Вектор напряжения, который получается как результат сложения активной и реактивной составляющих нагрузки (IR+IХ), – это и есть ΔU в линии, соединяющей источник напряжения U1 с нагрузкой. Из полученных векторов просто получить также и потери напряжения. Для этого векторы U1 и U2 совмещаются так, чтобы направление обоих было таким же, как у вектора U2. Разница между ними в длине – это будут потери напряжения.

Схема падения и потери напряжения Определение ΔU и потерь напряжения

Таблицы Кнорринга

Но заниматься построением векторов довольно-таки нудно. Тем более что за время существования потребности в проектировании электросетей для стандартных ситуаций придуманы решения более быстрые. К ним относятся таблицы Кнорринга. Стандартность ситуации для них состоит в постоянстве напряжения на входе кабеля или иного проводника (переменное напряжение с действующим значением 220 В). Это важно как для одной фазы, так и для трех фаз. То есть в трехфазной электросети нагрузка должна быть симметричной.

Также необходимо располагать величиной сечения токопроводящей жилы (в квадратных миллиметрах), длиной проводника (в метрах) и мощностью в нагрузке (в киловаттах). Получаем произведение мощности на длину, в столбце, начинающемся с подходящего сечения жилы, находим это значение, и в крайнем левом столбце смотрим ΔU на кабеле. Только и всего. Два варианта таблиц для напряжения однофазной и трехфазной электрической сети, а также одна для напряжения 12 В, показанные далее, читатель может использовать для расчетов.

Таблица 1 Таблица 2 Таблица 3

Для всех таблиц принято ограничение – жилы должны быть из меди. Если читателю встретится такое определение, как момент нагрузки, – это как раз и будет число из таблицы Кнорринга для провода, соответствующее произведению мощности на длину.

Точные расчеты по формулам

Если по тем или иным причинам метод векторов и таблицы не устраивают, можно использовать либо формулы, показанные далее, либо калькулятор онлайн, на них основанный. Таких калькуляторов в сети немало, и найти подходящий несложно.

Расчет по формулам ΔU по длине кабеля Похожие статьи:

Расчет напряжения электропитания на потребителя, определение напряжения на нагрузке

Падение напряжения в электрической сети может стать настоящей проблемой с приобретением современных мощных электроприборов.

Чаще всего от этого страдают жильцы старых многоквартирных и частных домов, проводка в которых проложена 20, а то и 30 лет назад. Для энергопотребителей тех времен сечения кабеля было вполне достаточно, однако сегодня практически все пользователи полностью перешли на электрическую технику, эксплуатация которой требует модернизации проводки.

Наглядную картину можно наблюдать на примере освещения. Когда в электрической сети падает напряжение при подключении нагрузки с малым сопротивлением, лампы начинают гореть с меньшей яркостью. Причиной такого явления может быть недостаточное сечение проводки.

Чтобы убедиться в том, что источник выдает больший вольтаж, чем потребитель, необходимо вычислить напряжение на нагрузке. Сделать это можно путем включения в цепь вольтметра или по формуле. В первом случае измерительный прибор, который изначально имеет достаточно высокое сопротивление на входе, необходимо подключать параллельно линии. Это позволяет избежать шунтирования нагрузки и искажения результатов измерения.




Как рассчитать напряжение по формуле

Когда возникают перебои в подаче электроэнергии к приборам, важно проанализировать работу линии. При этом следует определить напряжение на нагрузке по формуле – такое решение дает максимально точный результат и позволяет вычислить другие параметры аналогичным способом. Так, формула расчета напряжения на нагрузке выглядит следующим образом:


U1 – напряжение источника;

ΔU – падение напряжения в линии;

I – ток в линии;

R0 – сопротивление линии.

В том случае, если сопротивление линии и напряжение источника постоянны, напряжение на нагрузке напрямую зависит от силы тока в линии.

Например, при подключении прибора в электрическую сеть с напряжением 220 В, током 10 А и сопротивлением линии, равным 2 Ом, напряжение на нагрузке составит:


В режиме холостого хода падения напряжения в линии нет (ΔU = 0), поэтому напряжение на нагрузке теоретически равно вольтажу источника (U2 = U1). Однако на практике напряжение источника равняться напряжению потребителя не может, поскольку и проводка, и источник электроэнергии, и подключенный к сети прибор имеют собственное сопротивление.

Пример. Напряжение источника составляет 220 В, внутреннее его сопротивление можно не учитывать. Сопротивление проводки – 1 Ом. Сопротивление включенного в сеть электрического прибора – 12 Ом. Суммарное сопротивление цепи составит 13 Ом. Ток в линии рассчитывается по закону Ома и составляет:


Напряжение на нагрузке вычисляется по формуле, приведенной выше:


Таким образом, видно, что напряжение на нагрузке меньше исходных 220 В, остальной вольтаж «теряется» на проводах.

Падение напряжения при подключении нагрузки потребителя

Из-за скачков вольтажа в сети страдают преимущественно жители частного сектора, дачных и коттеджных поселков. Из-за чего же происходит падение напряжения при подключении потребителя?

Первая причина этого явления – недостаточное сечение электрической проводки в доме. Дело в том, что слишком тонкие жилы кабеля не выдерживают большой нагрузки, которая возникает при включении в сеть электроприборов с высокой мощностью. Вторая причина – некачественные контакты в местах соединения проводов, что создает дополнительное сопротивление на линии.

Из-за падения напряжения в обоих случаях есть риск перегрева проводки или участка, в котором находится неисправный контакт. Это может стать причиной полного прекращения подачи электроэнергии на объект и даже возгорания.

Иногда падение напряжения наблюдается не на стороне пользователя, а на линиях электропередач. Оно может возникать вследствие перегрузки подстанции. В этом случае решить проблему может лишь поставщик электроэнергии путем замены устаревшей подстанции на более новую модель с современной релейной защитой. Еще одной причиной низкого напряжения может быть недостаточное сечение проводов на линии электропередач, а также нестабильное распределение нагрузки фаз на стороне подстанции. Как и в первом случае, устранить эти недочеты может только поставщик коммунальной услуги.

Узнать, действительно ли поставщик электроэнергии виноват в «провалах» напряжения, можно, опросив соседей. Если у них подобной проблемы нет, значит, стоит искать причину на территории участка. Зачастую этот вопрос успешно решается путем замены проводки на новый кабель с большим сечением. Однако в некоторых случаях падение напряжения продолжает наблюдаться. Причина может заключаться в так называемых «скрутках» – соединениях проводов путем их скручивания. Дело в том, что каждый некачественный контакт на линии снижает конечное напряжение в сети. Чтобы этого избежать, рекомендуется использовать заводские зажимы, которые гораздо более надежны, чем другие способы соединения электрических кабелей, а также абсолютно безопасны.

В случаях с применением низковольтных аккумуляторных батарей тоже могут наблюдаться «провалы». Если при включении потребителей падает напряжение зарядки источника питания, наиболее вероятная причина этого – некачественные контакты.

При падении напряжения в сети принципиально важно выяснить и устранить причину этого. В противном случае бездействие может обернуться печальными последствиями, особенно если дело касается электрической бытовой проводки. Современные кабели с подходящим сечением и качественно выполненные соединения проводов – залог длительной и эффективной работы всех электроприборов.


Расчет потери напряжения | EDS

Во время передачи электроэнергии по проводам к электроприемникам ее небольшая часть расходуется на сопротивление самих проводов. Чем выше протекаемый ток и больше сопротивление провода, тем больше на нем будет потеря напряжения. Величина тока зависит от подключенной нагрузки, а сопротивление провода тем больше, чем больше его длина. Логично? Поэтому нужно понимать, что провода большой длины могут быть не пригодны для подключения какой-либо нагрузки, которая, в свою очередь, хорошо будет работать при коротких проводах того же сечения.

В идеале все электроприборы будут работать в нормальном режиме, если к ним подается то напряжение, на которые они рассчитаны. Если провод рассчитан не правильно и в нем присутствуют большие потери, то на вводе в электрооборудование будет заниженное напряжение. Это очень актуально при электропитании постоянным током, так как тут напряжение очень низкое, например 12 В, и потеря в 1-2 В тут будет уже существенной.

Чем опасна потеря напряжения в электропроводке? Отказом работы электроприборов при очень низком напряжении на входе.

В выборе кабеля необходимо найти золотую середину. Его нужно подобрать так, чтобы сопротивление провода при нужной длине соответствовало конкретному току и исключить лишние денежные затраты. Конечно, можно купить кабель огромного сечения и не считать в нем потери напряжения, но тогда за него придется переплатить. А кто хочет отдавать свои деньги на ветер? Давайте разберемся, как учесть потери напряжения в кабеле при его выборе.

Калькулятор в режиме онлайн позволяет правильно вычислить необходимые параметры, которые в дальнейшем сократят появление различного рода неприятностей. Для самостоятельного вычисления потери электрического напряжения вспомним физику и перейдем к небольшим формулам и расчетам.

Напряжение на проводе мы можем узнать по следующей формуле, зная его сопротивление (R, Ом) и ток нагрузки (I, А).

U=RI

Сопротивление провода рассчитывается так:

R=рl/S, где

р – удельное сопротивление провода, Ом*мм2/м;

l – длина провода, м;

S – площадь поперечного сечения провода, мм2.

Удельное сопротивления это величина постоянная. Для меди она составляет р=0,0175 Ом*мм2/м, и для алюминия р=0,028 Ом*мм2/м. Значения других металлов нам не нужны, так как провода у нас только с медными или с алюминиевыми жилами.

Небольшой пример расчета для медного провода:

Задача: подключить нагрузку в 3,3 кВм (I = 15А, U=220V) на расстоянии 50м медным кабелем сечением 2х1,5 мм2.

Не забываем, что ток “бежит” по 2-х жильному кабелю туда и обратно, поэтому “пробегаемое” им расстояние будет в два раза больше длины кабеля (50*2=100 м).

Потеря напряжения в данной линии будет:

U=(рl)/s*I=0,0175*100/1,5*15=17,5 В

Что составляет практически 9% от номинального (входного) значения напряжения (220V). Это довольно большая потеря напряжения, потому проводим аналогичный расчет для кабеля сечением 2,5 мм2 и получаем 4,7%. Согласно ПУЭ, отклонения напряжения в линии должны составлять не более 5%, следовательно это сечение подходит оптимально.

Так что если источник питания находится на довольно большом расстоянии от приемника,обязательно посчитайте потери напряжения в данной линии!

