Как сделать керамзитобетон: Керамзитобетон своими руками — пропорции, состав

Содержание

Как делают керамзитобетон: пропорции компонентов

Керамзитобетон, несмотря на то, что он во многом уступает как в плотности, так и в прочности, обычному бетону, все же широко используется в современном строительстве. Его популярность связана, в первую очередь, с такими показателями как относительно невысокая стоимость, маленькая теплопроводность, небольшой удельный вес.

Так же нельзя не сказать о том, что соблюдая определенные пропорции, керамзитобетон с легкостью можно приготовить на строительном участке самостоятельно, не прибегая к посторонней помощи.

Особенности применения керамзитобетона

На сегодняшний день, керамзитобетон широко используется в строительстве, в том числе и в строительстве частных домов.

Но в тоже время, в силу своих особенностей, у него есть некоторые ограничения в применении.

Для того, чтобы ответить на вопрос – где можно применять керамзитобетон, а где нельзя, достаточно учесть его особенности:

Низкая теплопроводность. Благодаря ей, керамзитобетон идеально подходит для устройства стен дома, перекрытий и чернового пола. В некоторых случаях, он используется для устройства перемычек.

Сочетается практически с любыми утеплителем для стен.Небольшой удельный вес керамзитобетона, позволяет использовать его в тех местах, где большие нагрузки не допустимы.Влагопоглощение. Это скорее отрицательная сторона керамзитобетона. Из-за того, что он очень хорошо впитывает воду, его применение ограничено в открытых для осадков местах.

Обобщая все особенности, можно сказать, что использование керамзитобетона, в первую очередь, ограничено местами, куда не достают атмосферные осадки. Если попадание осадков неизбежно, то необходима хорошая гидроизоляция этого материала.

Учитывая его легкость, он прекрасно подходит для перекрытий и перемычек (с правильным армированием), где нет экстремальных нагрузок, а низкая теплопроводность позволит стенам из керамзитобетона удерживать тепло в доме в холодные времена.

Внимание! Ни в коем случае не используйте керамзитобетон, вместо обычного бетона, для устройства любого типа фундаментаниже уровня грунта, даже если больших нагрузок от стен дома не предвидится. Такой фундамент, даже с хорошей гидроизоляцией, надежным не назовешь.

Ну а что касается плюсов и минусов керамзитобетонакак строительного материала, так это тема отдельной статьи.

Марка керамзитобетона и пропорции компонентов

Основным отличием керамзитобетона от обычного бетона только в заполнителе, вместо щебня или гравия используется керамзит. В остальном – состав бетона и пропорции мало чем отличаются.

Керамзитобетон состоит из воды, цемента, песка и керамзита. Иногда целесообразны различные добавки, чаще всего добавляют пластификатор, для придания бетону пластичности, во время работы с ним.

От того, в каких пропорциях смешиваются эти материалы, полностью зависит его конечная прочность и марка.

На плотность керамзитобетона также влияет фракция керамзита. Керамзит большой фракции используется для марок с небольшой плотностью и, как правило, используется в основном как теплоизолятор. Керамзит мелкой фракции (также бывает дробленый керамзит – самый мелкий), используется для несущих и самонесущих конструкций, так же из него делают керамзитобетонные блоки марки М50, М75, М100 различных размеров, как для несущих стен, так и для перегородок.

Чем меньше фракция керамзита, тем плотнее и тяжелее будет конечный бетон, и в тоже время значительно уменьшаться его теплоизолирующие свойства. Поэтому нередко применяют керамзит смешанной фракции, таким образом, получая золотую середину – и не очень тяжелый и с хорошей теплоизоляцией керамзитобетон.

Часто используемые пропорции, для приготовления керамзитобетона из цемента М400, в строительстве частных домов:

ЦементПесокКерамзитВодаПластификатор1 ведро3-4 ведра4-5 ведер1,5 ведра(примерно)по инструкциик пластификатору

Пропорция добавляемого керамзита зависит от его фракции, чем меньше фракция, тем больше керамзита можно добавить и, соответственно, плотнее бетон получится в итоге.

В качестве пластификатора очень часто используют жидкое мыло. Его пропорции таковы: на ведро цемента добавляют 2-3 крышечки 5 литровой пластиковой бутылки. Если мерять стаканчиками, то примерно 50 – 100 грамм.

Вода добавляется «по вкусу». Керамзитобетон должен быть текучим и вязким одновременно. Беря его совковой лопатой, на лопате должна оставаться «горка», если «горка» растекается, то бетон слишком жидкий.

Как я уже неоднократно говорил, вода может присутствовать как в песке, так и в самом керамзите, поэтому сказать точно, сколько воды необходимо на ведро цемента М400, никто сказать не сможет, определяется опытным путем.

Внимание! Если переборщить с водой, то весь керамзит, в процессе устройства керамзитобетона, будет «всплывать», а песчано-цементная смесь – оседать на дно, тем самым образую неоднородную массу.

Советы по приготовлению керамзитобетона:

    Для приготовления керамзитобетона используйте «мытый» песок, он улучшит его усадку и увеличит конечную прочность, по сравнению с природным. Чтобы приготовить качественный бетон, необходимо использовать бетономешалку. Вручную, хоть и возможно, но очень трудно его хорошо вымесить.Используя бетономешалку, необходимо соблюдать очередность подачи ведер с материалом: сначала вода, затем цемент, песок, и только когда все это хорошо перемешается образуя однородную массу, добавляют керамзит.Замешивая керамзитобетон в ванной с помощью лопат, очередность не так важна, но все равно, пока хорошо не перемешается цементно-песчаная смесь с водой, керамзит добавлять не следует.Не забывайте использовать арматуру, которая значительно увеличит значение прочности на разрыв керамзитобетона. Допускается применение стеклопластиковой арматуры.

Керамзитобетон– один из видов легких бетонов, широко применяемый при строительстве жилых и гражданских объектов. Керамзитобетон изготавливают из доступных, недорогих и экологически чистых компонентов.

Достоинства керамзитобетона

Керамзитобетон обладает рядом достоинств:

    небольшой вес;высокая прочность;низкая тепло и звуко-проницаемость;экологическая чистота – из бетона нет выделений вредных для человека веществ;устойчив к воздействиям температуры и влажности;химически и биологически стоек.

Оборудование и материалы для приготовления керамзитобетона

В том случае, если вам потребуется самостоятельно приготовить керамзитобетон, нужны будут следующие материалы и инструменты:

    Электрическая бетономешалка, объемом не менее 0,2 м3;Емкость, например корыто, для готового бетона;Цемент, марка не менее 400;Керамзит с диаметром зерен 5 – 10 мм;Песок средней крупности, мытый;Пластификатор, например, мыло или порошок.

Пропорции керамзитобетона

Для приготовления керамзитобетона с высокими эксплуатационными свойствами, необходимо тщательно соблюдать пропорции компонентов, входящих в его состав. Средние цифры пропорции компонентов керамзитобетона следующие: цемент – 1 часть, керамзит – 8 частей, песок – 3 части. В такую смесь добавляем воду – 0,25 – 0,3 м3 на 1 м3 готового бетона и пластификатор – 50 – 60 мл на 0,2 м3 готового продукта.

Для приготовления бетона с более высокой прочностью необходимо применить керамзит большей фракции и увеличить количество цемента.

Приготовление керамзитобетона

Применяются два способа приготовления керамзитобетона: сухой и мокрый.

Сухой способ. Сухие компоненты засыпают в бетономешалку, тщательно смешивают и заливают водой, затем добавляют пластификатор.

Влажный способ. Готовят цементный раствор из цемента, песка и воды, затем в него добавляют керамзит.

При правильно выбранном соотношении компонентов бетона, его консистенция напоминает густую сметану. В случае, если бетон жидкий, необходимо некоторое время подождать, затем приступить к укладке готового бетона.

Правильно приготовленный керамзитобетон позволит полностью использовать все достоинства составляющих его компонентов.

Керамзитовый гравий получил широкое распространение в строительстве благодаря надежности сформированных из него конструкций. Строительные формы и конструкции способны простоять десятки лет без потери физических и эстетических характеристик. Композиция цементного раствора и керамзита относится к легкой группе бетонов.

Состав керамзитобетона содержит крупный заполнитель керамзит, мелкий заполнитель песок и цемент в качестве вяжущего компонента. Кроме цемента, для связки могут использовать строительный гипс. Рассмотрим подробно, что собой представляет керамзитобетон, пропорции для смесей различной плотности, область применения и характеристики строительного материала.

Свойства и характеристики материала

Визуально керамзитобетон имеет пористую структуру, размер пор зависит от режима обжига основного заполнителя. Различают три степени пористости бетона: крупнопористый, поризованный и плотный. На эксплуатационные характеристики конструкций и построек оказывает значительное влияние однородность структуры бетона.

Нормативная прочность керамзитобетона определяется пропорцией керамзитового гравия мелкой и крупной фракций. Применение керамзитобетона как основного элемента строительных форм требует дополнительного армирования, с целью повышения прочности конструкций установку бетонных элементов сопровождают крепежом арматуры. Основная роль керамзитобетона – формирование ограждающего теплоизоляционного слоя в многослойных конструкциях.

Прочность и физические характеристики керамзитобетона зависят от соотношения компонентов. Следует учитывать, что пропорции керамзитобетона для пола и пропорции смеси для изготовления строительных блоков различны.

Керамзитобетон: пропорции и состав раствора

В качестве перекрытий при возведении зданий долгое время использовали железобетонные плиты,сегодня эта технология не актуальна. Железобетонные перекрытия обладают существенным недостатком – низкой теплоизоляцией. Материалом, способным успешно выдерживать нагрузки и при этом обеспечивать комфортные условия пребывания в помещении, является керамзитобетон, который применяется в виде стяжки.

Выполняя укладку стяжки, нужно обращать внимание на тип поверхности, от которого зависит ее состав. Оптимальные пропорции керамзитобетона для стяжки: высота 30 мм на 1м2 требует 40 кг смеси пескобетонаМ300 и 35 кг керамзитового гравия.

Керамзитобетон: пропорции для стяжки в зависимости от расчетного значения плотности на 1м3

Значение плотностиКерамзит, плотность насыпнаяЦементПесокВодакг/м3кгм3кгкгл1000700720-250-1401500700-0,8430420-1600700-0,72400640-1600600-0,68430680-1700700-0,62380830-1700600-0,56410880-

Для приготовления бетонной смеси в подходящую емкость загружают керамзит, после чего заливают водой (небольшое количество).

После растворения пористой структуры гранул в емкость загружаются связующие компоненты – цемент и пескобетон. Все перемешивается строительным миксером до густой консистенции. Смешивание раствора прекращается после того, как керамзит приобретает цвет цемента.

Достоинства и недостатки стяжки из керамзитобетона

Зачастую керамзитобетонная стяжкаприменяется при необходимости повышения уровня пола в помещении. Сформированная поверхность обладает высокой прочностью, устойчива к воздействию влаги, не пропускает воздух. Преимущества стяжки из керамзитобетона:

    затраты на нее зависят от площади и толщины покрытия;доступная технология монтажа и продолжительный срок эксплуатации;возможность корректирования плоскости, устранение перепадов и неровностей;абсолютная совместимость со всеми видами напольных покрытий;высокая степень влагостойкости и огнестойкости, звукоизоляция;стойкость к биологическому и химическому воздействию;в таком процессе, как приготовление керамзитобетона, пропорции регулируют плотность;экологическая чистота.

Стяжка из керамзитобетона обладает недостатками:

    укладка сопровождается значительным подъемом уровня пола;после высыхания требуется шлифовка поверхности.

Доступность технологии производства блоков

При возведении небольшой жилой или хозяйственной постройки на даче или приусадебном участке хозяева часто отдают предпочтение строительным блокам из керамзитобетона.