Расчет падения напряжения в кабеле 12в, потери в кабельных линиях

Расчёт потерь напряжения в кабеле

  • ГЛАВНАЯ
  • О НАС
    • Лицензии и сертификаты
    • Наши заказчики
    • Фото с наших объектов
    • Наши партнёры
    • Реквизиты и дислокация
    • Вакансии
    • Видео Онлайн
  • ДЕЯТЕЛЬНОСТЬ
    • Видеонаблюдение
    • Охранная сигнализация
    • Контроль и управление доступом
    • Пожарная сигнализация
    • Пожаротушение
    • Огнезащитные преграды
    • Огнезащитная обработка
    • Расчёт категории пожарной опасности
    • Автоматизация
    • Частотный привод
    • Учёт энергоносителей
    • Грозозащита и заземление
    • Электромонтажные работы
    • Локальные сети и СКС
    • Спутниковая связь
    • Аудио и видеосистемы
  • ТИПОВЫЕ РЕШЕНИЯ
    • Типовые решения: Видеонаблюдение
    • Типовые решения: Локально-вычисл. сети
    • Типовые решения: АТС Panasonic
    • Типовые решения: Сигнализация
  • ОБОРУДОВАНИЕ
    • Видеонаблюдение
    • Сигнализация
    • Пожаротушение
    • Огнезащитные материалы
    • Контроль доступа
    • Программное обеспечение
    • Сетевое оборудование
    • Охрана периметра
    • ATC Panasonic
    • Источники питания
    • Кабельная продукция
    • Заземление, грозозащита
    • Промавтоматика
    • Металлодетекторы
    • Спутниковые системы
    • Спецпредложения товаров и услуг
  • НОВОСТИ
    • Камера с использованием наноструктур
    • Рекорды радиорелейной связи
    • Сервер на процессорах Эльбрус
    • Видеорегистратор «Линия XVR»
    • Компьютеры на базе Эльбрус 8С
    • Миллионы пинхолов
    • Электричество без нагревания
    • Тепловой транзистор
    • Спутник квантовой связи
    • Будущее за скирмионами
    • Интеллектуальная камера IRIS
    • Система хранения Archival Disc
    • Плащ-невидимка для микросхем
    • Графеновые шары
    • Органическая электроника
    • «Междугородняя» квантовая связь
    • Нанотехнологии в электронике
    • Песок, охлаждающий электронику
    • Пластиковая электроника
    • Рекордный воздушный канал
    • IP-камеры с объективом i-CS
    • Видеосервер «Линия MicroNVR»
    • Тактовая частота от 10 ГГц
    • Оптоволокно нового поколения
    • Видеокамера BD4680DV
    • Линза в 9 атомных слоев
    • Hikvision DS-2CC12D9T-E
  • СТАТЬИ
    • Защита частного дома от пожара
    • Типичные ошибки электромонтажа
    • Расчёт системы звукового оповещения
    • Как правильно проложить кабель в деревянном доме?
    • Типовые решения на базе IP видеокамер
    • Расчёт линии питания систем оповещения
    • Облачная видеоаналитика для веб-клиентов
    • H. 265 — маркетинговый трюк или что-то большее?
    • Как обеспечить надежность РЭС
    • Защита коаксиальных линий
    • Применение SCADA TRACE MODE 6
    • Цилиндрические спиральные антенны СВЧ
    • Сварка электрических проводов
    • Корректоры коэффициента мощности
    • Системы защитного заземления
    • Защита информационных линий
    • Сетевые фильтры и грозозащита
    • Обзор конструкций видеокамер
    • Интеллектуальное здание
    • Cеть охранного телевидения
    • Передача видеосигналов по кабелю витой пары
    • Заземление в системах промышленной автоматики
    • Продукты Mandriva Linux получили сертификат ФСТЭК
    • RS-485 для чайников
    • Что такое SCADA
    • Правильная разводка сетей RS-485
    • Преобразователи частоты для любых задач
  • РАСЧЁТЫ
    • Расчёт участка цепи
    • Расчёт фильтра нижних частот
    • Расчёт потерь напряжения в кабеле
    • Расчёт сечения кабеля
    • Расчёт комплексного сопротивления провода
    • Расчёт комплексного сопротивления шины
    • Расчёт затухания в коаксиальном кабеле
    • Расчёт реактивного сопротивления
    • Расчёт резонансной частоты
    • Расчёт системы заземления
    • Расчет одиночного стержневого молниеотвода
    • Расчет двойного стержневого молниеотвода
    • Расчёт одиночного тросового молниеотвода
    • Расчёт двойного тросового молниеотвода
    • Расчёт питания системы видеонаблюдения
    • Расчёт угла обзора видеокамеры
    • Расчёт зоны обзора видеокамеры
    • Расчёт пластинчатого теплоотвода
    • Расчёт освещения
    • Расчёт падения давления в трубопроводе
    • Расчёт стоимости проекта
    • Расчёт стоимости обслуживания
    • Расчёт стоимости электромонтажных работ
  • ПРОГРАММЫ
  • СПРАВКА
    • Категории и классы защиты объектов
    • Глоссарий по охранному телевидению
    • Глоссарий по охранно-пожарной сигнализации
    • Глоссарий по установкам пожаротушения
    • Таблица токов плавления для проволоки
    • Кабели для видеонаблюдения
    • Сетка частот телевизионных каналов
    • Справочник по кабельной продукции
    • Основные интерфейсные разъёмы
    • Выбор сечения проводников
    • Физические свойства материалов
    • Радиочастотные кабели
    • Поверхностный (скин) эффект
    • Перевод U1/U2 и P1/P2 в децибелы и неперы
    • Допустимые и недопустимые контакты
    • Углы обзора видеокамер
    • Периодическая система Менделеева
  • КАРТА САЙТА

Пример расчета

Допустим у нас стоит задача запитать камеру видеонаблюдения от блока питания 12 вольт. Расстояние от камеры видеонаблюдения до источника питания 100 метров.Планируемый кабель для подачи питания имеет сечение 0.75 мм². Далее мы узнаем ток потребления видеокамеры, в нашем случае это 0.3 А или 300 мА. Вбиваем количество камер на линии и выбираем величину напряжения источника питания. Жмем расчет и получаем точные данные.

Из результата ниже мы узнаем, что в нашем случае до камеры дойдет всего лишь 10.6 вольт, что не совсем корректно для работы камеры видеонаблюдения, следовательно нам нужно либо сократить дистанцию между камерой и блоком питания либо использовать более толстое сечение кабеля.

Наш калькулятор позволяет произвести расчет падения напряжения в сечении кабеля 12, 24, 36, 48, 60 вольт в однофазной двухпроводной линии постоянного или переменного тока.

Внимание!

Все расчеты считаются верными при использовании медного кабеля, если Ваш кабель омедненный результаты будут расходиться.

Линии электропередач транспортируют ток от распределительного устройства к конечному потребителю по токоведущим жилам различной протяженности. В точке входа и выхода напряжение будет неодинаковым из-за потерь, возникающих в результате большой длины проводника.

Падение напряжения по длине кабеля возникает по причине прохождения высокого тока, вызывающего увеличение сопротивления проводника.

На линиях значительной протяженности потери будут выше, чем при прохождении тока по коротким проводникам такого же сечения. Чтобы обеспечить подачу на конечный объект тока требуемого напряжения, нужно рассчитывать монтаж линий с учетом потерь в токоведущем кабеле, отталкиваясь от длины проводника.

Результат понижения напряжения

Согласно нормативным документам, потери на линии от трансформатора до наиболее удаленного энергонагруженного участка для жилых и общественных объектов должны составлять не более девяти процентов.

Допускаются потери 5 % до главного ввода, а 4 % — от ввода до конечного потребителя. Для трехфазных сетей на три или четыре провода номинальное значение должно составлять 400 В ± 10 % при нормальных условиях эксплуатации.

Отклонение параметра от нормированного значения может иметь следующие последствия:

  1. Некорректная работа энергозависимых установок, оборудования, осветительных приборов.
  2. Отказ работы электроприборов при сниженном показателе напряжения на входе, выход оборудования из строя.
  3. Снижение ускорения вращающего момента электродвигателей при пусковом токе, потери учитываемой энергии, отключение двигателей при перегреве.
  4. Неравномерное распределение токовой нагрузки между потребителями на начале линии и на удаленном конце протяженного провода.
  5. Работа осветительных приборов на половину накала, за счет чего происходят недоиспользование мощности тока в сети, потери электроэнергии.

В рабочем режиме наиболее приемлемым показателем потерь напряжения в кабеле считается 5 %. Это оптимальное расчетное значение, которое можно принимать допустимым для электросетей, поскольку в энергетической отрасли токи огромной мощности транспортируются на большие расстояния.

К характеристикам линий электропередач предъявляются повышенные требования. Важно уделять особое внимание потерям напряжения не только на магистральных сетях, но и на линиях вторичного назначения.

Причины падения напряжения

Каждому электромеханику известно, что кабель состоит из проводников — на практике используются жилы с медными или алюминиевыми сердечниками, обмотанные изоляционным материалом. Провод помещен в герметичную полимерную оболочку — диэлектрический корпус.

Поскольку металлические проводники расположены в кабеле слишком плотно, дополнительно прижаты слоями изоляции, при большой протяженности электромагистрали металлические сердечники начинают работать по принципу конденсатора, создающего заряд с емкостным сопротивлением.

Падение напряжения происходит по следующей схеме:

  1. Проводник, по которому пущен ток, перегревается и создает емкостное сопротивление как часть реактивного сопротивления.
  2. Под воздействием преобразований, протекающих на обмотках трансформаторов, реакторах, прочих элементах цепи, мощность электроэнергии становится индуктивной.
  3. В результате резистивное сопротивление металлических жил преобразуется в активное сопротивление каждой фазы электрической цепи.
  4. Кабель подключают на токовую нагрузку с полным (комплексным) сопротивлением по каждой токоведущей жиле.
  5. При эксплуатации кабеля по трехфазной схеме три линии тока в трех фазах будут симметричными, а нейтральная жила пропускает ток, приближенный к нулю.
  6. Комплексное сопротивление проводников приводит к потерям напряжения в кабеле при прохождении тока с векторным отклонением за счет реактивной составляющей.

Графически схему падения напряжения можно представить следующим образом: из одной точки выходит прямая горизонтальная линия — вектор силы тока. Из этой же точки выходит под углом к силе тока вектор входного значения напряжения U1 и вектор выходного напряжения U2 под меньшим углом. Тогда падение напряжения по линии равно геометрической разнице векторов U1 и U2.

Рисунок 1. Графическое изображение падения напряжения

На представленном рисунке прямоугольный треугольник ABC отражает падение и потери напряжения на линии кабеля большой длины. Отрезок AB — гипотенуза прямоугольного треугольника и одновременно падение, катеты AC и BC показывают падение напряжения с учетом активного и реактивного сопротивления, а отрезок AD демонстрирует величину потерь.

Производить подобные расчеты вручную довольно сложно. График служит для наглядного представления процессов, протекающих в электрической цепи большой протяженности при прохождении тока заданной нагрузки.

Расчет с применением формулы

На практике при монтаже линий электропередач магистрального типа и отведения кабелей к конечному потребителю с дальнейшей разводкой на объекте используется медный или алюминиевый кабель.

Удельное сопротивление для проводников постоянное, составляет для меди р = 0,0175 Ом*мм2/м, для алюминиевых жил р = 0,028 Ом*мм2/м.

Зная сопротивление и силу тока, несложно вычислить напряжение по формуле U = RI и формуле R = р*l/S, где используются следующие величины:

  • Удельное сопротивление провода — p.
  • Длина токопроводящего кабеля — l.
  • Площадь сечения проводника — S.
  • Сила тока нагрузки в амперах — I.
  • Сопротивление проводника — R.
  • Напряжение в электрической цепи — U.

Использование простых формул на несложном примере: запланировано установить несколько розеток в отдельно стоящей пристройке частного дома. Для монтажа выбран медный проводник сечением 1,5 кв. мм, хотя для алюминиевого кабеля суть расчетов не изменяется.

Поскольку ток по проводам проходит туда и обратно, нужно учесть, что расстояние длины кабеля придется умножать вдвое. Если предположить, что розетки будут установлены в сорока метрах от дома, а максимальная мощность устройств составляет 4 кВт при силе тока в 16 А, то по формуле несложно сделать расчет потерь напряжения:

U = 0,0175*40*2/1,5*16

U = 14,93 В

Если сравнить полученное значение с номинальным для однофазной линии 220 В 50 Гц, получается, что потери напряжения составили: 220-14,93 = 205,07 В.

Такие потери в 14,93 В — это практически 6,8 % от входного (номинального) напряжения в сети. Значение, недопустимое для силовой группы розеток и осветительных приборов, потери будут заметны: розетки будут пропускать ток неполной мощности, а осветительные приборы — работать с меньшим накалом.

Мощность на нагрев проводника составит P = UI = 14,93*16 = 238,9 Вт. Это процент потерь в теории без учета падения напряжения на местах соединения проводов, контактах розеточной группы.

Проведение сложных расчетов

Для более детального и достоверного расчета потерь напряжения на линии нужно принимать во внимание реактивное и активное сопротивление, которое вместе образует комплексное сопротивление, и мощность.

Для проведения расчетов падения напряжения в кабеле используют формулу:

∆U = (P*r0+Q*x0)*L/ U ном

В этой формуле указаны следующие величины:

  • P, Q — активная, реактивная мощность.
  • r0, x0 — активное, реактивное сопротивление.
  • U ном — номинальное напряжение.

Чтобы обеспечить оптимальную нагрузку по трехфазных линиям передач, необходимо нагружать их равномерно. Для этого силовые электродвигатели целесообразно подключать к линейным проводам, а питание на осветительные приборы — между фазами и нейтральной линией.

Есть три варианта подключения нагрузки:

  • от электрощита в конец линии;
  • от электрощита с равномерным распределением по длине кабеля;
  • от электрощита к двум совмещенным линиям с равномерным распределением нагрузки.

Пример расчета потерь напряжения: суммарная потребляемая мощность всех энергозависимых установок в доме, квартире составляет 3,5 кВт — среднее значение при небольшом количестве мощных электроприборов. Если все нагрузки активные (все приборы включены в сеть), cosφ = 1 (угол между вектором силы тока и вектором напряжения). Используя формулу I = P/(Ucosφ), получают силу тока I = 3,5*1000/220 = 15,9 А.

Дальнейшие расчеты: если использовать медный кабель сечением 1,5 кв. мм, удельное сопротивление 0,0175 Ом*мм2, а длина двухжильного кабеля для разводки равна 30 метров.

По формуле потери напряжения составляют:

∆U = I*R/U*100 %, где сила тока равна 15,9 А, сопротивление составляет 2 (две жилы)*0,0175*30/1,5 = 0,7 Ом. Тогда ∆U = 15,9*0,7/220*100% = 5,06 %.

Полученное значение незначительно превышает рекомендуемое нормативными документами падение в пять процентов. В принципе, можно оставить схему такого подключения, но если на основные величины формулы повлияет неучтенный фактор, потери будут превышать допустимое значение.

Что это значит для конечного потребителя? Оплата за использованную электроэнергию, поступающую к распределительному щиту с полной мощностью при фактическом потреблении электроэнергии более низкого напряжения.

Использование готовых таблиц

Как домашнему мастеру или специалисту упростить систему расчетов при определении потерь напряжения по длине кабеля? Можно пользоваться специальными таблицами, приведенными в узкоспециализированной литературе для инженеров ЛЭП. Таблицы рассчитаны по двум основным параметрам — длина кабеля в 1000 м и величина тока в 1 А.

В качестве примера представлена таблица с готовыми расчетами для однофазных и трехфазных электрических силовых и осветительных цепей из меди и алюминия с разным сечением от 1,5 до 70 кв. мм при подаче питания на электродвигатель.

Таблица 1. Определение потерь напряжения по длине кабеля

Площадь сечения, мм2Линия с одной фазойЛиния с тремя фазами
ПитаниеОсвещениеПитаниеОсвещение
РежимПускРежимПуск
МедьАлюминийКосинус фазового угла = 0,8Косинус фазового угла = 0,35Косинус фазового угла = 1Косинус фазового угла = 0,8Косинус фазового угла = 0,35Косинус фазового угла = 1
1,524,010,630,020,09,425,0
2,514,46,418,012,05,715,0
4,09,14,111,28,03,69,5
6,010,06,12,97,55,32,56,2
10,016,03,71,74,53,21,53,6
16,025,02,361,152,82,051,02,4
25,035,01,50,751,81,30,651,5
35,050,01,150,61,291,00,521,1
50,070,00,860,470,950,750,410,77

Таблицы удобно использовать для расчетов при проектировании линий электропередач. Пример расчетов: двигатель работает с номинальной силой тока 100 А, но при запуске требуется сила тока 500 А. При нормальном режиме работы cos ȹ составляет 0,8, а на момент пуска значение равно 0,35. Электрический щит распределяет ток 1000 А. Потери напряжения рассчитывают по формуле ∆U% = 100∆U/U номинальное.

Двигатель рассчитан на высокую мощность, поэтому рационально использовать для подключения провод с сечением 35 кв. мм, для трехфазной цепи в обычном режиме работы двигателя потери напряжения равны 1 вольт по длине провода 1 км. Если длина провода меньше (к примеру, 50 метров), сила тока равна 100 А, то потери напряжения достигнут:

∆U = 1 В*0,05 км*100А = 5 В

Потери на распределительном щите при запуске двигателя равны 10 В. Суммарное падение 5 + 10 = 15 В, что в процентном отношении от номинального значения составляет 100*15*/400 = 3,75 %. Полученное число не превышает допустимое значение, поэтому монтаж такой силовой линии вполне реальный.

На момент пуска двигателя сила тока должна составлять 500 А, а при рабочем режиме — 100 А, разница равна 400 А, на которые увеличивается ток в распределительном щите. 1000 + 400 = 1400 А. В таблице 1 указано, что при пуске двигателя потери по длине кабеля 1 км равны 0,52 В, тогда

∆U при запуске = 0,52*0,05*500 = 13 В

∆U щита = 10*1400/100 = 14 В

∆U суммарные = 13+14 = 27 В, в процентном отношении ∆U = 27/400*100 = 6,75 % — допустимое значение, не превышает максимальную величину 8 %. С учетом всех параметров монтаж силовой линии приемлем.

Применение сервис-калькулятора

Расчеты, таблицы, графики, диаграммы — точные инструменты для вычисления падения напряжения по длине кабеля. Упростить работу можно, если выполнить расчеты с помощью онлайн-калькулятора. Преимущества очевидны, но стоит проверить данные на нескольких ресурсах и отталкиваться от среднего полученного значения.

Как это работает:

  1. Онлайн-калькулятор разработан для быстрого выполнения расчетов на основе исходных данных.
  2. В калькулятор нужно ввести следующие величины — ток (переменный, постоянный), проводник (медь, алюминий), длина линии, сечение кабеля.
  3. Обязательно вводят параметры по количеству фаз, мощности, напряжению сети, коэффициенту мощности, температуре эксплуатации линии.
  4. После введения исходных данных программа определяет падение напряжения по линии кабеля с максимальной точностью.
  5. Недостоверный результат можно получить при ошибочном введении исходных величин.

Пользоваться такой системой можно для проведения предварительных расчетов, поскольку сервис-калькуляторы на различных ресурсах показывают не всегда одинаковый результат: итог зависит от грамотной реализации программы с учетом множества факторов.

Тем не менее, можно провести расчеты на трех калькуляторах, взять среднее значение и отталкиваться от него на стадии предварительного проектирования.

Как сократить потери

Очевидно, что чем длиннее кабель на линии, тем больше сопротивление проводника при прохождении тока и, соответственно, выше потери напряжения.

Есть несколько способов сократить процент потерь, которые можно использовать как самостоятельно, так и комплексно:

  1. Использовать кабель большего сечения, проводить расчеты применительно к другому проводнику. Увеличение площади сечения токоведущих жил можно получить при соединении двух проводов параллельно. Суммарная площадь сечения увеличится, нагрузка распределится равномерно, потери напряжения станут ниже.
  2. Уменьшить рабочую длину проводника. Метод эффективный, но его не всегда можно использовать. Сократить длину кабеля можно при наличии резервной длины проводника. На высокотехнологичных предприятиях вполне реально рассмотреть вариант перекладки кабеля, если затраты на трудоемкий процесс гораздо ниже, чем расходы на монтаж новой линии с большим сечением жил.
  3. Сократить мощность тока, передаваемую по кабелю большой протяженности. Для этого можно отключить от линии несколько потребителей и подключить их по обходной цепи. Данный метод применим на хорошо разветвленных сетях с наличием резервных магистралей. Чем ниже мощность, передаваемая по кабелю, тем меньше греется проводник, снижаются сопротивление и потери напряжения.

Внимание! При эксплуатации кабеля в условиях повышенной температуры проводник нагревается, падение напряжения растет. Сократить потери можно при использовании дополнительной теплоизоляции или прокладке кабеля по другой магистрали, где температурный показатель существенно ниже.

Расчет потерь напряжения — одна из главных задач энергетической отрасли. Если для конечного потребителя падение напряжения на линии и потери электроэнергии будут практически незаметными, то для крупных предприятий и организаций, занимающихся подачей электроэнергии на объекты, они впечатляющие. Снизить падение напряжения можно, если правильно выполнить все расчеты.

Расчет падения напряжения в кабеле

Потеря напряжения в кабеле — величина, равная разности между установившимися значениями действующего напряжения, измеренными в двух точках системы электроснабжения (по ГОСТ 23875-88). Этот параметр необходимо знать при производстве любых электромонтажных работ — начиная от видеонаблюдения и ОПС и заканчивая системами электроснабжения промышленных объектов.

При равенстве сопротивлений Zп=Zп=Zп и Zн=Zн=Zн ток в нулевом проводе отсутствует (Рис. 1), поэтому для трёхфазных линий потери напряжения рассчитываются для одного проводника.