Они также используются для строительства домов, возводимых в областях с низкими несущими способностями грунта. Причина выбора заключается в высоких эксплуатационных качествах материала и доступной технологии производства блоков. Их можно изготавливать самостоятельно на приусадебном участке без применения технологического оборудования.

Формирование блоков из керамзитобетона

Керамзитобетонные блокибывают двух видов: пустотелые и полнотелые.

Вне зависимости от формы блоков основой является керамзитовый гравий. Блоки, форма которых не имеет пустот, применяются для укладки фундаментов и облицовки наружных стен. Пустотелые блоки широко используются как звукоизоляционный и теплоизоляционный ограждающий слой внутренних стен здания.

За счет применения пористых блоков повышаются несущие характеристики фундамента и стен здания. Однако главное преимущество использования керамзитобетона в строительстве определяется экономичностью возводимых конструкций. За счет пористости структуры достигается снижение расходов сырья и малый вес конструкционных элементов.

Керамзитобетон: состав и пропорции смеси для формовки блоков

Керамзитобетонные блоки в своем составе содержат керамзит, цемент, песок мелкой фракции и иные добавки.

Иными словами, смесь содержит связующие компоненты и керамзит. В качестве добавок, повышающих физические свойства строительных блоков, можно использовать смолу древесную омыленную (СДО) для повышения устойчивости к низким температурам. Чтобы повысить степень связывания, добавляют порошок технического лингносульфоната (ЛСТП).

Подготовка раствора

Связующей основой смеси для формирования фактурного слоя является шлакоцемент (ШПЦ) или цемент марки М400 (портландцемент). Следует учитывать, что марка цемента не может быть меньше М400. Далее добавляется керамзит и песок мелкой фракции.

Изготавливаем керамзитобетон своими руками, пропорции смеси: 1 (цемент), 8 (керамзитовый гравий)и 3 (песок).

Этот состав даст оптимальные характеристики будущего строительного материала. Чтобы изготовить керамзитобетон, пропорции на 1м3 должны быть такими: 230-250 литров воды. Для придания пластичности бетону можно воспользоваться народным методом: в процессе смешивания компонентов добавить чайную ложку стирального порошка.

Смешивание всех компонентов должно выполняться в бетономешалке, последовательность действий следующая: в барабан загружаются и смешиваются сыпучие компоненты, далее постепенно добавляется вода до получения однородной массы, напоминающей по консистенции пластилин.

Формовка блоков и завершающий этап

На месте для формовки блоков устанавливают поддон, на котором размещают опалубку. В процессе высыхания блоков недопустимо прямое попадание на них влаги и прямых солнечных лучей, с этой целью устанавливается навес.

Перед закладкой раствора внутренние стенки форм обильно обмазываются машинным маслом, а основа посыпается песком. Существуют стандартные размеры блоков,изготовленных из керамзитобетона: 190×190×140, а также 390×190×140 мм. Стандартных габаритов следует придерживаться, но для небольшого дачного строительства размеры можно менять на свое усмотрение.

После завершения всех подготовительных этапов формы наполняются раствором.

Смесь утрамбовывается для устранения пустот до появления цементного молока. Поверхности блоков выравниваются мастерком. Формы разбираются по истечении суток с момента закладки раствора, сами блоки при этом не сдвигаются до полного затвердевания.

Период высыхания длится до 25-28 суток в зависимости от климатических факторов. Процесс высыхания не должен стимулироваться искусственно и проходить в короткий срок, быстрая потеря влаги может стать причиной растрескивания и утраты прочности блоков.

Произведенные в домашних условиях блоки из керамзитобетона, при условии соблюдения всех указанных правил, не уступают блокам, произведенным в условиях промышленного технологического участка.

Источники:

  • postroj-sam.ru
  • keramzitt.ru
  • fb.ru

Пропорции керамзитобетона для стяжки своими руками, фракции, состав смеси

Широко используемый в бытовых строениях, а также при многоэтажном строительстве, керамзитобетон обрел свою популярность из-за ряда преимуществ. Многие из плюсов материала приобретены благодаря свойствам глины, входящей в состав керамзита. Сюда относится малый удельный вес, устойчивость к биологическим воздействиям, огнеупорность, долговечность, качественная гидро- и теплоизоляция. Отсюда стяжка пола из керамзитобетона обеспечит надежное основание для любого покрытия пола.

Оглавление:

  1. Пропорции смеси
  2. Особенности изготовления
  3. Нюансы укладки раствора для стяжки

Но есть и некоторые отрицательные моменты, осложняющие ее самостоятельное использование. К примеру, далеко не быстрый период времени проведения работ, так как бетон требует дополнительной шлифовки для создания ровной поверхности. Существует несколько разновидностей стяжки с керамзитом. Это может быть классическая заливка, полусухой или же сухой вариант. Каждый вид подбирается конкретно под строительный объект, требуемую нагрузку на основание, величину неровностей пола.

Рекомендована для помещений с неровностями, для утепления пола на первых этажах зданий. Одинаково хорошо подходит для внутренних и наружных работ, для придания полу необходимого уклона, при устройстве системы теплых полов. В продаже существуют варианты готовых строительных смесей на основе керамзита. Их применение целесообразно при высоких перепадах пола, до 30 см. Но и такой раствор вполне можно изготовить своими силами.

Пропорции для стяжки

В зависимости от характера поверхности подбирается необходимый состав. Соотношение материалов зависит от фракции используемой стяжки из керамзитобетона и предполагаемых нагрузок на основание. В классическом варианте заливки, так называемом мокром способе, применяется следующая пропорция цемента, воды, песка, керамзита – 1:1:3:2. В перерасчете на массу, при расходе керамзита 0,5-0,7 м3 потребуется 1,3-1,5 т смеси песка и цемента.

Вариации с пропорцией компонентов позволяют осуществить приготовление различных марок керамзитобетона. Таким образом, для М150 соотношение цемент-песок-керамзит – 1:3,5:5,7. Соответственно, рецепт смеси с теми же составляющими для М300 выглядит так: 1:1,9:3,7. А для подобной марки бетона М400 – 1:1,2:2,7.

Рекомендации по приготовлению

Керамзитобетон своими руками изготовить совсем не сложно. Прежде всего, необходимо правильно подобрать керамзит. Он представляет собой легкоплавкую глину, обработанную термическим способом. Материал выпускается в нескольких видах:

  • керамзитовый гравий – элементы правильной круглой формы;
  • керамзитовый щебень – несформированные фракции больших размеров;
  • керамзитовый песок – мелкодробленый результат переработки керамзита.

Для приготовления керамзитобетона для пола используется только гравий фракцией 5-20. Более крупные применяются в полусухом или сухом способе. Керамзитовый песок же делает более прочными и теплоемкими тонкие виды стяжек толщиной менее 3 см. Керамзит по рекомендациям необходимо заранее замочить в воде, таким образом, чтобы частички не всплывали. Благодаря гидрофильным свойствам материала, его пористая структура быстро впитает в себя достаточное количество воды. Результатом чего окажется масса гравия без видимых скоплений влаги.

Далее порционно добавляется соотношение песка и цемента при постоянном перемешивании. Это продолжается до тех пор, пока гранулы керамзита не станут цементного цвета. Весь процесс приготовления стяжки проще всего проводить с помощью бетономешалки. При отсутствии последней вполне подойдет любая просторная металлическая емкость, способная вместить в себя весь объем керамзитобетона.

Стоит уделить особое внимание выбору марки цемента для бетона. Для надежного схватывания и высокой удельной прочности она должна быть не менее М400-М500. Карьерный песок для приготовления керамзитобетона используется промытый. Предварительно просеивается своими силами. Для достижения более высокой прочности, приобретения морозостойкости и долговечности стяжки многими специалистами рекомендуется добавление пластификаторов. Пропорции добавки определяются производителем того или иного состава и указываются на упаковке. Помимо готового покупного раствора пластификатор допускается изготовить самому, используя жидкое мыло или стиральный порошок.

Вода в соотношение раствора для стяжки вносится из расчета 200-300 л на 1 м3. Пропорция варьируется в зависимости от влажности материалов. Здесь главное добиться нужной консистенции, чтобы смесь уверенно расправлялась правилом. В случае избыточного количества влаги будет получен редкий состав, в котором керамзит всплывет и также воспрепятствует образованию ровной поверхности.

Укладка смеси своими силами

Расход керамзитобетона зависит от необходимой толщины слоя и величины площади пола под покрытие. Минимальная толщина керамзитобетонной стяжки – 3 см, что является одним из ее существенных недостатков, особенно при наличии небольшой высоты потолков.

Перед применением смеси рекомендуется укладка гидроизоляционного материала и демпферной ленты. Это нужно для предотвращения преждевременной потери влаги в основании, в противном случае монолит не успеет набрать прочность. Лента в свою очередь служит протектором от контакта со стеной и препятствует возможной температурной деформации.

Раствор заливается по уровню между маяками от угла помещения. Крупные неровности расправляются правилом. В силу быстрого схватывания состава процесс необходимо провести непрерывно и в короткий промежуток времени. Стоит отметить значительно меньшее время схватывания керамзитобетонной стяжки по сравнению с бетоном. Уже через двое суток по затвердевшей стяжке можно ходить.

Поверхность керамзитобетона получается далеко не зеркальной, поэтому перед финишным покрытием рекомендуется немного отшлифовать основание. Далее для конечного результата заливается слой классической цементно-песчаной стяжки.

Некоторые специалисты пользуются более простым и менее затратным по времени способом выравнивания пола с помощью керамзита. Здесь отсутствует необходимость приготовления раствора. Сухая фракция керамзитового гравия либо щебня насыпается прямо между маяками на подготовленное основание, разравнивается. Затем можно сразу приступать к заливке бетонного выравнивающего слоя. Иногда керамзит дополнительно проливают цементным молоком.

Пропорции керамзитобетона для стяжки своими руками, состав, таблицы

Керамзитобетон – это тот же цементный раствор, который применяется для заливки стяжки. Но поскольку в качестве крупного заполнителя здесь используется не тяжелый щебень, а вспученные глиняные гранулы, пол получается более теплым. Керамзит довольно хрупок и не годится для полноценного выравнивания активно эксплуатируемых поверхностей. Его главное предназначение – создание легкого тепло- и звукоизоляционного слоя, не дающего серьезного увеличения нагрузки на основание.

Оглавление:

  1. Из чего состоит керамзитобетон?
  2. Необходимые пропорции для различных марок
  3. Нюансы приготовления
  4. Особенности работы с раствором

Компоненты смеси

Чтобы сделать керамзитобетон своими руками, понадобятся вспученные гранулы крупностью 5-10 или 5-20 мм с насыпной плотностью 600-700 кг/м3. Мелкий песок не столь эффективен, но используется при устройстве тонкой заливки до 30 мм. Крупные фракции чаще применяют для сухой и полусухой стяжки. Окончательный выбор зависит от нагрузок на будущий пол:

1. Лучшие результаты показывают смеси, где присутствуют все классы крупности от 5 до 40 мм в равном соотношении. В этом случае стяжка получается чуть более плотной и тяжелой, зато достаточно прочной. При этом одновременно снижается расход цемента.

2. Для уменьшения нагрузки на перекрытия керамзит выбирают покрупнее. Готовая стяжка при большой толщине со временем может дать усадку, но только так удастся выровнять серьезные перепады поверхности, достигающие 10-15 см.

3. При небольшой толщине бетона и необходимости избавиться от усадочных явлений остается только один вариант – мелкий керамзитовый песок.

Что касается цемента, то здесь экономить нельзя, поскольку только от него зависит, насколько крепко друг с другом сцепятся гранулы вспученной глины. Как минимум, это должно быть вяжущее с марочной прочностью М400, но можно использовать и более дорогой ПЦ М500. Главное, чтобы портландцемент шел без замещающих шлаковых добавок.