В двух- и однофазных линиях, а также в цепи постоянного тока, ток идёт по двум проводникам (Рис.2), поэтому вводится коэффициент 2 (при условии равенства Zп=Zп).

Доступна Windows-версия программы расчёта потерь напряжения

Блок: 1/2 | Кол-во символов: 779
Источник: https://www.ivTechno.ru/raschet_4

Результат понижения напряжения

Согласно нормативным документам, потери на линии от трансформатора до наиболее удаленного энергонагруженного участка для жилых и общественных объектов должны составлять не более девяти процентов.

Допускаются потери 5 % до главного ввода, а 4 % — от ввода до конечного потребителя. Для трехфазных сетей на три или четыре провода номинальное значение должно составлять 400 В ± 10 % при нормальных условиях эксплуатации.

Отклонение параметра от нормированного значения может иметь следующие последствия:

  1. Некорректная работа энергозависимых установок, оборудования, осветительных приборов.
  2. Отказ работы электроприборов при сниженном показателе напряжения на входе, выход оборудования из строя.
  3. Снижение ускорения вращающего момента электродвигателей при пусковом токе, потери учитываемой энергии, отключение двигателей при перегреве.
  4. Неравномерное распределение токовой нагрузки между потребителями на начале линии и на удаленном конце протяженного провода.
  5. Работа осветительных приборов на половину накала, за счет чего происходят недоиспользование мощности тока в сети, потери электроэнергии.

В рабочем режиме наиболее приемлемым показателем потерь напряжения в кабеле считается 5 %. Это оптимальное расчетное значение, которое можно принимать допустимым для электросетей, поскольку в энергетической отрасли токи огромной мощности транспортируются на большие расстояния.

К характеристикам линий электропередач предъявляются повышенные требования. Важно уделять особое внимание потерям напряжения не только на магистральных сетях, но и на линиях вторичного назначения.

Блок: 2/8 | Кол-во символов: 1599
Источник: https://220.guru/electroprovodka/provoda-kabeli/padenie-napryazheniya-po-dline-kabelya.html

Причины падения напряжения

Каждому электромеханику известно, что кабель состоит из проводников — на практике используются жилы с медными или алюминиевыми сердечниками, обмотанные изоляционным материалом. Провод помещен в герметичную полимерную оболочку — диэлектрический корпус.

Поскольку металлические проводники расположены в кабеле слишком плотно, дополнительно прижаты слоями изоляции, при большой протяженности электромагистрали металлические сердечники начинают работать по принципу конденсатора, создающего заряд с емкостным сопротивлением.

Падение напряжения происходит по следующей схеме:

  1. Проводник, по которому пущен ток, перегревается и создает емкостное сопротивление как часть реактивного сопротивления.
  2. Под воздействием преобразований, протекающих на обмотках трансформаторов, реакторах, прочих элементах цепи, мощность электроэнергии становится индуктивной.
  3. В результате резистивное сопротивление металлических жил преобразуется в активное сопротивление каждой фазы электрической цепи.
  4. Кабель подключают на токовую нагрузку с полным (комплексным) сопротивлением по каждой токоведущей жиле.
  5. При эксплуатации кабеля по трехфазной схеме три линии тока в трех фазах будут симметричными, а нейтральная жила пропускает ток, приближенный к нулю.
  6. Комплексное сопротивление проводников приводит к потерям напряжения в кабеле при прохождении тока с векторным отклонением за счет реактивной составляющей.

Графически схему падения напряжения можно представить следующим образом: из одной точки выходит прямая горизонтальная линия — вектор силы тока. Из этой же точки выходит под углом к силе тока вектор входного значения напряжения U1 и вектор выходного напряжения U2 под меньшим углом. Тогда падение напряжения по линии равно геометрической разнице векторов U1 и U2.

Рисунок 1. Графическое изображение падения напряжения

На представленном рисунке прямоугольный треугольник ABC отражает падение и потери напряжения на линии кабеля большой длины. Отрезок AB — гипотенуза прямоугольного треугольника и одновременно падение, катеты AC и BC показывают падение напряжения с учетом активного и реактивного сопротивления, а отрезок AD демонстрирует величину потерь.

Производить подобные расчеты вручную довольно сложно. График служит для наглядного представления процессов, протекающих в электрической цепи большой протяженности при прохождении тока заданной нагрузки.

Блок: 3/8 | Кол-во символов: 2369
Источник: https://220.guru/electroprovodka/provoda-kabeli/padenie-napryazheniya-po-dline-kabelya.html

Скачать файл

В заключение – как и обещал, хорошая книжка по расчетом потери напряжения и потерям напряжения в кабеле. Будет очень интересна всем, кого заинтересовала эта статья. Сейчас таких книг уже не пишут.

• Карпов Ф. Ф. Как выбрать сечение проводов и кабелей, 1973 год / Брошюра из Библиотеки электромонтера. Приведены указания и расчеты, необходимые для выбора сечений проводов и кабелей до 1000 В. Полезно для тех, кто интересуется первоисточниками., zip, 1.57 MB, скачан: 796 раз./

Ещё много книг можно у меня скачать тут.

Понравилось? Поставьте оценку, и почитайте другие статьи блога!

Блок: 3/3 | Кол-во символов: 600
Источник: https://SamElectric.ru/powersupply/raschet-padeniya-napryazheniya.html

Пояснения к расчёту

Расчёт потерь линейного (между фазами) напряжения в кабеле при трёхфазном переменном токе производится по формулам:

Расчёт потерь фазного (между фазой и нулевым проводом) напряжения в кабеле производится по формулам:

Для расчёта потерь линейного напряжения U=380 В; 3 фазы.

Для расчёта потерь фазного напряжения U=220 В; 1 фаза.

P — активная мощность передаваемая по линии, Вт;
Q — реактивная мощность передаваемая по линии, ВАр;
R — удельное активное сопротивление кабельной линии, Ом/м;
X — удельное индуктивное сопротивление кабельной линии, Ом/м;
L — длина кабельной линии, м;
— линейное напряжение сети, В;
— фазное напряжение сети, В.

Разрешается копирование java-скриптов при условии ссылки на источник.

ВСЕ РАСЧЁТЫ

Блок: 2/2 | Кол-во символов: 820
Источник: https://www.ivTechno.ru/raschet_4

Расчет с применением формулы

На практике при монтаже линий электропередач магистрального типа и отведения кабелей к конечному потребителю с дальнейшей разводкой на объекте используется медный или алюминиевый кабель.

Удельное сопротивление для проводников постоянное, составляет для меди р = 0,0175 Ом*мм2/м, для алюминиевых жил р = 0,028 Ом*мм2/м.

Зная сопротивление и силу тока, несложно вычислить напряжение по формуле U = RI и формуле R = р*l/S, где используются следующие величины:

  • Удельное сопротивление провода — p.
  • Длина токопроводящего кабеля — l.
  • Площадь сечения проводника — S.
  • Сила тока нагрузки в амперах — I.
  • Сопротивление проводника — R.
  • Напряжение в электрической цепи — U.

Использование простых формул на несложном примере: запланировано установить несколько розеток в отдельно стоящей пристройке частного дома. Для монтажа выбран медный проводник сечением 1,5 кв. мм, хотя для алюминиевого кабеля суть расчетов не изменяется.

Поскольку ток по проводам проходит туда и обратно, нужно учесть, что расстояние длины кабеля придется умножать вдвое. Если предположить, что розетки будут установлены в сорока метрах от дома, а максимальная мощность устройств составляет 4 кВт при силе тока в 16 А, то по формуле несложно сделать расчет потерь напряжения:

U = 0,0175*40*2/1,5*16

U = 14,93 В

Если сравнить полученное значение с номинальным для однофазной линии 220 В 50 Гц, получается, что потери напряжения составили: 220-14,93 = 205,07 В.

Такие потери в 14,93 В — это практически 6,8 % от входного (номинального) напряжения в сети. Значение, недопустимое для силовой группы розеток и осветительных приборов, потери будут заметны: розетки будут пропускать ток неполной мощности, а осветительные приборы — работать с меньшим накалом.

Мощность на нагрев проводника составит P = UI = 14,93*16 = 238,9 Вт. Это процент потерь в теории без учета падения напряжения на местах соединения проводов, контактах розеточной группы.

Блок: 4/8 | Кол-во символов: 1931
Источник: https://220.guru/electroprovodka/provoda-kabeli/padenie-napryazheniya-po-dline-kabelya.html

Зачем нужен расчет потерь напряжения в кабеле

Предыстория такова. Проектировщикам выдали техническое задание на проект электроснабжения, в котором была указана мощность холодильных систем. Пока выполнялся проект и выделялись деньги на его реализацию, было куплено холодильное оборудование с потребляемой мощностью, в 2 раза превышавшей исходную. Кроме того, выяснилось, что реальное расстояние до подстанции будет почти в 2 раза больше…

В общем, дорогущее немецкое холодильное оборудование отказывается работать, все знают, что делать, но никто не хочет за это платить. Прошедшим летом из-за пониженного напряжения (линейное 340-360 В) сгорел компрессор стоимостью более 10 тыс.евро. Терпеть дальше это было нельзя. Меня попросили провести расчеты, мониторинг и измерения на системе питания, и дать рекомендации по решению проблемы.

Поскольку писал я этот отчет от лица фирмы, имеющей лицензию на энергоаудит, то этот документ будет иметь силу в предстоящей судебной тяжбе.

По ходу документа в цитатах буду давать и уточнения.

  1. Введение

Было проведено обследование качество электроэнергии, поступающей от трансформаторной подстанции (ТП) по первому участку (440 м) до ГРЩ 2.2 и далее по вторым участкам (50 и 40 м) на холодильные установки (Система 12 и Система 14).

Схема структурная данной системы:

Схема кабельных линий от ТП до нагрузки. ДЭС – дизельная электростанция есть, но в данном случае не рассматривается.

Цель обследования – выявить причины значительного падения напряжения на кабельной линии.

В Систему 12 входят следующие потребители:

НаименованиеУстановленная мощность, кВтМакс. расчетный ток, А
Воздухоохладитель124,650,5
Воздухоохладитель78,327,1
Двигатели компрессоров100132,7
Двигатели вентиляторов13,729,7
Итого316,6240

В Систему 14 входят следующие потребители:

НаименованиеУстановленная мощность, кВтМакс.расчетный ток, А
Воздухоохладитель234,481,2
Воздухоохладитель193,955,7
Воздухоохладитель15,231,3
Двигатели компрессоров396525,6
Двигатели вентиляторов66144,3
Итого905,5838,1

Напряжение питания – 380…415 В.

Значения токов, мощностей и напряжения взяты из паспортных данных потребителей.

  1. Предварительный расчет потерь напряжения в кабеле

По предварительному расчету, при напряжении на выходе ТП 415 В на холостом ходу (при выключенной нагрузке), при максимальной нагрузке допустимо падение 35 В, или 8,43%. В таком случае при максимальной нагрузке напряжение упадет до 380 В, что, согласно паспортным данным потребителей, является допустимым.