К мелкофракционным заполнителям также предъявляются повышенные требования, поскольку они тоже способны влиять на прочностные характеристики керамзитобетона. Это и обычный карьерный песок, но непременно просеянный и мытый. Для уменьшения плотности стяжки и увеличения ее теплоизоляционных свойств фракции песка лучше выбирать покрупнее.

Поскольку готовый раствор не обладает достаточной подвижностью (его характеристики соответствуют самому низкому классу П1), для улучшения удобоукладываемости смеси в нее вводят пластифицирующие добавки. Можно использовать воздухововлекающие модификаторы типа СДО, которые дополнительно поризуют цементную матрицу. Но дешевле и проще самостоятельно влить в бетоносмеситель жидкое мыло из расчета 50-100 мл на ведро ПЦ.

Пропорции для разных марок

Для определения масштаба работ понадобится измерить площадь помещения и рассчитать высоту будущего слоя керамзитобетона. Объем заливки – это и есть количество глиняного заполнителя в кубометрах, от которого следует отталкиваться в дальнейших расчетах. «Теплый» монолит можно получить разной плотности – от 1000 до 1700 кг/м3 (хотя для пола лучше использовать наиболее прочные покрытия), в соответствии с этим будут изменяться и пропорции для стяжки.

Плотность керамзитобетона, кг/м3Вес на кубометр смеси, кг
Керамзит М700Цемент М400Песок
1500560430420
1600504400640
1700434380830

При хорошем увлажнении керамзита для таких пропорций хватит 140-200 л воды на куб раствора. Если же замачивание оказалось недостаточно эффективным, количество жидкости может быть увеличено до 300 л/м3.

Традиционно строители пользуются упрощенным соотношением для получения керамзитобетона марочной прочности М100 – оптимальной для устройства своими силами «теплой» стяжки. Для этого на 1 часть цемента берут:

  • 3 ч песка;
  • 4 ч вспученного керамзита;
  • 1 ч воды.

При таких пропорциях можно даже приобрести готовую сухую смесь пескоцемента, где сыпучие материалы как раз идут в соотношении 1:3. Если же стяжка нужна попрочнее, для нее просто выбирают другую рецептуру приготовления:

Марка керамзитобетонаЦементПесокКерамзит
М15013,55,7
М2002,44,8
М3001,93,7
М4001,22,7

При работе с цементом более высокой марки М500 и устройства стяжки в бытовых помещениях с эксплуатационными нагрузками не выше среднего рекомендуется использовать следующее соотношение компонентов на куб керамзита:

  • 295 кг цемента;
  • 1186 кг крупнозернистого песка;
  • 206 л воды.

Легкие стяжки готовятся из керамзита плотностью 200-300 кг/м3 без добавления песка. Здесь понадобится составить раствор с таким соотношением:

  • 720-1080 кг гранул вспученной глины;
  • 250-375 кг цемента;
  • 100-225 л воды.

Рекомендации по приготовлению

Первым в емкость засыпается керамзит. Гранулы перед этим нужно вымочить в воде, чтобы они напитались влагой и потом не тянули ее из бетона. Долив еще немного жидкости, в корыто или барабан смесителя высыпают пескоцемент, тщательно перемешивая раствор. При правильно подобранных пропорциях керамзитобетона все гранулы в процессе изготовления должны стать одинакового серого цвета – без коричневых пятнышек.

Если смесь покажется недостаточно текучей, можно добавить в нее еще немного воды. При избытке влаги досыпать сухие компоненты не следует, так как это не позволит размешать их до однородности и ухудшит качество керамзитобетона, нарушив соотношение цемента. В этом случае лучше дать немного настояться, после чего еще раз перемешать.

Приготовление должно выполняться быстро и без задержек. Как только гранулы полностью покроются цементной кашицей, состав нужно сразу выливать на основание, разравнивая по установленным маякам. Раствор с керамзитовым заполнителем схватывается быстрее обычного бетона, зато уже через неделю по такому полу можно будет свободно перемещаться. Окончательный набор прочности происходит в течение 28 дней.

Особенности работы с керамзитобетоном

На пол перед заливкой обязательно нужно постелить гидроизоляцию или обмазать его и нижнюю часть стен битумной мастикой. В противном случае влага впитается в основание, не дав цементу набрать требуемую прочность. Такая заливка получится немонолитной и очень хрупкой – будет расползаться под нагрузкой и пылить. Также по периметру комнаты обязательно следует закрепить демпферную ленту, чтобы компенсировать тепловое расширение. По окончании работ стяжка из керамзитобетона потребует дополнительной защиты от испарения влаги. Для этого ее сверху накрывают пленкой, которую через пару-тройку дней можно будет снять.

Готовый слой «теплого» бетона нуждается в финишном выравнивании – желательно с предварительной шлифовкой. Сверху он заливается обычным раствором из пескоцемента толщиной не более 30 мм (без добавления гравия). Этого достаточно, чтобы скрыть неровности, но не ухудшить теплоизоляционные характеристики чернового основания. Финишную заливку выполняют по маякам, тщательно выравнивая смесь правилом. Рейки на следующий день аккуратно извлекают, а оставшиеся следы заделывают свежим составом.

Полусухая стяжка – еще один вариант утепления и выравнивания пола с помощью керамзита, позволяющий обрабатывать небольшие участки один за другим. В этом случае на подготовленное основание с установленными маяками засыпают сухие гранулы вспученной глины – на такую высоту, чтобы 20 мм маячкового профиля оставались незакрытыми. Сверху их проливают жидким цементным раствором (молочком) и утрамбовывают, склеивая зерна керамзита между собой. Через день-два поверхность заливается финишной стяжкой – приготовление бетона для нее ничем не отличается от уже рассмотренного «мокрого» способа.

Приготовление и пропорции керамзитобетона для стяжки пола

Керамзитобетон является одним из видов лёгкого бетона, чаще всего он применяется для утепления или в процессе строительства зданий с облегчёнными стенами. По целевому назначению этот материал разделяют на теплоизоляционный, теплоизоляционно-конструктивный и конструктивный (самый прочный). Несмотря на то, что керамзитобетон наиболее востребован в виде готовых блоков, возможно также самостоятельное изготовление данного материала для создания стяжки пола или для других задач.

Рассмотрим состав и соотношение компонентов керамзитобетона, в зависимости от его назначения. Если говорить о бетонной стяжке, то включение в её состав керамзитобетона, вместо щебня или гравия, делает бетонную плиту более лёгкой и увеличивает её теплоизоляционные характеристики. Ингредиенты должны обязательно иметь правильную пропорцию в составе керамзитобетона, чтобы в последствии стяжка пола не потрескалась и обладала достаточной прочностью.

Оптимальное соотношение цемента, песка и керамзита лежит в пределах от 1:2:5 до 1:3:6, в зависимости от фракции керамзита, марки цемента, качества и влажности песка. При этом рекомендованная марка портландцемента не ниже 400. Важно понимать, что прочность керамзита, как заполнителя, значительно ниже прочности щебня, поэтому цемент низких марок здесь применять нельзя.

Использовать керамзитобетон можно также для блоков или делать заливку монолитных стен жидким керамзитобетонным раствором. Для этого рекомендуется брать следующее соотношение: на 1 часть цемента 1 часть песка и 10-12 частей керамзита фракцией до 20 мм.  Стены из раствора с такой пропорцией будут обладать достаточной прочностью, хорошей теплопроводностью и долговечностью.

Остаётся только вопрос, как замесить хороший раствор? Первым делом следует залить керамзит цементным молочком так, чтобы все гранулы полностью смочились. Состав молочка предусматривает 2 части воды на 1 часть цемента. Как мешать керамзит каждый строитель выбирает сам, исходя из доступных средств. После полноценной пропитки керамзита молочком, в него добавляются основные компоненты в расчётных пропорциях. Для фундамента керамзитобетон используется только в виде готовых заводских блоков, самостоятельное приготовление связано со слишком высокими рисками.

Керамзитобетон своими руками — состав и пропорции на 1м3

Современная технология производства бетона получила новый виток развития. Ее результатом стало появление керамзитобетона – это улучшенная разновидность бетона, где в качестве наполнителя применяется не традиционный щебень, а керамзит.

В этой статье вы узнаете про состав и пропорции керамзитобетона на 1м3, а так же мы расскажем в какой последовательности загружать компоненты при замешивании раствора «своими руками».

Для тех кто не знает что такое керамзит, привожу объяснение: искусственный стройматериал, представляющий собой обожженную глину легкой плавкости. Чаще всего керамзит имеет гранулированную форму и коричневато-бардовый цвет.

Преимущества керамзита

Прежде всего, это превосходная комбинация легкости и высокой прочности. Использование керамзита в качестве наполнителя в бетоне имеет ряд преимуществ, главное из которых – снижение веса бетона при неизменной прочности.

Несмотря на то, что керамзит гигроскопичный материал (впитывает воду), он ничуть не теряет в качестве при длительном нахождении под воздействием влаги.

Вопрос о пропорциях керамзита в бетоне на 1м3 чаще всего создает много споров, разные мнения возникают именно из-за высокой впитываемости материала.

 

 Загрузка …

Керамзитобетон — состав и пропорции на 1м3, таблица:

Рассмотрим процесс изготовления керамзитобетона более детально. Для приготовления строительной смеси 1м3 мы используем следующие компоненты:

  • марка керамзита по прочности П150 — П200, по насыпной плотности 600-700;
  • марка бетонной смеси по удобоукладываемости — П1, класс бетона по прочности на сжатие В 20;
  • цемент марки 400;
  • песок строительный.

из книги В.Г. Батракова «Модифицированные бетоны».

Керамзитобетон своими руками — замес в бетономешале

Пропорции для керамзитобетонных блоков на один замес (жесткая бетонная смесь): вода 5 литров, мыльный раствор 50 мл, песок 28 литров, цемент (М400) 7 литров, керамзит (фр.0-10) 36 литров.

Состав керамзитобетона пропорции в ведрах

Загрузка компонентов при замешивании раствора (используем стандартное ведро 10 литров): наливаем в бетономешалку воду (0,5 ведра) и мыльный раствор. Включаем аппарат. Добавляем туда пол ведра цемента. Засыпаем 3 ведра песка, последним добавляем 4 ведра керамзита. Для наглядности смотрите видео!

Индикатором качественного раствора станет тот момент, когда цементная глазурь полностью покроет гранулы керамзита. Приготовленный керамзитный раствор подается в формовальные блоки для последующего затвердевания.

Видео: приготовление бетонной смеси для керамзитоблока

На заметку ремонтнику: оказывается штробить стены под проводку без пыли можно и даже нужно. Узнайте как это сделать!

 Загрузка …

Статьи по теме:

состав для стен и перекрытия. Как сделать керамзитобетон своими руками для отмостки? Рецепты приготовления

Бетонные растворы востребованы во всех отраслях строительства. Керамзитобетон – отличный аналог классического бетонного раствора. Особенность материала – наличие глиняных гранул вместо мелкой щебенки.

Из чего состоит раствор?

Для приготовления качественного керамзитобетона потребуется следующее.

  • Керамзитовый компонент. Размер частиц не должен превышать 20 мм. Только так удастся добиться необходимой прочности и плотности материала.
  • Бетон. Подойдет материал класса В15 и выше. С его помощью получится ускорить процесс замеса, а также сделать проще укладку смеси в форму.
  • Цемент. Требуется для повышения цепкости материала и быстроты его застывания.
  • Песок. В этом случае стоит отдать предпочтение карьерному песку, который будет заполнять пустоты между частицами керамзита.
  • Вода. Она должна быть холодной и чистой. Наличие примесей в жидкости ухудшит процесс затвердевания бетона.

Если есть необходимость, в состав добавляют опилки или золу. При замешивании смеси керамзитобетона сначала в емкость добавляют компоненты без воды. В конце вливают жидкость, которая позволяет получить смесь нужной консистенции.

Чтобы получить керамзитобетон высокого качества, который будет способен справиться с поставленной задачей, необходимо предварительно рассчитать пропорцию для замеса ингредиентов. Стоит отметить, что опытные строители уже рассчитали оптимальное количество смеси для 1 кубического метра. В сети можно встретить таблицу, посредством которой удастся получить керамзитобетон нужной марки.

Соотношение компонентов в таблице определено тем, где планируется использовать материал. Оптимальная пропорция бетона: 1: 3,5: 4,5, где 1 – это одна часть цемента, 3,5 – это три с половиной части песочного уплотнителя и 4,5 – это четыре с половиной части керамзита. Воду добавляют преимущественно в конце в пределах 1,5 части. В таблице подсчитаны пропорции для марок бетона М100, М150, М75, М50, М250.

Керамзитобетон – универсальный материал, востребованный в строительной сфере. Смесь позволяет отрегулировать плотность конечного стройматериала, что и делает керамзитобетон таким популярным. Бетон этого типа используют при следующих работах.

  • Возведение монолитных или блочных стен в строительстве. Легкий керамзитобетонный раствор позволит изготовить прочные блоки, панели и другие конструкции. В основном из такого материала сооружают бани.
  • Устройство стяжки пола. Для достижения необходимой прочности бетона используют особую пропорцию замешивания ингредиентов.
  • Изготовление плит перекрытия. Сборка конструкции осуществляется по литьевой технологии. Плюс керамзитобетонных плит заключается в теплоизоляции материала, которая позволяет поддержать в помещении нужную температуру. Также плиты из керамзитобетона отличаются небольшим весом, устойчивостью к воздействию влаги и долгим сроком службы.
  • Устройство фундаментов. Для сборки крепких оснований используют особый керамзитобетон. При замешивании раствора в него добавляют портландцемент.

В случае изготовления блоков из керамзитобетона потребуется подготовка специальных форм. В них необходимо залить готовую смесь, а затем уплотнить состав посредством вибрационного устройства.

Как сделать для разных целей?

Керамзитобетон – востребованная смесь, которую используют не только для сборки строительных блоков. Преимущества материала.

  • Небольшой вес готовых изделий. Пористая структура керамзита делает плотность готовой конструкции меньше, за счет чего она становится легче. Для установки керамзитобетонных блоков не нужно монтировать громоздкие фундаменты, так как нагрузка от таких стен будет небольшой.
  • Отличные показатели прочности. Керамзитобетон активно используют в малоэтажном строительстве, сооружая из него стены, плиты перекрытия, полы.
  • Хорошая теплоизоляция. Этот параметр позволяет использовать керамзитобетонные конструкции при строительстве жилых домов или бань. Примечательно, что материал сохраняет тепло лучше классического бетона.
  • Надежная звукоизоляция. С помощью стен из керамзитобетона удастся защитить помещение от посторонних шумов с улицы.
  • Экологичность. Для изготовления керамзитобетонных изделий используют глину и керамзит. Компоненты смеси не выделяют в окружающую среду вредных веществ, что делает использование блоков и других конструкций безопасным для здоровья.
  • Долгий срок службы. Изделия из керамзита способны прослужить более 25 лет, не разрушаясь и не деформируясь.
  • Небольшая цена. Низкая стоимость керамзита делает материал доступным и востребованным.
  • Простота изготовления. Сделать смесь можно самому. Для этого подойдут лопаты, если нет возможности организовать замес компонентов в бетономешалке. Несложная технология изготовления керамзитобетонных блоков своими руками сделала материал популярным.
  • Удобство отделки. Плюс керамзитобетонных изделий – высокая адгезия поверхности. Это означает, что на стенах или потолке будет прекрасно держаться штукатурная смесь любого состава.

Материал с его высокими эксплуатационными характеристиками подходит для достижения разных целей. Керамзитобетон часто используют для устройства полов, возведения перекрытий как монолитных, так и блочных. Цель использования керамзитобетона определяет его состав и способ изготовления. Стоит подробно рассмотреть, как приготовить каждый вариант бетона в построечных условиях.

Для перекрытий

Заливка перекрытий требует использования особой смеси керамзитобетона. Стандартная пропорция для плит:

  • цемент – 1 часть;
  • песок – 4 части;
  • керамзит – 5 части;
  • вода – 1,5 части.

Повысить эластичность бетона можно посредством добавления пластификатора в ведро, где находится смесь. Существует несколько требований относительно применения керамзитобетона для сборки плит.

Чтобы соорудить опалубку, необходимо подготовить стальные листы. Желательно, чтобы они были профилированными. Также потребуются двутавровые балки и фанера. Для достижения необходимой прочности материала дополнительно придется закупиться арматурой. Порядок работ по возведению перекрытия подразумевает выполнение следующих этапов:

  • сначала укладывают несущие балки – они выступят в качестве основания будущего перекрытия;
  • поверх балок расстилают металлические листы, которые будут играть роль дна опалубки;
  • из фанеры сооружают боковые стены опалубки;
  • внутрь укладывают арматурную сетку – каркас плиты перекрытия;
  • в опалубку заливают подготовленный раствор.

Бетонная плита не должна взаимодействовать с влагой и загрязнениями. Для этого необходимо предусмотреть наличие гидроизоляционного слоя. Материалы для гидроизоляции можно купить в магазине. Устройство гидроизоляционного слоя поможет ускорить процесс затвердевания смеси, что позволит получить качественную монолитную структуру конструкции.

Для стен

Не секрет, что для возведения вертикальных поверхностей состав керамзитобетона потребуется изменить. У раствора должна быть более плотная консистенция. Рецепт смеси для постройки монолитных стен требует подготовки следующих ингредиентов:

  • цемента М400 – 1 часть;
  • песка – 1,5 части;
  • керамзита мелкой фракции – 1 часть;
  • воды – 1 часть.

Такая пропорция поможет добиться максимальной прочности и ускорит процесс затвердевания материала. Стоит отметить, что раствор подойдет для возведения стен малоэтажных зданий. Максимальная высота сооружения не должна превышать трех этажей.

Для пола

Заливка пола в доме требует соблюдения определенных условий. Во-первых, смесь для заливки необходимо замешивать в строгом соответствии с установленными пропорциями на 1 м3. Замес состава можно производить с помощью бетономешалки или вручную.

Пропорция бетонной смеси для пола:

  • цемент М500 – 1 часть;
  • мелкий гравий – 2 части;
  • керамзитовый песок – 3 части;
  • вода – 1 часть.

Воду добавляют в конце, когда остальные ингредиенты будут тщательно перемешаны. Стоит выделить несколько особенностей.

  • При использовании в работе металла или железных частей в процессе обустройства пола можно добавлять в смесь бетон любой марки. Необходимая прочность в любом случае будет обеспечена.
  • Для обеспечения монолитности пола необходимо добавить шар из теплоизоляционного компонента. Выбор компонента стоит осуществлять, опираясь на его характеристики.
  • Укладка деревянных досок для создания пола потребует наличия дополнительного слоя, который будет предотвращать воздействие влаги на древесину.

Учет особенностей поможет сделать покрытие прочным и долговечным. Также такая рецептура бетона подойдет для устройства отмостки. Она получается прочной и способной выдержать климатические и механические воздействия.

Рекомендации

Чтобы получить качественную керамзитобетонную смесь, стоит учесть ряд рекомендаций от специалистов.

  1. Для создания смеси следует использовать «мытый» песок. Такой материал сделает усадку бетона лучше, а также повысит прочность материала.
  2. Для надежного приготовления смеси лучше пользоваться бетономешалкой. Вручную перемешать ингредиенты состава тоже можно, но качество будет ниже.
  3. Во время работы с бетономешалкой следует соблюдать очередность подачи компонентов. Сначала в емкость нужно залить воду, потом цемент, после – песок. Последний ингредиент – керамзит. Его нужно добавлять только после того, как остальные три образуют однородную массу.
  4. Если для замеса используются лопаты, то очередность добавления ингредиентов можно не соблюдать. Однако в любом случае керамзитобетон стоит добавлять только после того, как получится качественная ЦПС.
  5. Если необходимо повысить прочность керамзитобетонной смеси, стоит добавить арматуру.

Учет перечисленных рекомендаций поможет добиться высокого качества керамзитобетона и надежности изделия или конструкции, которую из него формируют.

Керамзитобетон – востребованный в строительной сфере материал, преимуществом которого является небольшая плотность. Смесь для изготовления керамзитобетона подбирается в зависимости от строительной задачи, которая определяет правильные пропорции компонентов.

О том, как приготовить керамзитобетон, смотрите в следующем видео.

Как изготовить керамзитобетон своими руками

Оглавление:
  • Керамзитобетон — подготовка к производству
  • Изготовление керамзитобетона

Для того чтобы сделать керамзитобетон своими руками существует много причин: этот материал прочен для строительства, легок и является экологически чистым. Изготовление таких блоков своими руками уменьшает общую стоимость постройки, а сомнений в качестве материала не будет, потому что материалы можно контролировать самостоятельно.

Керамзитобетон имеет хорошие характеристики: он прочен, легок и экономичен.

Для изготовления понадобится:

  • керамзит,
  • цемент,
  • песок,
  • вода,
  • древесная смола омыленная,
  • лигносульфонат,
  • бетономешалка,
  • вибростанок,
  • формы.

Песок для блоков нужно выбирать мелких фракций, так как именно он обеспечит самое хорошее сцепление. Специальные добавки, а именно лигносульфонат и омыленная древесная смола, применяются для улучшения связывающих способностей раствора и добавляют готовым изделиям морозостойких свойств. Если добавить на каждое ведро воды по ложке стирального порошка, это также увеличит пластические свойства керамзитобетона.

Керамзитобетон подготовка к производству

Для изготовления керамзитобетонных блоков будет необходим вибростанок.

Для объемов производства бетономешалки достаточно будет 130 л. Если в вибростанке нет емкостей для формования, их придется изготовить самостоятельно. Это должны быть поддоны из пластика или листового металла с ровной внутренней поверхностью.

Можно использовать и сборные формы из досок, которые складываются замковым соединением из 2-х половинок, каждая из которых представляет из себя букву Г. При использовании дерева материал блоков будет более фактурным. Рекомендуется также обить изнутри такие формы жестью или хотя бы обработать машинным маслом и дождаться его полимеризации. Это уменьшит сцепление готовых блоков и формы.

Вернуться к оглавлению

Изготовление керамзитобетона

Начинают производство со смешения всех компонентов с тщательным соблюдением пропорций. Мелкий чистый песок в растворе составляет треть объема, вода и цемент от 0,8 до 1 целой части. Керамзита же берется 6 частей. Точный список необходимых компонентов и пропорций выглядит по-разному при изготовлении керамзитобетона для разных целей. Чем выше будет содержание в готовом растворе цемента, тем изделие получится более прочным, но при этом уменьшаются теплоизоляционные свойства. Чаще всего для изготовления блоков применяют такое соотношение компонентов: 6:3:1:0,8-1, керамзит, песок, цемент и вода соответственно, при этом пропорции для воды могут незначительно меняться от величины фракций керамзита, так как крупный заберет больше воды при замачивании.

Схема производства керамзитобетонных блоков.

Последовательность загрузки компонентов в бетономешалку также важна. Самой первой выливается вода, в которую высыпается керамзит. Он должен полностью промокнуть, только после этого добавляется песок и цемент. Если керамзит забрал всю или почти всю воду, ее нужно долить до требуемого уровня. При использовании прочих добавок их загружают в бетономешалку последними. Ингредиенты тщательно перемешиваются. Консистенция бетонного раствора должна быть такова, чтобы покрыть все гранулы без особого усилия. Полученный после перемешивания раствор не должен вытекать из руки, но и не должен рассыпаться, и то и другое приведет к недостаточной прочности готовых изделий.