ТП содержит 2 трансформатора по 600 кВт, которые планировалось использовать по одному. Но из-за увеличения нагрузки их пришлось включить в параллель.

Согласно Своду правил по проектированию и строительству СП 31-110-2003, а также ГОСТ Р 50571.15-97 с учетом регламентированных отклонений от номинального значения суммарные потери напряжения от шин 0,4 кВ ТП до наиболее удаленной нагрузки в жилых и общественных зданиях не должны превышать 9%. Причем, из них 5% – на участке от ТП до ВРУ, и 4% – на участке от ВРУ до потребителя.

Согласно ГОСТ 29322-2014, номинальное фазное напряжение в трехфазных сетях должно составлять 400 В, а при нормальных условиях оперирования напряжение питания не должно отличаться от номинального напряжения больше чем на +-10%.

Исходя из этого, падение на 8,43% является обоснованным и соответствует Правилам и ГОСТам, принятым в РФ.

  1. Расчет падения напряжения для 1-го участка

В ходе обследования выяснилось следующее. От ТП, расположенной на расстоянии 440 м, электроэнергия поступает в ГРЩ2.2 по кабельной линии, состоящей из четырех параллельно соединенных кабелей АВБбШв 4х240, общим сечением 960 мм2.

Внутренности ГРЩ2.2. Сверху – ввод от ТП на вводной контактор-защитный автомат, справа – шины от АВР (резерв – дизель), ниже – выходной автомат, и выходы на Системы.

Максимальный расчетный ток нагрузки, согласно паспортным данным,  составляет  240 А для Системы 12 и 838,1 А для Системы 14. Следовательно, максимальный ток кабельной линии составляет 240+838,1=1078,1 А.

Общая установленная мощность, согласно паспортным данным,  составляет 316,6 кВт для Системы 12, и 905,5 кВт для Системы 14. Следовательно, общая установленная мощность всей нагрузки составляет 316,6+905,5=1222,1 кВт.

Рассчитаем падение напряжения на кабельной линии 1-го участка от ТП до ГРЩ2.2 по формуле:

ΔU=√3·I(R·cosφ·L+X·sinφ·L)

Исходные данные для расчета:

  • Максимальный ток I = 1078,1 А,
  • Установленная мощность нагрузки 1222,1 кВт,
  • Удельное активное сопротивление одной жилы R = 0,125 Ом/км по данным производителя кабеля.
  • Удельное индуктивное сопротивление одной жилы Х = 0,077 Ом/км по данным производителя кабеля.
  • Принимаем Cosφ = 0,8, тогда sinφ = 0,6
  • Материал жилы кабеля – алюминий,
  • Длина линии L = 0,44 км.

Подставив данные в формулы, получим, что для одного кабеля падение составит 239 В, или 57,75%. Тогда для имеющейся кабельной линии 1-го участка падение напряжения составит 59,8 В, или 14,43%.

Такое падение напряжения только на 1-м участке является недопустимым.

На всякий случай  таблица активных и индуктивных сопротивлений алюминиевых и медных кабелей разного сечения:

Таблица активных и индуктивных сопротивлений алюминиевых и медных кабелей разного сечения

  1. Результат обследования 2-го участка (Система 12)

После щита ГРЩ2.2 к нагрузке идёт второй участок кабельной линии на Систему 12, состоящей из одного кабеля АВВГ-нг-LS 5×185, длиной 50 м.

Данные для расчета:

  • Максимальный ток 240 А,
  • Установленная мощность нагрузки 316,6 кВт,
  • Удельное активное сопротивление одной жилы R = 0,164 Ом/км по данным производителя кабеля.
  • Удельное индуктивное сопротивление одной жилы Х = 0,077 Ом/км по данным производителя кабеля.
  • Материал жилы кабеля – алюминий,
  • Длина линии L = 0,05 км.

Для имеющейся кабельной линии падение напряжения составит 3,67 В, или 0,88%.

  1. Результат обследования 2-го участка (Система 14)

После щита ГРЩ2.2 к нагрузке идёт второй участок кабельной линии на Систему 14, состоящей из трех параллельно соединенных кабелей АВВГ-нг-LS 5×185 длиной 40 м.

Данные для расчета:

  • Максимальный ток 838,1 А,
  • Установленная мощность нагрузки 905,5 кВт,
  • Удельное активное сопротивление одной жилы R = 0,164 Ом/км по данным производителя кабеля.
  • Удельное индуктивное сопротивление одной жилы Х = 0,077 Ом/км по данным производителя кабеля.
  • Материал жилы кабеля – алюминий,
  • Длина линии L = 0,04 км.

Для одного кабеля потеря напряжения составит 10,2 В, или 2,47%. Для имеющейся кабельной линии 2-го участка Системы 14 падение напряжения составит 3,4 В, или 0,82%.

  1. Рекомендации по модернизации кабельных линий

Для данного максимального тока и длины линии необходимо выбрать другую кабельную линию участка 1, поскольку расчетное падение напряжения для этого участка является недопустимым. Исходя из данных предварительного расчета и данных падения напряжения на 2-х участках, падение напряжения на 1-м участке должно быть не более 7,55%.

Такой уровень потерь обеспечит кабельная линия, состоящая из 8 кабелей АВБбШв 4х240, включенных в параллель. То есть, к имеющимся кабелям (4 шт.) добавить дополнительные (4 шт.).

В результате, потери на кабельной линии участка 1 составят 7,2%, или 29,8 В.

Кабельные линии 2-х участков в модернизации не нуждаются.

  1. Выводы

Для стабильной работы холодильного оборудования, согласно его паспортным данным, требуется напряжение с допустимыми пределами от 380 до 415 В.

Если учесть приводимые рекомендации, то при выходном напряжении ТП 415 В при максимальной нагрузке потери напряжения для Системы 12 будут 7,2+0,88=8,08%, или 33,6 В. В результате при максимальной нагрузке питающее напряжение Системы 12 составит не менее 381,4 В.

Для Системы 14 потери будут 7,2+0,82=8,02%, или 33,2 В. В результате при максимальной нагрузке питающее напряжение Системы 14 составит не менее 381,7 В.

  1. Результаты измерений качества напряжения

Измерения проводились при помощи анализатора качества напряжения HIOKI 3197, который позволяет снимать все параметры напряжения онлайн.

Прибор предназначен для построения графиков различных параметров электропитания в реальном времени. HIOKI 3197 я уже использовал в анализе качества напряжения при проблемах с холодильниками. Если кому нужен такой прибор – обращайтесь!

Измерения проводились в точке подключения 2-го участка Системы 14 в разных режимах работы оборудования. 2-й участок Системы 12 не исследовался, поскольку к нему невозможно было получить доступ, не отключая питания ТП. Но поскольку Система 12 является маломощной по сравнению с Системой 14, для получения общей картины достаточно измерений, результаты которых приведены ниже на графиках.

Результат мониторинга напряжения

Результат мониторинга тока

Пояснения к графикам.

Пик потребления тока (включение нагрузки на 100% мощности) приходится на время 16:56. При этом фазное напряжение (усредненное по фазам) составляет 212 В (линейное – 367 В), ток 836 А.

Холостой ход трансформатора (нагрузка полностью отключена) приходится на 17:07. При этом фазное напряжение составляет 238 В (линейное – 412 В), ток 0 А.

При проведении измерений Система 12 была отключена.

По результатам проведенных измерений можно сделать выводы, что максимальное суммарное падение напряжения для Системы 14 составляет 45 В, или 11%.

Данные измерения подтверждают правильность сделанных расчетов и рекомендаций.

Фото подключения прибора HIOKI 3197 к кабельной линии в процессе измерений:

Подключение HIOKI 3197 для измерения параметров напряжения в реальном времени

  1. Резервное питание

Резервное питание в ГРЩ 2. 2 поступает от ДЭС (дизельной электростанции). Переключение производится через систему АВР (автоматический ввод резерва).

Параметры источника резервного питания:

  • Максимальная мощность ДЭС – 600 кВт,
  • Кабельная линия – 3 кабеля АВБбШв 4х240, включенных в параллель,
  • Длина кабельной линии – 250 м.

Исходя из этих параметров, можно однозначно сделать вывод, что мощностей ДЭС и кабельной линии резервного питания с учетом падения напряжения хватит не более чем на половину максимальных потребностей нагрузки, что совершенно недопустимо.

Поэтому мониторинг качества питания по линии ДЭС проводить не имеет никакого смысла.

Для резервного питания в данном случае рекомендуется применить ДЭС мощностью не менее 1220 кВт. Кабельная линия должна содержать 5 кабелей АВБбШв 4х240, в таком случае падение напряжения до ГРЩ 2.2 будет составлять приемлемое значение 6,5%.

Блок: 2/3 | Кол-во символов: 10300
Источник: https://SamElectric.ru/powersupply/raschet-padeniya-napryazheniya. html

Применение сервис-калькулятора

Расчеты, таблицы, графики, диаграммы — точные инструменты для вычисления падения напряжения по длине кабеля. Упростить работу можно, если выполнить расчеты с помощью онлайн-калькулятора. Преимущества очевидны, но стоит проверить данные на нескольких ресурсах и отталкиваться от среднего полученного значения.

Как это работает:

  1. Онлайн-калькулятор разработан для быстрого выполнения расчетов на основе исходных данных.
  2. В калькулятор нужно ввести следующие величины — ток (переменный, постоянный), проводник (медь, алюминий), длина линии, сечение кабеля.
  3. Обязательно вводят параметры по количеству фаз, мощности, напряжению сети, коэффициенту мощности, температуре эксплуатации линии.
  4. После введения исходных данных программа определяет падение напряжения по линии кабеля с максимальной точностью.
  5. Недостоверный результат можно получить при ошибочном введении исходных величин.

Пользоваться такой системой можно для проведения предварительных расчетов, поскольку сервис-калькуляторы на различных ресурсах показывают не всегда одинаковый результат: итог зависит от грамотной реализации программы с учетом множества факторов.

Тем не менее, можно провести расчеты на трех калькуляторах, взять среднее значение и отталкиваться от него на стадии предварительного проектирования.

Блок: 7/8 | Кол-во символов: 1305
Источник: https://220.guru/electroprovodka/provoda-kabeli/padenie-napryazheniya-po-dline-kabelya.html

Как сократить потери

Очевидно, что чем длиннее кабель на линии, тем больше сопротивление проводника при прохождении тока и, соответственно, выше потери напряжения.

Есть несколько способов сократить процент потерь, которые можно использовать как самостоятельно, так и комплексно:

  1. Использовать кабель большего сечения, проводить расчеты применительно к другому проводнику. Увеличение площади сечения токоведущих жил можно получить при соединении двух проводов параллельно. Суммарная площадь сечения увеличится, нагрузка распределится равномерно, потери напряжения станут ниже.
  2. Уменьшить рабочую длину проводника. Метод эффективный, но его не всегда можно использовать. Сократить длину кабеля можно при наличии резервной длины проводника. На высокотехнологичных предприятиях вполне реально рассмотреть вариант перекладки кабеля, если затраты на трудоемкий процесс гораздо ниже, чем расходы на монтаж новой линии с большим сечением жил.
  3. Сократить мощность тока, передаваемую по кабелю большой протяженности. Для этого можно отключить от линии несколько потребителей и подключить их по обходной цепи. Данный метод применим на хорошо разветвленных сетях с наличием резервных магистралей. Чем ниже мощность, передаваемая по кабелю, тем меньше греется проводник, снижаются сопротивление и потери напряжения.

Внимание! При эксплуатации кабеля в условиях повышенной температуры проводник нагревается, падение напряжения растет. Сократить потери можно при использовании дополнительной теплоизоляции или прокладке кабеля по другой магистрали, где температурный показатель существенно ниже.

Расчет потерь напряжения — одна из главных задач энергетической отрасли. Если для конечного потребителя падение напряжения на линии и потери электроэнергии будут практически незаметными, то для крупных предприятий и организаций, занимающихся подачей электроэнергии на объекты, они впечатляющие. Снизить падение напряжения можно, если правильно выполнить все расчеты.

Блок: 8/8 | Кол-во символов: 1945
Источник: https://220.guru/electroprovodka/provoda-kabeli/padenie-napryazheniya-po-dline-kabelya.html

Кол-во блоков: 9 | Общее кол-во символов: 21648
Количество использованных доноров: 3
Информация по каждому донору:
  1. https://220.guru/electroprovodka/provoda-kabeli/padenie-napryazheniya-po-dline-kabelya.html: использовано 5 блоков из 8, кол-во символов 9149 (42%)
  2. https://www. ivTechno.ru/raschet_4: использовано 2 блоков из 2, кол-во символов 1599 (7%)
  3. https://SamElectric.ru/powersupply/raschet-padeniya-napryazheniya.html: использовано 2 блоков из 3, кол-во символов 10900 (50%)

Калькулятор падения напряжения

Калькулятор падения напряжения рассчитает падение напряжения в цепи для длинных проводов на основе напряжения, тока, фаз, проводника, размера провода и расстояния в цепи. Он также рассчитает напряжение на нагрузке и падение напряжения в процентах.

Калькулятор падения напряжения


Введите информацию ниже, чтобы рассчитать падение напряжения в цепи.

Падение напряжения
Напряжение при нагрузке
Процент падения

Напряжение — Введите напряжение на источнике цепи.Однофазные напряжения обычно 115 В или 120 В, в то время как трехфазное напряжение обычно составляет 208 В, 230 В или 480 В.

Амперы — Введите максимальный ток в амперах, который будет протекать через цепь. Для моторов рекомендуется умножить значение FLA на паспортной табличке на 1,25 для определения диаметра провода.

Проводник — Выберите материал, используемый в качестве проводника в проводе. Общие жилы — медь и алюминий.

Phases — Выберите количество фаз в цепи.Обычно это однофазный или трехфазный. Для однофазные цепи, требуется три провода. Для трехфазных цепей потребуется четыре провода. Один из этих проводов — провод заземления. которые можно уменьшить. Чтобы рассчитать сечение заземляющего провода, используйте калькулятор сечения заземляющего провода.

Размер провода — Выберите размер провода в цепи. Единицы измерения диаметра провода — AWG или kcmil.

Расстояние — Введите одностороннюю длину проводов в цепи в футах.

Примечание. Результаты этого калькулятора основаны на температуре проводника 75 ° C .

Источник: NFPA 70, Национальный электротехнический кодекс, глава 9, таблица 8

Как рассчитать падение напряжения

Падение напряжения рассчитывается с использованием самого универсального из всех электрических законов: закона Ома. Это означает, что потенциал напряжения на проводнике равен ток, протекающий по проводнику, умноженный на общее сопротивление проводника.Другими словами, Vd = I x R. Простая формула была получена из закона Ома для расчета падения напряжения на проводнике. Эта формула может помочь вам определить падение напряжения в цепи, а также сечение провода, который вам понадобится для вашей цепи. исходя из максимального желаемого падения напряжения. Национальный электротехнический кодекс гласит, что падение напряжения в фидерной цепи не должно превышать 5%, а падение напряжения в ответвленной цепи. не должно превышать 3%.

Однофазные схемы

Падение напряжения рассчитывается для однофазных цепей следующим образом:

Vd = Падение напряжения

I = ток в проводнике (А)

L = длина цепи в одну сторону (футы)

см = площадь поперечного сечения кондуктора (круглые милы)

K = Сопротивление в омах 1 круглого милфута проводника.
Примечание: K = 12,9 для медных проводов при 75 ° C (167 ° F) и K = 21,2 для алюминиевых проводов при 75 ° C (167 ° F).

Трехфазные схемы

Падение напряжения рассчитывается для трехфазных цепей следующим образом:

Vd = 1,73 x K x L x I
См

Vd = падение напряжения

I = ток в проводнике (А)

L = длина цепи в одну сторону (футы)

см = площадь поперечного сечения кондуктора (круглые милы)

K = Сопротивление в омах 1 круглого милфута проводника.
Примечание: K = 12,9 для медных проводов при 75 ° C (167 ° F) и K = 21,2 для алюминиевых проводов при 75 ° C (167 ° F).

Чтобы рассчитать максимальное расстояние цепи на основе падения напряжения в процентах, используйте Калькулятор расстояния цепи.

Чтобы рассчитать размер провода для цепи, используйте калькулятор размера провода или расширенный калькулятор размера провода. Чтобы рассчитать допустимую нагрузку на провод для цепи, используйте Калькулятор допустимой нагрузки на провод или Расширенный калькулятор допустимой нагрузки на провод.

Посетите Условия использования и Политику конфиденциальности этого сайта.Ваше мнение очень ценится. Сообщите нам, как мы можем улучшить.


Калькулятор падения напряжения постоянного и переменного тока NEC | jCalc.NET

Калькулятор падения напряжения реализует код США NEC. Он включает формулы падения напряжения и примеры того, как рассчитать падение напряжения.

См. Также

Параметры калькулятора падения напряжения

  • Номинальное напряжение (В): Укажите напряжение в вольтах (В). И выберите расположение фаз: 1 фаза переменного тока , 3 фазы переменного тока или постоянного тока .
  • Нагрузка (кВт, кВА, А, л.с.): Укажите нагрузку в А, л.с., кВт или кВА. Укажите cosΦ (коэффициент мощности), если электрическая нагрузка указана в кВт или л.с.
  • Размер кабеля (AWG): Выберите стандартный размер электрического провода в AWG (американский калибр проводов), как определено в NPFA 70 NEC (Национальный электротехнический кодекс) в США.
  • Расстояние (м, футы): Укажите предполагаемую длину кабеля в метрах или футах.

Что такое падение напряжения?

Падение напряжения — это потеря напряжения в проводе из-за электрического сопротивления и реактивного сопротивления провода.Проблема с падением напряжения:

  • Это может привести к неисправности оборудования.
  • Снижает потенциальную энергию.
  • Это приводит к потере энергии.

Например, если вы питаете нагреватель 10 Ом от источника питания 120 В. А сопротивление провода 1 Ом. Тогда ток будет I = 120 В / (10 Ом + 2 × 1 Ом) = 10 А.

Падение напряжения составит В Падение = 10 А × 2 × 2 Ом = 20 В. Следовательно, для вашего устройства будет доступно только 100 В.

А P = 20 В × 10 А = 200 Вт будет потрачено на тепло в проводе.

Как рассчитать падение напряжения?

Формулы падения напряжения для переменного и постоянного тока показаны в таблице ниже.

1-фазный переменный ток \ (\ Delta V_ {1 \ phi-ac} = \ dfrac {IL 2 Z_c} {1000} \)
3-фазный переменный ток \ (\ Delta V_ { 3 \ phi-ac} = \ dfrac {IL \ sqrt {3} Z_c} {1000} \)
DC \ (\ Delta V_ {dc} = \ dfrac {IL 2 R_c} {1000} \ )

Где,

  • I — ток нагрузки в амперах (A).2} \)

    Где,
    • R c — сопротивление провода в Ом / км или Ом / 1000 футов.
    • X c — реактивное сопротивление провода в Ом / км или Ом / 1000 футов.

    Формула выше для Z c для худшего случая. Это когда коэффициент мощности кабеля и нагрузки совпадает.

    Вместо полного сопротивления худшего случая можно вычислить комбинированный коэффициент мощности кабеля и нагрузки. Однако разница незначительна.И это слишком усложняет расчет.

    Например, рассчитанный импеданс худшего случая для проводника номер 10 составляет 1,2 Ом / 1000 футов. А полное сопротивление для нагрузки с коэффициентом мощности 0,85 составляет 1,1 Ом / 1000 футов.

    Калькулятор падения напряжения использует значения сопротивления R c и реактивного сопротивления X c из таблицы 9 в главе 9 NEC для расчетов как переменного, так и постоянного тока.

    Теоретически для расчета падения напряжения постоянного тока следует использовать значения из таблицы 8.Однако разница незначительна.

    Вот два примера:

    Пример 1: Сопротивление переменному току в таблице 9 для провода номер 10 составляет 1,2 Ом / 1000 футов. Сопротивление постоянному току в таблице 8 составляет 1,24 Ом / 1000 футов. Разница в сопротивлении составляет всего 3%. Фактическое падение напряжения составит 3,09% вместо 3%. То есть чуть хуже.

    Пример 2: Сопротивление переменному току в таблице 9 для провода номер 12 составляет 2,0 Ом / 1000 футов. Таблица 8 сопротивления постоянному току составляет 1,98 Ом / 1000 футов. Разница в сопротивлении составляет всего 1%. Фактическое падение напряжения составит 2,97% вместо 3%. То есть чуть лучше.

    Что такое допустимое падение напряжения?

    NFPA NEC 70 2020 в США рекомендует следующее допустимое падение напряжения, указанное мелким шрифтом в статьях 210.19 (A) и 215.2 (A).

    Только параллельная цепь 3%
    Объединенная параллельная цепь и фидер 5%

    Проще говоря, максимально допустимое падение напряжения в розетке составляет 5% .