Следующим этапом является формирование блоков. Если используется вибростанок, то блоки формируются непосредственно в нем. Для этого в формовочный отдел помещают стальную пластину, после чего выливают полученный раствор. Когда форма заполнена, включается вибрация. Излишки смеси, если они появляются сверху, нужно убирать до застывания. Потом металлический лист и готовая форма на нем поднимаются, оставляя готовый блок из керамзитобетона.

Если используются самодельные формы, после закладки в них смеси их некоторое время нужно обрабатывать лопатой, по возможности имитируя действия вибростанка.

Керамзит легкий компонент, и он будет постоянно всплывать на поверхность, чему требуется препятствовать.

Для сушки заготовок достаточно 2-3 суток. На это время их требуется защищать от прямого солнца и дождя. Стальные пластины с керамзитобетона снимают после его полного застывания.

(PDF) Конструкционный бетон с использованием керамзитового заполнителя: обзор

Конструкционный бетон с использованием керамзитового заполнителя: обзор

Индийский журнал науки и технологий

Vol 11 (16) | Апрель 2018 | www.indjst.org

10

8. Ссылки

1. Пайам С., Ли Дж. К., Махмудк Х. М., Мохаммад А. Н..

Сравнение свойств свежего и затвердевшего бетона

с нормальным весом и легким заполнителем. Журнал

Строительная техника.2018; 15: 252–60.

2. Коринальдези В., Морикони Г. Использование синтетических волокон в самоуплотняющемся легком заполнителе

Бетоны. Журнал

строительная техника. 2015; 4: 247–54.

3. Стандартные технические условия ASTM C330-05 для легких заполнителей

для конструкционного бетона. ASTM International,

West Conshohocken, PA. 2005.

4. Маркус Б., Харальд Дж., Хильде Т.К. Влияние добавок на свойства

легких заполнителей, изготовленных из глины.

Цементно-бетонные композиты. 2014. 53. С. 233–238.

Crossref.

5. ASTM C330 / 330M, Стандартные спецификации для легких заполнителей

для конструкционного бетона, ASTM International,

West Conshohocken, PA, US. 2014.

6. Бонаби С.Б., Джалал Кахани Хабушан Дж.К., Кахани Р., Аббас Х.Р.

Изготовление металлической композитной пены с использованием керамических

пористых сфер. Легкий керамзитовый заполнитель методом литья

.Материалы и дизайн. 2014; 64: 310–15. Crossref.

7. Суранени П., Фу Т., Азад В.Дж., Искор О. Б., Вайс Дж. Пуццолановость

однофрезерованных легких заполнителей. Цемент и

Бетонные композиты. 2018; 1 (5): 214–8. Crossref.

8. Сергей AM, Анна Ю. Z, Галина СС. Технология производства

водостойких пористых заполнителей на основе силиката щелочного металла и не вздувающейся глины

для бетона общего назначения. Цемент

и бетонные композиты.2015; 111: 540–4.

9. Пиоро Л.С., Пиоро Иллинойс. Производство керамзитового агрегата

ворота для легкого бетона из несамовозбухающих глин.

Цементно-бетонные композиты. 2004; 26: 6392–43.

Crossref.

10. Гита С., Рамамурти К. Свойства спеченного низкокалорийного донного зольного заполнителя

с глинистыми связующими. Строительство

и Строительные материалы. 2011; 25: 2002–13. Crossref.

11. Керамзит.2018 12 января. Доступно по адресу:

https://en.wikipedia.org/wiki/Expanded_clay_aggre-

gate.

12. Тот MN, Csaky IB. Роль группы стеатита в процессе вздутия живота

. Ziegel Industries. 1989; 5: 246–50.

13. Мигель С.С., Педро Д.С. Экспериментальная оценка цементных растворов

с материалом с фазовым переходом, введенным через легкий керамзитовый заполнитель

. Строительство и

Строительство. Материалы.2014; 63: 89–96. Crossref.

14. Александра Б., Геогрей П., Ле А.Д., Дузан О., Амар Б.,

Фредерик Р., Жерри Л. Гигротермические свойства блоков

на основе экоагрегатов: экспериментальное и численное исследование

. Строительство и строительство. Материалы. 2016;

125: 279–89. Crossref.

15. Александр М.Г., Миндесс С. Заполнители в бетоне.

Тейлор и Фрэнсис, 270 Мэдисон авеню, Нью-Йорк. 2005.

с.1–448.

16.Cui HZ, Lo TY, Memon SA, Xu W. Влияние легких заполнителей

на механические свойства и хрупкость бетона из легких заполнителей

. Констр. Строить. Матер. 2012;

35: 149–58. Crossref.

17. Чжан М.Х., Гьорв Э., Микроструктура межфазной зоны

между легким заполнителем и цементным тестом. Цемент

и бетонные исследования. 1990; 20 (4): 610–8. Crossref.

18. Аризон О, Килинч К., Карасу Б., Кая Дж., Арслан Дж., Тункан А,

Тункан М., Киврак С., Коркут М., Киврак С.Предварительное исследование

свойств керамзита

. Журнал Австралийского керамического общества. 2008;

44 (1): 23–30.

19. Real S, Gomes MG, Rodrigues AM, Bogas JA. Вклад

конструкционного бетона из легкого заполнителя в снижение эффекта тепловых мостов в зданиях. Строительство

и Строительные материалы. 2016; 121: 460–70. Crossref.

20. Губертова Б., Хела Р.Прочность легкого пенобетона

керамзитобетона. Разработка процедур. 2013;

65: 2–6. Crossref.

21. Chiou K, Wang CC, Lin Y. Легкий агрегат

получен из осадка сточных вод и сожженной золы. Управление отходами.

2006; 26 (12): 1453–61. Crossref. PMid: 16431096.

22. Легкий заполнитель для бетона, раствора и раствора

— Часть 1: Легкие заполнители для бетона, раствора.

2002 Май. Доступно по адресу: https: // shop.bsigroup.com/Prod

uctDetail /? pid = 0000000000301187942002.

23. Свами Р.Н., Ламберт Г.Х. Микроструктура агрегатов Lytag TM

. Международный журнал цементных композитов

и легких бетонов. 1981; 3 (4): 273–85. Crossref.

24. Уильям Д.А., Грегор Дж. Г., Клаус П. Термомеханическое испытание на месте

геополимерных бетонов из гладкой золы, изготовленных из кварца

и керамзитовых заполнителей. Цемент и бетон

исследования.2016; 80: 33–43. Crossref.

25. Богас Дж. А., Брито Дж. Д., Кабасо Дж. Долговременное поведение бетона

крит, произведенный из переработанного легкого керамзита

бетона на заполнителях. Строительные и строительные материалы.

2014; 65: 470–9. Crossref.

26. Аслама М., Шааг П., Ализаде Н.М., Джумаата М.З.

Производство высокопрочного легкого заполнителя кон-

крит с использованием смешанных крупнозернистых легких заполнителей. Журнал

строительной техники.2017; 13: 53–62.

27. Сергей А.М., Александр ГЦ, Галина С.С., Роман В.Д. Некоторые аспекты

разработки и применения силикатных

вспененных заполнителей в легких бетонных конструкциях.

Инжиниринг процедур. 2016; 153: 599–603. Crossref.

(PDF) Производство керамзитобетона для легкого бетона из несамораскрывающихся глин

В последнее время постоянно проводятся исследования по производству искусственного легкого заполнителя из отходов.Хотя были проведены различные исследования механизма вздутия агрегата с использованием отходов, существует много недостатков в объяснении существующей теории, поскольку она отличается от керамзитового материала. И нет исследований, которые предлагали бы модель для установления механизма вздутия для отходов. В этом исследовании были исследованы характеристики существующего керамзита, чтобы установить механизм вздутия легкого заполнителя с использованием отходов, и были смоделированы оптимальные условия активации вздутия для вздутия легкого заполнителя.Физические и химические условия сырья и формованных изделий были изучены для массового производства и предотвращения плавления заполнителя. Кислая глина, используемая в этом исследовании, представляет собой глинистые минералы, состоящие из монтмориллонита в качестве основной фазы, а минералы монтмориллонита являются подходящими материалами для производства агрегатов из-за удаления кристаллической воды при высоких температурах. Большинство керамзитов, используемых при производстве легкого заполнителя, изготовлены из сырья на основе пирофиллита и подходят для объяснения механизма вздутия с помощью существующего керамзита и подходят для разработки модели исходного материала для легкого заполнителя.Затем, чтобы исследовать характеристики вспучивания легкого заполнителя при нормальных условиях спекания, механизм вспучивания искусственного легкого заполнителя при нормальных условиях спекания и условиях быстрого спекания сравнивали с использованием кислых глинистых материалов. Результаты экспериментов показали, что в условиях быстрого спекания не наблюдалось черной сердцевины. И при нормальных условиях спекания плотность достигла пика при 1150 ℃, а при нормальных условиях спекания было три зоны в зависимости от времени спекания, независимо от температуры на входе.Ⅰ. Участок, на котором плотность увеличивается по мере того, как время спекания становится длиннее. (Зона спекания) Ⅱ. В секции, где плотность внезапно снижается, когда время спекания увеличивается. (Зона активации вздутия живота) Ⅲ. На участке, где плотность постепенно снижается по мере того, как время повышения температуры увеличивается. (Зона чрезмерного спекания) Когда время спекания составляло менее 60 минут при температуре на входе 300 ℃, плотность увеличивалась, и агрегат спекался по мере увеличения времени спекания.Наблюдалась оптимальная зона активации вспучивания, в которой плотность внезапно снижалась при времени спекания 210 минут. Когда время спекания превышало 210 мин, плотность постепенно уменьшалась, и этот участок представлял собой зону чрезмерного спекания. Независимо от температуры инъекции появлялась зона активации вздутия живота. Чтобы оптимизировать вспучивание заполнителя, на этом участке необходимо спекание. Чтобы найти оптимальные условия процесса спекания для управления оптимальной зоной активации вспучивания легкого заполнителя, каждая часть процесса нагрева была разделена на комнатную температуру до 300 ℃, от 300 ℃ до 600 ℃, от 600 до 900 ℃, от 900 до 1200. ℃, 1200 ℃ соответственно.Время эксперимента составляло 10-40 минут, после чего измеряли плотность агрегата и наблюдали поры. Время в секции сушки и предварительного нагрева (комнатная температура ~ 600 ℃) не влияло на вздутие агрегата. Секция прокаливания (от 900 ℃ до 1200 ℃) короткая, чем дольше время выдержки при 1200 ℃, тем больше активировалось вздутие живота, и она легкая. При более высоких температурах, чем температура начала вздутия, чем выше температура, тем ниже плотность конечного заполнителя. Переменными, которые имеют наибольшее влияние на активацию легкого заполнителя, были температура спекания и время выдержки в секции.Тенденция экспериментальных результатов, предсказанных методом Тагучи, хорошо согласуется с фактическими результатами измерений, благодаря этому эксперименту стало возможным установить единичный процесс спекания для оптимизации условий активации вздутия живота. Чтобы подтвердить применимость оптимального единичного процесса и механизма вспенивания в реальном процессе массового производства, была исследована пригодность пилотной вращающейся печи. Когда легкий заполнитель производился с использованием только кислой глины, он плавился во вращающейся печи перед вспучиванием.Чтобы найти зону активации вздутия, которая может предотвратить слияние, были добавлены Fe2O3 и углерод, чтобы вызвать сочетание с механизмом вздутия черной сердцевины, и был подтвержден оптимальный химический состав для вздутия легких агрегатов. Чтобы понять влияние образования давления внутри агрегата на вздутие и найти подходящий способ формования для массового производства, были исследованы характеристики вздутия агрегата и изменение температуры активации вспучивания путем изменения способа формования.И мы подтвердили возможность серийного производства с использованием пилотной вращающейся печи. Оптимальное содержание добавки составляло 8 ~ 13 мас.% Fe2O3 и 2 ~ 3 мас.% Углерода. При содержании указанных добавок механизм вспенивания черной сердцевиной работал в широком диапазоне, снижая температуру вздутия. Плотность сырых тел различалась в зависимости от способа формования. Размер пор 1㎛ был измерен как очень маленький в сыром теле, образованном экструдером и компрессионным формованием. По этой причине можно обеспечить более высокое внутреннее давление, необходимое для вздутия в сыром теле, сформированном экструдером, и, в конечном итоге, раздуть агрегат при более низкой температуре.Разработав рецептуру с оптимальной комбинацией, как описано выше, и агрегаты формируются с использованием экструдера, было подтверждено, что температура активации вспенивания была снижена, и связывание плавлением было предотвращено во вращающейся печи. Поскольку температура активации вздутия живота понижена, можно также ожидать эффекта экономии энергии. В ходе этого исследования было обнаружено, что оптимальные параметры процесса для химического состава сырья, формования сырого материала, сушки, предварительного нагрева, прокаливания и прокаливания сырья для вздутия легкого заполнителя были подтверждены.Я надеюсь, что это исследование будет использовано в качестве важной модели для проектирования всего процесса легкого заполнителя.

Легкий заполнитель из вспененной глины — обзор

7.4.4.1 Технические характеристики

При вторичной переработке алюминия образуется шлак и шлак , оба обычно классифицируемые как опасные отходы, могут происходить через керамические изделия. Свойства побочного продукта алюминиевого шлака обсуждаются в главе 6.

Несмотря на его потенциально опасный характер, высокое содержание глинозема является привлекательным аспектом, способствующим его переработке.В основном изучаются две области повторного использования (Yoshimura et al., 2008): (i) огнеупоры и (ii) композиты (алюминиево-глиноземные композиты).

Легкие керамзитовые заполнители были произведены из природной пластичной глины и отходов переработки алюминиевого лома (ASRW), которые были получены в результате извлечения металлического алюминия из черного шлака с использованием обычного металлургического процесса (Bajare et al., 2012). ASRW содержит нитрид алюминия (AlN — в среднем 5 мас.%), Хлорид алюминия (AlCl 3 — в среднем 3 мас.%), Хлориды калия и натрия (всего 5 мас.%) И сульфит железа (FeSO 3 — на в среднем 1 мас.%).Его средний химический состав приведен в таблице 7.25, а элементный анализ — в таблице 7.26.

Таблица 7.25. Средний химический состав отходов переработки алюминиевого лома (мас.%) (Bajare et al., 2012)

902 902 902 9027 9027 902
LOI, 1000 ° C Al 2 O 3 SiO 2 CaO SO 3 TiO 2 Na 2 O K 2 O MgO Fe 2 O 3
63,19 7,92 2,57 0,36 0,53 3,84 3,81 4,43 4,54 & gt; 2,6

Таблица 7.26. Элементный анализ отходов переработки алюминиевого лома (мас.%) (Bajare et al., 2012)

Al Si Ca Mg Fe Na K S Cu Pb Zn
34.4 4,4 1,32 2,44 3,60 1,69 2,31 4,23 0,07 0,99 0,14 0,6
, разложение летучих элементов сульфит и хлориды будут выделять газы при сжигании, а отходы переработки алюминиевого лома могут действовать как порообразователь. Керамические заполнители были изготовлены из смесей углеродистой глины и ASRW в различных пропорциях (ASRW от 9 до 37.5 мас.%). Подготовленные агрегаты сушили 3 ч при 105 ° C, а затем прокаливали 5 мин при различных температурах от 1150 ° C до 1270 ° C. Скорость нагрева поддерживали постоянной (15 ° C / мин). Затем были оценены физические и микроструктурные свойства спеченных агрегатов.

Кажущаяся плотность агрегатов колебалась от 0,4 до 0,6 г / см 3 . Структура пор показана на рис. 7.7 и состоит из макропор со средним диаметром 1 мм и микропор (размер менее 0,2 мкм).

Фиг.7.7. Пористая структура заполнителей, полученных из смеси глины и отходов переработки молотого и алюминиевого лома (показаны мас.%) И обожженных при различных (заданных) температурах (Bajare et al., 2012).

Согласно Pereira et al. (2000a), солевой шлак, образующийся при плавке вторичного алюминия, можно использовать в огнеупорных кирпичах. Соблюдались типичные условия промышленной обработки. Добавление шлака улучшает физические и механические характеристики керамического материала из-за его флюсования.Допускаются более высокие уровни включения (около 10% масс.). Те же авторы протестировали включение богатого алюминием солевого шлака в бокситовые огнеупоры (Pereira et al., 2000b). Сделан вывод о возможности включения промытых шлаков солей алюминия в бокситовые огнеупоры. В общем, физические свойства обожженного материала имеют тенденцию улучшаться с увеличением содержания шлака (например, более высокой прочности на изгиб). Этот эффект можно объяснить флюсовыми характеристиками шлака. С функциональной точки зрения допустимы значительные уровни включения (18 мас.%).

Процессы анодирования и порошкового покрытия поверхности требуют больших затрат воды не только для каждой последующей партии химикатов, но и для надлежащей промывки промежуточных частей. Как прямое следствие, образуется огромное количество сточных вод, которые после надлежащей очистки приводят к чистой воде и большому количеству твердых отходов, называемых алюминиевым шламом (BREF, 2006; Magalhães et al., 2005).

Производство керамических блоков из глиняного кирпича может стать интересной альтернативой захоронению осадка.Marques et al. (2012) стремились разработать термостойкий кирпич за счет переработки алюминиевого шлама в производстве кирпича. Они использовали производственный цикл кирпичного завода и провели полномасштабные испытания кирпичной кладки, произведя 10 тонн настоящего кирпича. В заключение, добавление анодирующего шлама улучшает тепловые характеристики кирпича на 26% без увеличения стоимости производства кирпича, что приводит к значительному повышению теплового комфорта зданий. Остальные физико-механические свойства (водопоглощение и прочность на сжатие) кирпича по-прежнему имеют приемлемые значения (Marques et al., 2012).

Цель Khezri et al. (2010) заключалась в том, чтобы найти применение для использования осадка на установках анодирования алюминия для предотвращения загрязнения окружающей среды и получения экономической выгоды для заводов. Для этого были изготовлены кирпичи с различным сочетанием шлама, глины и песка, которые прошли испытания с использованием имеющихся стандартов. Результат показал, что кирпичи, содержащие 40 мас.% Шлама, обладают лучшими и ближайшими стандартизованными параметрами качества по сравнению с обычным внутренним кирпичом. Эти кирпичи имеют меньший вес, чем кирпичи при такой же массе и более низкой цене, а также предотвращают распространение осадка в окружающей среде.

Ozturk (2014) изучил использование шлама анодирования, который производится в больших объемах на одной из алюминиевых компаний в Турции (Таблица 7.27). Целью исследования было производство муллитовой керамики из богатого алюминием шлама, содержащего 15–30 мас.% Твердого вещества (90 мас.% Твердого вещества составляет бемит (AlOOH), а остальное — тенардит (Na 2 SO 4). ) и барит (BaSO 4 )).

Таблица 7.27. Химический состав богатого алюминием шлама анодирования (мас.%, XRF) (Ozturk, 2014)

70429 90.9
Шлам богатый алюминием Al 2 O 3 SiO 2 2 Fe O 3 CaO SO 3 Na 2 O K 2 O MgO BaO
0,78 0,31 2,06 20,2 2,95 0,03 0,97 1,20

Муллит представляет собой стабильную кристаллическую алюмосиликатную фазу 9022 9022 O2 9021 2 SiO 2 и способствует высокой прочности, сопротивлению ползучести, химической инертности и термической стабильности керамических материалов (Martins et al., 2004).

Ozturk (2014) применил процесс промывки, фильтрации и сушки анодированного шлама для удаления натрия перед производством муллитовой керамики.Цикл удаления натрия повторяли до полного удаления натрия из ила. Затем порошок без натрия прокаливают при 1400 ° C в течение 1 ч при скорости нагрева 5 ° C / мин для получения порошка с фазой альфа-оксида алюминия (α-Al 2 O 3 ). Полученный порошок α-Al 2 O 3 смешивали (42 мас.%) С каолином, диатомитом и глиной в пропорциях 15, 28 и 15 мас.% Соответственно. Смесь прессовали и спекали при 1450–1550 ° C в течение 1–5 ч (код образца M1).Результаты сравнивают с другой смесью, приготовленной с использованием коммерческого порошка Alcoa α-Al 2 O 3 (код образца M2). В результате работы было обнаружено, что при соответствующей обработке и смешивании с природными минеральными добавками анодирующий шлам может быть использован в производстве керамических материалов на основе муллита (таблица 7.28) (Ozturk, 2014).

Таблица 7.28. Физико-механические свойства спеченных образцов M1 и M2

9027 ° C 8427 ° C 9027 ° C 80 9027 3,7 72 90ibe299 9 (2004a, b, 2006), Ribeiro и Labrincha (2008) и Labrincha et al. (2006) провели подробные исследования по использованию шламов анодирования алюминием в производстве огнеупорной и электроизоляционной керамики. Огнеупорные керамические материалы на основе муллита и кордиерита получали из составов, содержащих 42 и 25 мас.% Шлама соответственно.Каолин, шариковая глина, диатомит и тальк завершили составы. Цилиндрические образцы, обработанные методом одноосного сухого прессования, спекались при различных температурах. Были оценены свойства материалов после обжига (усадка при обжиге, водопоглощение, прочность на изгиб, коэффициент теплового расширения, огнеупорность и микроструктура на сканирующем электронном микроскопе) и продемонстрировано, что оптимальные свойства были получены при 1650 ° C для муллита и 1350 ° C для тел кордиерита (Ribeiro и Лабринча, 2008). Последние могут использоваться в качестве огнеупорных кирпичей при температуре до 1300 ° C.

Составы, полностью состоящие из ила, были также произведены и испытаны, что выявило образование α-оксида алюминия и β-оксида алюминия (NaAl 11 O 37 ) на образцах, спеченных при 1450 ° C или выше (Ribeiro et al., 2004a , б). Их электроизоляционные характеристики описаны в отдельных работах (Labrincha et al., 2006; Ribeiro et al., 2004a, b). Составы на основе муллита (содержащие 42 мас.% Шлама) демонстрируют электрическую проводимость примерно на четыре порядка выше, чем составы на основе оксида алюминия (100% шлама).Последние обладают изоляционными характеристиками, сравнимыми с образцами глинозема чистотой 90%. На рис. 7.8 показаны тела, обработанные в ходе этих работ.

Рис. 7.8. Тела на основе алюминиевого шлама, обработанные экструзией и шликерным литьем (Ribeiro et al., 2004a).

Тот же самый шлам был также исследован в составе неорганических пигментов (Leite et al., 2009; Hajjaji et al., 2009), в некоторых случаях в сочетании с другими отходами (например, шламы при волочении проволоки Fe и шламы хромоникелевых покрытий. , резка мрамора / полировка шламов / мелочи).Составы, полностью основанные на отходах, образуют стабильные структуры при более низких температурах, чем коммерческие (химически чистые реагенты) пигменты, и могут быть получены различные цвета, как показано на рис. 7.9 (Hajjaji et al., 2012; Costa et al., 2007).

Рис. 7.9. Отличительные пигменты, полученные из отходов (Hajjaji et al., 2012).

Среда для выращивания растений без использования

Вы когда-нибудь думали о выращивании растений без использования почвы? Это очень популярная и практичная абстракция, которую внедряют во всем мире.Страны и государства, сталкивающиеся с проблемами, связанными с насаждениями и водоснабжением, постоянно ищут новые и отличные способы наилучшего использования того, что у них есть.

С развитием современных исследований и изобретением ECA ® (наполнитель из вспученной глины) это стало возможным. Эти глиняные камешки представляют собой крошечные глиняные шарики, подвергшиеся чрезмерно высокой температуре.