    Примеры расчета падения напряжения

    Пример 1: Пример расчета падения напряжения для жилого помещения 120 В переменного тока, однофазная нагрузка

    Рассчитайте падение напряжения для следующей нагрузки:

    Напряжение 120 В переменного тока, 1-фазное
    Нагрузка 15 A
    Расстояние 100 футов
    Размер проводника 10 AWG

    Значения сопротивления и реактивного сопротивления от NEC для проводника 10 AWG:

    • R c = 3. 2} \)

      \ (Z_c = 1,2 \, \ Omega / 1000 футов \)

      Падение напряжения рассчитывается как:

      \ (\ Delta V_ {1 \ phi-ac} = \ dfrac {I L 2 Z_c} {1000} \)

      \ (\ Delta V_ {1 \ phi-ac} = \ dfrac {15 \ cdot 100 \ cdot 2 \ cdot 1.2} {1000} \)

      \ (\ Delta V_ {1 \ phi-ac} = 3.6 \, V \)

      Падение напряжения в процентах рассчитывается как:

      \ (\% V_ {1 \ phi-ac} = \ dfrac {3.6} {120} \ cdot 100 \)

      \ (\% V_ {1 \ phi-ac} = 3 \, \% \)

      Пример 2: Пример расчета падения напряжения для промышленного трехфазного двигателя 480 В переменного тока

      Рассчитайте падение напряжения для следующей нагрузки:

      Напряжение 380 В переменного тока, 3 фазы
      Нагрузка Двигатель мощностью 25 л.с., pf 0.86.
      Ток полной нагрузки: 26 A
      КПД игнорируется
      Расстояние 300 футов
      Размер проводника 8 AWG

      Значения сопротивления и реактивного сопротивления для проводника 8 AWG, полученные от NEC, составляют:

      • R c = 2,56 Ом / км или 0,78 Ом / 1000 футов
      • X c = 0,171 Ом / км или 0,052 Ом / 1000 футов

      Импеданс рассчитывается как:

      \ (Z_c = \ sqrt {0. 2} \)

      \ (Z_c = 0,78 \, \ Omega / 1000 футов \)

      Падение напряжения рассчитывается как:

      \ (\ Delta V_ {3 \ phi-ac} = \ dfrac {I L \ sqrt {3} Z_c} {1000} \)

      \ (\ Delta V_ {3 \ phi-ac} = \ dfrac {26 \ cdot 300 \ cdot \ sqrt {3} \ cdot 0.78} {1000} \)

      \ (\ Delta V_ {3 \ phi-ac} = 10,6 В \, В \)

      Падение напряжения в процентах рассчитывается как:

      \ (\% V_ {3 \ phi-ac} = \ dfrac {10.6} {480} \ cdot 100 \)

      \ (\% V_ {3 \ phi-ac} = 2.2 \, \% \)

      Пример 3: Пример расчета падения напряжения для нагрузки 12 В постоянного тока

      Рассчитайте падение напряжения для следующей нагрузки:

      Напряжение 12 В постоянного тока
      Нагрузка 1 A
      Расстояние 80 футов
      Размер проводника 12 AWG

      Значения сопротивления для 12 AWG, указанные в NEC проводник:

      • R c = 6. 6 Ом / км или 2,0 Ом / 1000 футов

      Обратите внимание, что реактивное сопротивление не применяется в цепях постоянного тока.

      Значения сопротивления из таблицы 9 (переменный ток) в NEC используются вместо значений сопротивления из таблицы 8 (постоянный ток). Разница незначительна.

      Падение напряжения рассчитывается как:

      \ (\ Delta V_ {dc} = \ dfrac {I L 2 R_c} {1000} \)

      \ (\ Delta V_ {dc} = \ dfrac {1 \ cdot 80 \ cdot 2 \ cdot 2.0} {1000} \)

      \ (\ Delta V_ {dc} = 0,32 \, V \)

      Падение напряжения в процентах рассчитывается как:

      \ (\% V_ {dc} = \ dfrac {0.32} {12} \ cdot 100 \)

      \ (\% V_ {dc} = 2.7 \, \% \)

      Калькулятор падения напряжения

      Калькулятор падения напряжения — это простой инструмент, который помогает определить, какая часть напряжения теряется при прохождении электрического тока по проводу, а также рассчитать выходное напряжение на конце кабеля. В качестве альтернативы вы можете использовать его в качестве калькулятора размера провода, чтобы решить, какой диаметр провода гарантирует, что падение напряжения не превысит допустимых уровней.

      Если вы все еще не знаете, как рассчитать падение напряжения, не смотрите дальше — просто продолжайте читать, чтобы узнать! Эта статья предоставит вам формулу падения напряжения и наглядный пример ее применения.Обязательно ознакомьтесь с калькулятором закона Ома!

      Какое падение напряжения?

      По определению, падение напряжения — это уменьшение напряжения, происходящее, когда электрический ток проходит через пассивные элементы схемы.

      Рассмотрим провод, соединяющий дом с местным поставщиком электроэнергии. В идеальных условиях электрический ток беспрепятственно течет по проводу, пока не достигнет дома. Там он используется для включения нескольких устройств. На самом деле, однако, потоку препятствует какое-то противодействующее давление.Это означает, что некоторая часть напряжения теряется, когда ток должен преодолеть это сопротивление. Эта потеря называется падением напряжения.

      Если у вас возникли проблемы с пониманием этого слова, вы можете представить себе человека, бегущего по прямой дороге. Если путь чист, без препятствий и с подходящим покрытием, человек будет двигаться быстро и устойчиво. С другой стороны, если по дороге трудно проехать и дорогу преграждают камни, более вероятно, что человек потеряет много энергии, просто пытаясь преодолеть все препятствия.

      Что влияет на величину падения напряжения?

      Обычно падение напряжения происходит, когда ток должен проходить по проводу. В такой системе оба компонента — ток и провод — влияют на падение напряжения. В частности, можно выделить следующие факторы:

      • Материал проволоки . Применение более качественных проводников приведет к меньшему падению напряжения. Например, медь является проводником намного лучше, чем углеродистая сталь; Если вы проанализируете один и тот же ток, протекающий по двум идентичным проводам, один из которых сделан из меди, а другой из стали, вы обнаружите, что падение напряжения больше в стальном проводе.
      • Сечение провода . Площадь поперечного сечения провода имеет большое влияние на падение напряжения. Чем тоньше провод, тем выше будет падение напряжения.
      • Длина провода . Интуитивно понятно, что более длинный провод означает более длинный путь прохождения тока и, следовательно, более высокие потери напряжения. Вы всегда должны стараться минимизировать длину провода.
      • Ток нагрузки . Чем выше ток, тем больше падение напряжения. Вы также должны дважды проверить, выдерживают ли ваши провода или компоненты, такие как светодиоды, большой ток.

      Формула падения напряжения

      Формула падения напряжения зависит от типа тока.

      • Для постоянного или однофазного переменного тока, В = 2 * I * L * R / A / n
      • Для трехфазного переменного тока, В = √3 * I * L * R / A / n

      где:

      • В — падение напряжения, измеренное в вольтах [В];
      • I — ток нагрузки, измеряемый в амперах [A];
      • L — длина провода в одном направлении, измеряемая в метрах [м];
      • R — удельное сопротивление провода, измеренное в ом-метрах [Ом · м];
      • A — площадь поперечного сечения провода, измеренная в квадратных миллиметрах [мм²];
      • n — количество параллельно включенных проводников.

      Последствия падения напряжения

      Как правило, падение напряжения не должно превышать 3% от начального напряжения. Более высокое падение может привести к мерцанию огней, а также к перегреву устройств (им нужно будет работать больше, чем обычно, для достижения того же эффекта).

      Если вас интересует электричество, обязательно взгляните на наш калькулятор последовательных резисторов!

      Основы расчета падения напряжения

      Как узнать, обеспечивает ли ваша проводка разумную эффективность работы? Национальный электротехнический кодекс, 210-19 (a) (FPN 4) и 215-2 (b) (FPN 3), рекомендует падение напряжения 5% для фидерных цепей и 3% для ответвленных цепей.Давайте поработаем несколько примеров, используя уравнения на боковой панели (справа). В наших примерах используется медный провод без покрытия в стальном кабелепроводе для ответвлений на 480 В; мы воспользуемся столбцом коэффициента мощности таблицы 9 NEC.

      Пример 1: Определение падения напряжения Проложите многожильный провод № 10 на 200 футов при 20 А. Согласно Таблице 9, наше «сопротивление нейтрали на 1000 футов» составляет 1,1 Ом. Чтобы заполнить числитель, умножьте его следующим образом: (2 x 0,866) x 200 футов x 1,1 Ом x 20A = 7620,8 Деление 7621 на 1000 футов дает падение напряжения 7,7 В. Это падение приемлемо для нашей цепи 480 В.№ 12 упадет 11,8 В. Увеличьте длину до 500 футов, и этот № 10 упадет 18 В; № 12 падает 29V.

      Пример 2: Определение размера провода Проложите многожильный медный провод на 200 футов при 20 А. Вы можете найти размер провода, алгебраически изменив первое уравнение, или вы можете использовать следующий метод. Чтобы заполнить числитель, умножьте его следующим образом: 1,73 x 212,9 Ом x 200 футов x 20A = 89371,2. Разделив 89371,2 на допустимое падение напряжения 14,4 В, вы получите 6207 круговых милов. Таблица 8 NEC показывает, что No.12-жильный провод соответствует рекомендациям по падению напряжения.

      Пример 3: Определение длины провода Проложите многожильный медный провод № 10 для цепи 20 А. Чтобы заполнить числитель, умножьте его следующим образом: 1000 x 14,4 В = 14400 Чтобы заполнить знаменатель, умножьте следующим образом: (2 x 0,866) x 1,1 Ом x 20 A = 38,104 Наконец, разделите числитель на знаменатель следующим образом: 14400 / 38,1044377 футов. Если вы проложили провод № 12 для той же цепи, вы могли бы проложить его на 244 фута.

      Пример 4: Определить максимальную нагрузку Выполнить многопроволочный медный провод No.10 проводов для 200-футовой цепи. Чтобы заполнить числитель, умножьте следующим образом: 1000 x 14,4 В = 14400 Чтобы заполнить знаменатель, умножьте следующим образом: (2 x 0,866) x 1,1 Ом x 200 футов = 381,04 Наконец, разделите числитель на знаменатель следующим образом: 14400 / 381.04437A Эта схема может выдерживать ток 37 А на каждом фазном проводе. 200-футовый № 2 мог выдержать 24А.

      * Число «0,866» предназначено только для трехфазного тока. Он преобразует число «2» в «1,732» (квадратный корень из 3). Для однофазных цепей не используйте «0.866 «в расчетах. *» CM «обозначает размер провода в круглых милах, как показано в Таблице 8. * Чтобы рассчитать размер провода, используйте 12,9 в качестве K для меди и 21,2 в качестве K для алюминия. *» L «- это односторонняя длина провода в футах. * «R» — это сопротивление на 1000 футов. Используйте таблицу 9 NEC для проводки переменного тока. Если у вас нелинейные нагрузки, используйте столбец, который помогает учесть коэффициент мощности.

      Уравнение 1: Расчет фактического падения напряжения в вольтах. Падение вольт = (2 x 0,866) x L x R x Амперы / 1000

      Уравнение 2: Расчет сечения провода в круглых миллиметрах CM = 2 x K x L x Ампер / допустимое падение напряжения В качестве альтернативы вы можете алгебраически изменить уравнение 1 на: R410002 Допустимое падение напряжения / 1.732 x L x Ампер, а затем найдите размер провода в соответствии с его сопротивлением переменному току.