При обжиге во вращающейся печи эти крошечные камешки расширяются и становятся пористыми внутри. Они также известны как гидропонные глиняные шарики, гидротон, глиняная галька или легкий керамзитовый заполнитель (LECA).

Замена обычного заполнителя искусственным легким заполнителем, образованным расширенной глиной, дает бетонный заполнитель, называемый конструкционным легким бетоном.

Конструкционный легкий бетон, изготовленный с использованием вращающейся печи, конструкционный легкий заполнитель решает проблемы прочности и веса открытых и строительных конструкций.

Этот бетон обладает большей стабильностью и прочностью по сравнению с бетоном с нормальным весом, но обычно на 25-35% легче.Конструкционный легкий бетон предлагает существенное снижение затрат, гибкость конструкции и меньшую статическую нагрузку, лучшую огнестойкость, улучшенный сейсмический отклик конструкции, более тонкие секции, более длинные пролеты, меньшее количество арматурной стали, меньшую высоту этажа, меньшие размеры конструктивных элементов и более низкие затраты на фундамент.

Конструкционные элементы из легкого бетона имеют более низкие затраты на транспортировку и размещение. Выдающиеся характеристики этих бетонов, изготовленных из керамзита, сланца или конструкционного легкого заполнителя, являются следствием керамической природы заполнителя, его великолепной связи и эластичной совместимости с цементной матрицей.

Бетон с использованием керамзитового сланца, керамзита и керамзитового сланца (ESCS), легкий заполнитель, имеет улучшенные термические свойства, уменьшенную автогенную усадку, лучшую огнестойкость, отличную стойкость к замерзанию и оттаиванию, меньшее количество микротрещин в результате лучшей эластичной совместимости, улучшенной зоны контакта между заполнителем и цементной матрицей, лучшая амортизация и звукопоглощение, а также более высокая взрывостойкость. Конструкционный бетон из легкого заполнителя с высокими эксплуатационными характеристиками также обладает улучшенным сопротивлением скольжению, меньшим растрескиванием и легко укладывается методом перекачивания бетона.

Применение конструкционного легкого бетона:

  • Полы в каркасных домах

  • Легкий бетон на огнестойких стальных конструкциях настила

  • Бетонные каркасные здания и парковочные конструкции

  • Настилы мостов, опоры и фермы AASHTO

  • Бетон заданной плотности

  • Сборные железобетонные и предварительно напряженные элементы из легкого бетона (двутавры, балки, перекладины, откидные стены, доски для фальшпола, своды, трубы, декоративные элементы и т. Д.)

  • Морские сооружения, плавучие доки, суда и морские нефтяные платформы

  • Заливка и изоляционный бетон

Сырье, глина, используется для производства легких заполнителей, поскольку она легко перерабатывается в соответствующие и подходящие гранулы и образует частицы заполнителя низкой плотности, но повышенной прочности при спекании при сравнительно более низкой температуре.

Использование глиняных отходов для производства легких заполнителей, образующихся в ходе крупных проектов по развитию инфраструктуры, оказывает благоприятное воздействие на окружающую среду и способствует более замкнутой экономике.

Высокопрочный легкий бетон, керамзитовый заполнитель,

В статье — Конструкционный бетон с использованием заполнителя из вспененной глины: обзор — опубликованной в Indian Journal of Science and Technology, Vol. 11 (16), д-р Р. Виджаялакшми и д-р С. Раманагопал из Департамента гражданского строительства инженерного колледжа SSN, Ченнаи высказали мнение, что керамзитовый заполнитель (ECA) используется во многих различных отраслях промышленности из-за его технических характеристик и многочисленных преимуществ. по сравнению со многими другими видами промышленного сырья.

Одним из материалов с наибольшей прочностью на сжатие среди легких заполнителей является керамзит. Это дает компании значительные позиции в строительной отрасли. 20% можно сэкономить на арматуре, в то время как до 50% можно сэкономить на расходах на отопление-охлаждение в зданиях, содержащих керамзитовый заполнитель (ECA).

Учитывая его хорошие изоляционные свойства, ЭХА был затем включен в смесь для усиления свойств бетона. Согласно отчету Green Business Center of India, сотовая структура ECA обладает высокой стойкостью к раздавливанию, хорошей огнестойкостью и отличными тепло- и звукоизоляционными свойствами.

С точки зрения структурных применений, смеси для легкого заполнителя и бетона (LWAC) обладают преимуществами легкости и улучшенных тепло- и звукоизоляционных свойств. LWAC — это тип бетона, в котором используются легкие заполнители (LWA), и он соответствует критериям, изложенным в ASTM C 3303. Конструкционный легкий бетон вместо обычного бетона может улучшить конструктивную эффективность зданий.

Легкий бетон показывает лучшие тепловые характеристики, чем обычный бетон, и его применение может значительно снизить потребление энергии в зданиях.Применение конструкционного бетона из легкого заполнителя в зданиях, расположенных в европейских странах, может снизить потребление тепловой энергии на 15% по сравнению с бетоном с нормальным весом.

Почему керамзитовый наполнитель (ECA) предпочтительнее других наполнителей

Керамзитовый наполнитель (ECA) обладает высокой устойчивостью к действию кислот и щелочей с pH около 7, что делает его нейтральным в химической реакции с бетоном.

Заполнитель из вспененной глины (ECA)

обладает легкостью, прочностью, неразложимостью, изоляционными свойствами, химической стойкостью, нейтральностью pH и благодаря своей структурной стабильности считается лучшим легким заполнителем для бетона для кровли, полов, строительства мостов и многого другого. .Его плотность меньше или равна 460 кг / м3.

Агрегат вспученной глины (ECA) — это экологически чистый, натуральный, неразрушимый, негорючий материал, он очень устойчив к атакам насекомых, мошек и термитов. Легкий бетон можно разделить на две группы:

.
  • Ячеистый бетон: Обладает очень легким весом и низкой теплопроводностью. Для достижения определенного уровня прочности требуется процесс автоматического глина, а для этого требуется специальная производственная установка, которая, в свою очередь, потребляет много энергии.
  • Бетон из вспененного глиняного заполнителя (ECA): он имеет более высокую прочность, но более высокую плотность и очень низкую теплопроводность.

Вращающиеся печи для производства керамзитового агрегата

Керамзитовый заполнитель, также называемый экслай, или легкий керамзитовый заполнитель (LECA), является полезным материалом во все большем числе отраслей промышленности, в первую очередь в строительстве и садоводстве, где на очереди, вероятно, последуют применения для очистки воды и фильтрации.

Уникальная структура и физические свойства керамзита, которые позволяют использовать его в различных областях, производятся в результате тщательно контролируемой термической обработки (обычно называемой прокаливанием или спеканием), проводимой во вращающейся печи.

Термическая обработка керамзитового заполнителя (прокаливание или спекание)

Свойства керамзита, которые делают его идеальным для использования в определенных областях, достигаются благодаря высокотехнологичному производственному процессу.

Глины обычно измельчают, агломерируют и / или сушат в качестве средства подготовки сырья, хотя этот процесс может варьироваться. Экструзия кажется предпочтительным методом агломерации в этой обстановке, но можно также изучить другие методы.

В то время как подготовка сырья имеет важное значение при производстве заполнителей керамзита, ключевым процессом, лежащим в основе заполнителей керамзита, является термическая обработка. От этой термической обработки произошло название керамзитового заполнителя, поскольку он используется для физического расширения частиц глины.

Для описания таких методов термической обработки используются различные термины. В этом случае обработка обычно называется прокаливанием или спеканием. Хотя эти два термина часто используются как синонимы, важно отметить, что технически они относятся к разным методам. Поскольку спекание технически происходит при гораздо более высоких температурах, для целей этой статьи мы будем называть его прокаливанием, хотя в некоторых случаях расширенные агрегаты могут быть действительно спеченными.

В случае керамзита прокаливание играет важную роль в создании продукта, который может служить заполнителем керамзита. Температура, обычно от 1050 ° C до 1250 ° C, вызывает выделение газов в результате различных изменений в материале, включая разложение и восстановление оксидов трехвалентного железа, горение органических веществ, продувку захваченной воды и разложение карбонаты .³

Это выделение газов вызывает физическое расширение или вздутие глины, в результате чего она имеет более низкую плотность, более высокую пористость и гораздо большую площадь поверхности внутри материала, а также более твердую поверхность — все характеристики, которые делают ее идеальной для использования. как легкий заполнитель.

Факторы, влияющие на расширение глины при прокаливании

Как и в случае с большинством материалов, для достижения наилучших результатов в производственном процессе необходимо оптимизировать различные факторы. Обширное исследование, проведенное на трех различных источниках глины, показало, что, хотя ряд факторов важен, параметры процесса расширения, которые, возможно, являются наиболее важными, включают: 4

Температура обработки

Температура обработки является наиболее важным фактором в процессе расширения.Было обнаружено, что расширение увеличивается вместе с температурой, чуть ниже температуры плавления конкретной глины (температура плавления варьируется в зависимости от типа глины).

Размер зерна глины

Исследование показало, что размер зерна глины также является определяющим фактором, причем расширение увеличивается по мере уменьшения размера зерна.

Размер пеллет

Также было обнаружено, что размер гранул или агломератов влияет на расширение, причем расширение увеличивается вместе с размером гранул.Следовательно, уменьшение размера гранул коррелирует с меньшим расширением.

Время удерживания

Было обнаружено, что оптимальное время удерживания зависит от типа обрабатываемой глины. Оптимальное время удерживания было важным, поскольку наблюдались последствия как несоответствующего, так и чрезмерного времени.

Вращающаяся печь

Предпочтительным оборудованием для проведения процесса расширения глины является вращающаяся печь.

Вращающиеся печи доступны в конфигурации с прямым или косвенным нагревом, и их часто называют декарбонизатором.Производство керамзита обычно осуществляется в печи с прямым нагревом, в которой глина и продукты сгорания находятся в прямом контакте друг с другом.

Обжиговые печи

с прямым нагревом можно настроить для прямоточного или противоточного воздушного потока, но противоток, как правило, является более эффективной настройкой процесса при этой настройке.

3D Модель вращающейся печи прямого нагрева

Почему глина как легкий заполнитель

Как и многие легкие заполнители (LWA), использование вспученных глин может обеспечить широкий спектр как экономических, так и экологических преимуществ:

Экономическая выгода

Использование легких заполнителей предлагает множество экономических стимулов, в том числе:

  • Снижение затрат на конструкции в строительстве
  • Снижение транспортных расходов
  • Снижение затрат и снижение зависимости от импорта, где это применимо

Экологические преимущества

По данным Европейской ассоциации керамзитовой глины (EXCA), керамзит является экологически чистым материалом с рядом экологических преимуществ:

  • Снижение выбросов CO 2 при использовании в качестве замены ископаемого топлива
  • Сниженные выбросы CO 2 в строительстве и на транспорте
  • Повышение энергоэффективности зданий
  • Возможность 100% вторичной переработки
  • Химически инертен (без вредных компонентов и, следовательно, без возможности выделения ЛОС или вымывания загрязняющих веществ
  • Преимущества фильтрации воды и воздуха
  • Высокое соотношение продукта к сырью (из одного кубометра глины можно получить пять кубометров керамзита)

Кроме того, возможность заключается в использовании восстановленных или переработанных глиняных материалов, что еще больше повышает экологичность этого материала.

Использование LECA

В то время как области применения легкого керамзитового заполнителя (LECA) продолжают расти, в настоящее время существует два основных направления для продуктов LECA:

Строительство

Строительство — наиболее распространенное приложение для LECA. Керамзит можно найти во всех видах бетона, наполнителя и конструкционных элементов в строительстве и промышленности строительных материалов. Преимущества, которые он может предложить в этой настройке, включают: ²

  • Высокая износостойкость, низкие эксплуатационные расходы и долгий срок службы
  • Прочность и устойчивость
  • Полностью негорючие (огнестойкие)
  • Возможность 100% вторичной переработки снижает проблемы утилизации
  • Легкость без ущерба для прочности
  • Служит теплоизолятором
  • Обеспечивает снижение шума
  • Обеспечивает отвод воды
  • Нетоксичный

Садоводство

Использование LECA в садоводстве — сравнительно новое применение, но все еще развивающаяся область.Керамзитовые наполнители могут принести множество преимуществ при различных условиях выращивания. Сюда входят:

¹
  • Улучшенная аэрация (особенно при использовании в качестве субстрата при выращивании в коммерческих контейнерах) и меньшее уплотнение
  • Способность к увеличению содержания воды и питательных веществ
  • Повышенная катионообменная емкость
  • Устойчивость к разрушению со временем
  • Возможно использование в качестве барьера от сорняков

Помимо строительства и садоводства, LECA также исследуется на предмет использования в системах очистки и фильтрации воды.

Испытания: залог успеха с керамзитом

Как и во многих случаях термической обработки, испытания являются критическим элементом успешной операции расширения глины. Исследования показали, что идеальные параметры процесса уникальны для типа обрабатываемой глины.

Тестирование образцов глины в серийном масштабе для сбора исходных данных процесса является первым шагом в успешной программе тестирования. Данные, собранные во время серийного тестирования, затем можно использовать для масштабирования тестирования до непрерывных пилотных запусков.Испытания также могут быть использованы для поиска баланса между идеальными параметрами процесса и тем, что является экономически целесообразным.

Инновационный центр FEECO предлагает различные испытательные печи для проведения как периодических, так и пилотных испытаний. Печи могут быть оснащены различным вспомогательным оборудованием для моделирования различных условий коммерческой эксплуатации.

Испытания различных методов агломерации также могут быть объединены для получения идеальных характеристик гранул для рассматриваемого уникального источника глины.

Обжиговая печь периодического действия, используемая для испытаний в инновационном центре FEECO

Система автоматизации инновационного центра собирает широкий спектр данных, которые можно отслеживать и анализировать в режиме реального времени для непревзойденной прозрачности процесса. Сюда входят точки данных, такие как скорость подачи и продукта, соответствующие показания температуры, давления в системе, отбор проб и анализ газа и многое другое.

Заключение

Керамзитовый керамзит — полезный материал в строительной индустрии, находит применение в садоводстве и водоочистке.Вращающиеся печи — это предпочтительное устройство для переработки глиняных агломератов в керамзит.

Возможность оптимизации параметров процесса для производства продукта из керамзита высшего качества имеет решающее значение для успеха операции. FEECO предлагает обширные возможности тестирования для тех, кто находится на этапах процесса и разработки продукта. Затем мы используем данные, собранные в ходе испытаний, для проектирования и производства на заказ коммерческих вращающихся печей высочайшего качества. Для получения дополнительной информации о наших возможностях в отношении керамзитовых заполнителей свяжитесь с нами сегодня!

Как наполнитель из вспученной глины помогает в садоводстве?

Jaydutt Tailor получил степень магистра в области гражданского строительства в 2012 году в Лондонском университете.Он возглавляет и возглавляет команду GharPedia. Он является старшим менеджером (гражданские и структурные) в SDCPL. Он является старшим редактором и основным членом редакционной группы GharPedia. Он опытен и увлечен управлением группой творческих людей, технологиями, а также новым дизайном и разработками в GharPedia. Он также занимается структурным проектированием некоторых крупных проектов SDCPL. У него есть дополнительная склонность к фотографии, чтению и путешествиям. С ним легко связаться — LinkedIn, Twitter, Quora.

Каждый владелец сада желает использовать более быстрые и впечатляющие методы, чтобы растения достигли должного уровня роста.Считается, что использование «наполнителя из расширенной глины» обеспечивает аналогичные преимущества для людей во всем мире. Большинство из нас годами используют этот замечательный продукт в своем саду, и результаты свидетельствуют о его эффективности. Читайте дальше, чтобы узнать, почему он так популярен?

Также читайте: Потрясающие товары для домашнего сада, необходимые для вашего дома!

Прежде чем мы поговорим больше о заполнителях из расширенной глины, давайте сначала разберемся с заполнителями из расширенной глины! Он изготавливается путем нагревания глины (легкого заполнителя).Легкий бетон был впервые обнаружен Стивеном Дж. Хейдом (который является отцом индустрии легкого бетона) объясняет, что когда глина нагревается в печи до температуры 2228 градусов по Фаренгейту (1220 градусов по Цельсию), он выделяет газы, которые создают маленькие пузырьки, которые создают сотовую структуру внутри агрегата, что делает его идеальным для удержания кислорода, а также влаги вокруг корней растений. Его можно смешивать с почвой или без нее.

Агрегат из вспученной глины также называется галькой из вспученной глины или гранулами из вспученной глины.Это легкий заполнитель коричневого цвета с номинальным размером частиц от 8 мм до 12 мм. Он напоминает полукруглые кусочки странной формы из шаров глиняного цвета. Это просто похоже на попкорн. Expanded Clay нетоксичен, не вызывает болезней, устойчив к водорослям, химически инертен и стерилен с естественным pH. Он обладает хорошими изоляционными свойствами в широком диапазоне температур, не уплотняется и не боится мороза.

Плотная зеленая крыша использует посадочные материалы, которые имеют большую глубину, чем обширная зеленая крыша.Эта более глубокая почвенная система становится легкой с использованием керамзитового заполнителя и позволяет плотным крышам размещать большие растения и группы ярких растений. Посмотрите видео « Everest Fernandez» (у канала YouTube — Just4Growers) объясняет, как эти маленькие коричневые шарики заменяют почву и ее стратегии орошения.

Эти глиняные камешки приносят больше пользы, чем что-либо еще. Большинство из нас, вероятно, плохо знакомы с садоводством или пытаются прочно закрепиться.Когда профессионалов спрашивают о том же, они также понимают, что эти аспекты имеют решающее значение в данном сценарии для достижения лучших результатов в садоводстве. Для выращивания растений необходимо иметь соответствующие знания о дренаже и других факторах.

Также читайте: 6 основных советов по уходу за кустарниками для вашего домашнего сада в этот сезон дождей!

Пункты, упомянутые ниже, помогут вам понять, следует ли нам по-прежнему использовать глиняную гальку в садах.

Характеристики керамзитового заполнителя

Некоторые характеристики керамзита — легкость, звукоизоляция за счет высокой акустической стойкости, теплоизоляция за счет низкого коэффициента проводимости, влагонепроницаемость, сжимаемость при постоянном давлении и гравитационных нагрузках, огнестойкость. , отсутствие разложения при различных условиях, pH около 7, устойчивость к замерзанию и плавлению, обеспечение движения и транспортировки, идеальная сладкая почва для растений, материалы для дренажа и фильтрации.

Преимущества вспученного глиняного агрегата / глиняной гальки для садоводства

01. Жизнеспособность сбора урожая в саду

Иногда сбор урожая становится сложной задачей для большинства из нас из-за липких почвенных условий и неестественности рост. Особенно тяжело, когда речь идет о пересадке всего растения с одного места на другое. Но в случае с глиняной галькой или керамзитовым заполнителем физические формы этих аспектов немного отличаются от других.

Столкновение с трудностями при использовании керамзитового заполнителя, несомненно, невозможно. Это связано с тем, что галька имеет округлую форму и нелипкую природу, что делает ее точной версией раствора, необходимого для сбора урожая и пересадки.

Другая проблема, с которой сталкивается большинство из нас, занимаясь садоводством, связана с отводом воды, которая питает корни. С помощью гальки мы можем гарантировать, что растение получает необходимое питание из воды. Это обеспечивает надлежащий доступ к дренажу воды в небольшом горшке.

Технически, обычные способы могут предотвратить попадание воды из почвы, что затруднит рост растений. С другой стороны, глиняная галька может дать достаточно места для стекания воды, не уменьшая шансов на получение необходимого питания.

Также прочтите: Основные советы по уходу за газоном для новых домовладельцев!

03. Поглощение влаги и питательных веществ

Помимо вышеупомянутых аспектов, глиняная галька может обеспечить преимущества, о которых мы даже не догадываемся.В одном случае они поглощают дополнительную влагу, необходимую для роста растений. Не только вода, они также поглощают питательные вещества из растворов, которые использовались для роста растений в почве.

Одна особенность, которая отличает глиняные гальки, заключается в том, что они придают эстетический вид горшку, в который они помещены. Их внешний вид таков, что они только подчеркивают красоту горшка и не выглядят неуместно. Кроме того, они поддерживают идеальную температуру, уровень влажности и дренаж, что сводит к минимуму усилия, необходимые для ухода за ними.

Они помогают снабжать корни кислородом вместе со всем остальным. Более того, мы можем даже повторно использовать эти камешки, просто промывая их снова и снова. Это делает глиняные камешки долговечными. При необходимости мы можем раздавить их, чтобы получить керамзит меньшего размера. Важным фактором для садоводов является то, что они очень недорогие.

Как правило, озеленение осуществляется двумя способами:

  • Традиционный метод: Если используется естественная почва.
  • Современный метод: Если керамзитовый заполнитель используется с почвой или индивидуально. Современный метод в садоводстве также включает: при добавлении в почву керамзит помогает почве удерживать воду в периоды засухи. Расширяющаяся глина действует как идеальный изолятор корней при использовании в областях, которые часто страдают от холода.

Использование керамзитового заполнителя не ограничивается плантациями и выращиванием. Он дает растениям необходимую влагу и питает корни.Свойства, которыми он оснащен, гарантируют, что ваши усилия по садоводству принесут плоды, причем в пределах допустимых сроков. С его помощью мы можем увидеть, насколько упрощается процесс сбора урожая. В самом деле, как предполагают эксперты компании Expanded Clay Aggregate Company, он полезен для всех видов вещей, включая теплоизоляцию в Индии. Поскольку он легкий по своей природе, мы можем использовать его для садоводства, не вкладывая много денег и не ограничивая свой бюджет.

Агрегат из вспененной глины — отличный выбор для выращивания растений для вашего ландшафта, так как они многоразовые, служат долго и могут использоваться в различных гидропонных системах и на разных этапах роста растений.Они действительно требуют немного усилий и времени, чтобы получить от них максимальную отдачу при одновременной защите вашего механизма, но для многих людей это того стоит.

Читайте также:

Что такое бонсай?
Ландшафтная архитектура | Создание блаженного открытого пространства!
Уход за комнатными растениями: советы, которые вы должны знать!

Jaydutt Tailor получил степень магистра в области проектирования строительных конструкций в 2012 году в Лондонском университете. Он возглавляет и возглавляет команду GharPedia. Он является старшим менеджером (гражданские и структурные) в SDCPL.Он является старшим редактором и основным членом редакционной группы GharPedia. Он опытен и увлечен управлением группой творческих людей, технологиями, а также новым дизайном и разработками в GharPedia.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Состав Условия спекания Прочность на изгиб (МПа) Плотность (г / см 3 ) Пористость (%) Водопоглощение (%) ) Плотность (%)
M1 1450 ° C — 1 ч 53 2.02 26,1 12,88 63,9
1500 ° C — 1 ч 54 2,27 13,1 5,76 71,8
1 ч. 2,47 0,72 0,29 78,2
1550 ° C — 3 часа 81 2,49 0,71 0,29 78,8
527
2.49 0,72 0,29 78,8
M2 1450 ° C — 1 час 72 2,15 0,81 0,81 70,3
70,3
2,13 1,02 1,02 68,7
1550 ° C — 1 ч 75 2,11 1,69 1,69 66,8 2.11 1,75 1,75 66,8
1550 ° C — 5 часов 72 2,10 6,36 2,36 66,5