      Уравнение 3: Расчет длины в футах Длина = 1000 x допустимое падение напряжения / (2 x 0,866) x R x амперы

      Уравнение 4: Расчет нагрузки в амперах = 1000 x допустимое падение напряжения / (2 x 0,866) x R x L

      Калькулятор падения напряжения на проводе и уравнения | Инженеры Edge

      Связанные ресурсы: калькулятор падения напряжения

      Калькулятор падения напряжения на проводе и уравнения

      Данные для проектирования КИПиА и электроники | Обзор расчетов падения напряжения

      Этот калькулятор падения напряжения основан на формуле, являющейся общественным достоянием, и предоставит приблизительное значение для использования при проектировании вашей электрической системы.Статьи 210.19 (A) (1) FPN №4 и 215.2 (A) (3) FPN №2 Национального электрического кодекса ™ предполагают, что конструкция с падением напряжения не более 3% для фидеров и не более чем в сумме Падение напряжения на 5% в ответвленных цепях до самой дальней розетки «обеспечит разумную эффективность работы».

      Даже несмотря на то, что FPN (мелкие примечания) в этом случае являются не требованиями кода, а рекомендациями, все же хорошей инженерной практикой является строгое соблюдение этих рекомендаций и, действительно, превышение их там, где это необходимо.Фактически, Раздел 647 «Чувствительное электронное оборудование» требует (не FPN), чтобы падение напряжения на фидерах и ответвлениях не превышало 1,5% и 2,5%, соответственно, и не превышало 1% и 2% соответственно для оборудования с кабельным подключением. К пожарным насосам предъявляются дополнительные требования к максимальному падению напряжения, которые изложены в Разделе 695.

      Если вы увеличиваете размер проводов для учета падения напряжения, не забудьте проверить, совместим ли новый размер проводов с наконечниками, к которым они будут прикреплены.Производители автоматических выключателей предоставляют подходящие размеры проводов, а в некоторых случаях предлагают для этой цели дополнительные наконечники большего размера. Кроме того, статья 250 требует, чтобы при увеличении диаметра проводов пропорционально увеличивался и заземляющий провод.

      Взаимодействие с другими людьми Веб-страница не работает, так как JavaScript не включен. Скорее всего, вы просматриваете с помощью веб-сайта Dropbox или другой ограниченной среды браузера.

      © Авторские права 2000-2021, Engineers Edge, LLC www.Engineersedge.com
      Все права защищены
      Заявление об ограничении ответственности | Обратная связь | Реклама | Контакты

      Дата / Время:

      Калькулятор падения напряжения

      Всего несколько лет назад все ландшафтное освещение было галогенным, до этого — лампами накаливания. Галогенные лампы перегревались и потребляли много мощности. Наличие трансформаторов на 300, 600 и даже 1200 Вт для крупных проектов не было чем-то необычным. Было много проблем, вам требовалась очень большая и дорогая подающая проволока для передачи тока, и да, когда вы подходили к концу цикла, была потеря напряжения.Таким образом, ваши огни будут тусклее в конце и быстрее сгорят возле трансформатора. По его причине были созданы диаграммы потерь напряжения и калькуляторы, а также были созданы все виды проектного времени для больших проектов, чтобы все это работало правильно.

      Затем появилось светодиодное ландшафтное освещение, которое все изменило. Например, галогенная лампа мощностью 50 Вт была заменена светодиодной мощностью 7 Вт. Таким образом, на трансформаторе мощностью 300 Вт, где раньше можно было использовать 6 галогенных светильников, теперь можно использовать 42 светодиодных светильника и получить лучший свет.Кроме того, светодиоды служат в 20 раз дольше, чем галогены, и доступны в «теплых» цветовых температурах, поэтому они отлично смотрятся в вашем ландшафте. Посмотрите наши видео об этом.

      Итак, в свое время мы сняли это видео «Наружное светодиодное освещение, нагрузка трансформатора и падение напряжения», поскольку мы хотели сами увидеть потерю (или отсутствие потерь) напряжения на светодиодах. Мы думаем, что это поможет объяснить потерю напряжения.

      Наши друзья-инженеры все еще говорят, что есть потеря напряжения, но мы редко когда видим, чтобы кто-то пытался запитать 42 светильника для наружного ландшафтного освещения от одного провода.Это просто огромный перебор, но если они это сделают, они, скорее всего, профессионалы и все равно знают, что делать.

      Со времени показа видео выше мы сняли более 100 новых видеороликов по ландшафтному освещению, включая темы «как установить ландшафтное освещение», «как выглядит ландшафтное освещение, когда оно будет выполнено», «какое низкое напряжение наружного ландшафтного освещения. выглядит как зимой », а также многие видео-руководства по устранению неисправностей.

      И если вы все еще хотите увидеть старую диаграмму падения напряжения и калькулятор, я оставил их на этой странице только для вас.

      Если вы планируете заниматься ландшафтным освещением, мы надеемся, что вы сделаете это вместе с нами. Результаты будут потрясающими, и мы всегда ищем новые отличные функциональные и доступные продукты для достижения успеха.

      Ознакомьтесь с нашими полными комплектами, которые делают светодиодное низковольтное уличное ландшафтное освещение более простым решением для вашего проекта!


      Этот калькулятор основан на входном и выходном напряжении 120 В переменного тока для галогенных ламп и предназначен для использования только в качестве руководства, чтобы помочь вам начать свой проект освещения.Мы настоятельно рекомендуем проверять фактическое напряжение на каждом приспособлении с помощью вольтметра, прежде чем закопать и завершить проект.

      • Для получения наилучших результатов проложите участок проводки в соответствии с проектными спецификациями.
      • Подключите все приборы и снимите показания напряжения на приборах, чтобы убедиться в правильности напряжения.
      • Если показания находятся в пределах надлежащего напряжения, необходимого для прибора, приступайте к окончательной доработке вашего проекта.

      Мы не несем ответственности за использование предоставленной информации.

      Чтобы использовать этот калькулятор, выберите калибр провода, который вы будете использовать для пробега, введите общую мощность на пробеге (просто сложите всю мощность лампочки, которая будет на этой пробеге) и, наконец, введите длину пробега. Нажмите рассчитать. Падение напряжения — это величина потери напряжения из-за сопротивления в проводе. Напряжение — это оставшееся напряжение после вычитания падения напряжения. См. Ниже допустимые значения напряжения для светодиодных и типовых ламп накаливания для ландшафтных систем освещения.

      Если большинство ваших осветительных приборов находится на дальнем конце участка, умножьте падение напряжения на 1.5 (150%).

      Для светодиодных систем освещения проверьте максимальное и минимальное напряжение, необходимое для питания светильника. Обычно допускается любое напряжение выше 8,5 вольт, но оно не должно превышать максимальное напряжение, требуемое для светильников

      .

      Информацию о традиционных системах освещения лампами накаливания см. В таблице ниже.

      Напряжение Номинальный срок службы лампы Мощность свечей%
      13,2 2/3 350
      12.6 3/4 180
      12 1 100
      11,5 2 раза 80
      11 3 раза 75
      10,75 4 раза 70
      10,5 5 раз 65
      10 9 раз 50


      Как читать эту диаграмму:
      Пример 1:

      Срок службы лампы составляет 3000 часов — напряжение 12.6 — Мощность свечи или световой поток будет 180%. При этих характеристиках номинальный срок службы лампы упадет примерно до 2250 часов, но будет на 80% ярче, чем рассчитанная лампа.

      Пример 2:

      Срок службы лампы составляет 3000 часов — напряжение 10,75 — мощность свечи 70%. При этих характеристиках номинальный срок службы лампы увеличится в 4 раза

      Для просмотра диаграммы падения напряжения щелкните здесь.

      Калькулятор падения напряжения для солнечных электрических систем

      Калькулятор падения напряжения

      k = 12.9 для меди или k = 21,2 для алюминия

      Выберите Материал: МедьАлюминий

      Выберите Размер: 18 AWG16 AWG14 AWG12 AWG10 AWG8 AWG6 AWG4 AWG3 AWG2 AWG1 AWG1 / 0 AWG2 / 0 AWG3 / 0 AWG4 / 0 AWG250 тыс. См тыс. См 300 тыс. Куб. kcmil750 kcmil800 kcmil900 kcmil1000 kcmil1250 kcmil1500 kcmil1750 kcmil2000 kcmil

      Выберите фазу и количество проводов: 1-фазный — 2-проводный 3-фазный 3-проводный 3-фазный 4-проводный

      Падение напряжения:

      Падение напряжения

      в процентах Нагрузочный конец цепи:

      CMA проводника:

      Что такое падение напряжения?

      FREE Solar Inverter Guide

      Когда электрический ток проходит через цепь, небольшое количество напряжения теряется из-за сопротивления проводов.Эта концепция , известная как падение напряжения, приводит к небольшим производственным потерям на вашей солнечной батарее.

      Когда вы переходите на солнечную батарею, одна из целей — минимизировать падение напряжения , чтобы ваша система работала с максимальной эффективностью. Этот калькулятор падения напряжения — это инструмент, который поможет спланировать прокладку проводки и получить как можно больше продукции от вашего массива.

      Как пользоваться калькулятором падения напряжения

      Входы:

      • Материал: выбор из алюминия или медной проволоки.
      • Размер: Размер провода. (Более крупный провод = меньшее падение напряжения.)
      • Фазы: выберите инвертор, который соответствует конфигурации вашего местного коммунального предприятия.
      • Длина односторонней цепи: Длина (в футах) вашей цепи. Это расстояние между вашим массивом и вашим инвертором или вашим инвертором и сервисной панелью.
      • Нагрузка: общая потребляемая мощность (в амперах) от приборов, питаемых от фотоэлектрической батареи.
        Напряжение (макс.): Максимальное входное напряжение вашей сервисной панели. 240В стандартно.

      Выходы:

      • Падение напряжения: потеря мощности (в вольтах) по длине проводки.
      • Падение напряжения,%: потеря мощности из-за падения напряжения в процентах от общей выработанной мощности.
      • Напряжение на конце цепи нагрузки: напряжение в конце цепи (после того, как ток прошел через провод и произошло падение напряжения).
      • CMA проводника: стойки для круговой миловой площади. Измеряет площадь провода выбранного размера.

      Как минимизировать падение напряжения

      Текущий NEC (Национальный электротехнический кодекс) рекомендует проектировать системы с падением напряжения менее 2%.В большинстве случаев правильно спроектированная солнечная система должна подойти под эту отметку.

      Вот несколько советов, которые помогут снизить падение напряжения и максимально использовать возможности массива:

      • Расположите компоненты близко друг к другу, чтобы минимизировать длину проводки.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *