Как подобрать сечение провода по нагрузке: Расчет сечения кабеля по нагрузке

Содержание

Как рассчитать сечение провода по нагрузке: таблица и примеры

Автор Aluarius На чтение 6 мин. Просмотров 87 Опубликовано

Тема статьи затрагивает достаточно серьезную проблему, связанную с правильным выбором сечения кабеля или провода, которые используются в разводке электрических сетей зданий. Чтобы понять, в чем суть вопроса, необходимо понимать тот момент, что электропроводка в доме подвергается токовым нагрузкам, которые греют сам кабель. И если неправильно подобрать сечение проводов, если неправильно провести расчеты, то ситуация может быть двоякой. Первое (уменьшенное сечение) – перегрев проводки, оплавление изоляции, короткое замыкание, выход из строя бытовых приборов и самой проводки, нередки случаи и пожары. Второе (увеличенное сечение) – это перерасход денежных средств. Поэтому вопрос, как рассчитать сечение провода по нагрузке правильно, сегодня звучит достаточно часто.

Что необходимо знать

В основе расчета лежит один показатель, который называется допустимая токовая нагрузка. Что это такое? Это величина тока, которую провод может через себя пропустить без изменения технических характеристик кабеля. При этом эту токовую величину провод может пропускать длительное время.

Для того чтобы рассчитать эту величину, необходимо знать потребляемую мощность всех бытовых приборов и светильников, которые подсоединены к системе потребления электроэнергии дома. Понятно, что система эта разбита на участки, или как их называют электрики, шлейфы, у каждого из которых своя потребляемая мощность, зависящая от количества подключаемых к ней потребителям. И, конечно, самая большая нагрузка ложиться на основной кабель, подключаемый ко всему дому или квартире. Он обычно располагается до распределительного щита.

Но тут встает вопрос, как определить мощность каждого потребителя. И это не проблема. Во-первых, мощность измеряется в ваттах (Вт). Во-вторых, это значение есть у каждого потребителя, которое или записано в паспорте изделия, или выбито на бирке прибора. К примеру, на лампочке накаливания мощность написана прямо на стекле. Это может быть 60 Вт или 100 и так далее.

Вот несколько бытовых приборов и их мощности:

  • Холодильник – 300 Вт.
  • Телевизор – 140.
  • Электрочайник – 1200.
  • Стиральная машинка – 2500.

Чтобы определить суммарную мощность одного участка, надо сложить мощности всех потребителей. Если это кухня, то здесь бытовых приборов больше всего: холодильник, варочная печь, микроволновка, кофеварка, электрический чайник, посудомоечная машина и так далее, плюс светильник (может и не один). Так вот все мощности этих потребителей надо сложить. Если это прихожая, то в ней есть только один источник света, периодически включается в розетку пылесос. То есть, у каждого помещения своя суммарная мощность, а, значит, должен прокладываться и кабель определенного сечения.

А вот теперь сама формула, по которой можно проводить расчет. Правда, у нее есть некоторые отличия для однофазной и трехфазной сети. Для сети однофазной:

I=PK/U cosφ, где

Р – это суммарная мощность, о которой шел разговор выше.

U – это напряжение в сети, равное 220 вольт.

К – это коэффициент одновременности, равный 0,75. Данный коэффициент определяет, что в сеть одновременно могут быть включены сразу все потребители с определенной погрешностью. Проще говоря, не все и не сразу.

cosφ – это коэффициент мощности, который для бытовых приборов равен единицы.

Для сети трехфазной:

I=P/√3 U cosφ – здесь все то же самое, только напряжение берется равным 380 вольт.

Итак, токовая нагрузка определена, теперь необходима специальная таблица, в которой сопоставляются сила тока и сечение провода. Может получиться так, что расчетное значение токовой нагрузки будет отличаться от табличной. Ничего страшного в этом нет, просто придется выбирать большую величину. К примеру, расчетная у вас получилась 22 ампера, а в таблице ближайшая 27 ампер, соответствующая сечению медного кабеля 2,5 мм². Соответственно выбираем 27А.

Чтобы не быть голословным, предлагаем с такой таблицей ознакомиться. Она предназначена для медных проводов, проложенных или внутри помещений, или снаружи. Вот эта таблица:

Точно такая же существует и для алюминиевых проводников. Эти таблицы зафиксированы ПУЭ и ГОСТом 31996-2012. Так что сомневаться в их достоверности нет оснований.

Внимание! Необходимо отметить, что 4-х или 5-жильные кабели, которые используются в четырехпроводных сетях, и у которых все жилы имеют одинаковое сечение, значение, указанное в таблице, необходимо умножить на понижающий коэффициент 0,93.

Пример

Давайте рассмотрим один пример, который раскроет всю суть производимых расчетов. Итак, будем считать, что в доме используется трехфазная система подводки электроэнергии с суммарной мощностью 15 кВт. Будем для дома выбирать медный кабель, который планируется проложить по воздуху.

Токовую нагрузку рассчитываем по формуле:

I=P/√3*380 – приблизительно получается 23 ампера.

Смотрим в таблицу и ищем походящее допустимое значение силы тока – это 27 ампер. Ему соответствует кабель сечением 2,5 мм². Но так как у нас используется многожильный кабель и трехфазное подключение, то табличную силу тока надо умножить на коэффициент 0,93. В конечном результате получается 25 ампер. Это опять-таки соответствует сечение медного провода 2,5 мм². И это допустимо для расчетной величины.

Но вот что советуют профессионалы. Никто не знает, что может выпустить научно-технический прогресс через пару тройку лет. Могут появиться новые бытовые приборы, которые вы захотите иметь в доме. Их установка увеличит силу тока в проводке, поэтому стоит выбирать сечение провода с небольшим запасом. Отсюда оптимальное решение – выбрать кабель сечением не 2,5, а 4 мм².

Нюансы современности

Ставить на этом точку в вопросе, как правильно выбрать сечение провода по нагрузке, нельзя. Почему? Все дело в том, что современный подход к распределению участков (шлейфов) разделяет систему разводки на две основные группы:

  • Силовую.
  • Осветительную.

И если с осветительной все более или менее понятно, то с силовой необходимо разобраться. Представьте себе, что в одну розетку подключается один или несколько приборов. В первом случае провод может выдержать нагрузку при расчетном сечении, при втором есть вероятность, что и не выдержит. Поэтому еще задолго до начала монтажного процесса электрической сети, необходимо распланировать бытовую технику по комнатам. Да к тому же определить, сколько розеток будет необходимо в каждом помещении.

Эта позиция на самом деле немаловажная, от нее, как показывает практика, зависит долгосрочная эксплуатация электропроводки. К примеру, если вы будете использовать двойную розетку сразу и для электрического чайника, и для микроволновой печи, то при одномоментном включении этих двух бытовых прибора, розетка, а, точнее, подключенный к ней кабель, может и не выдержать. Поэтому в таких местах надо использовать для прокладки не провод сечением 2,5 мм², а 4 мм².

Заключение по теме

Итак, мы постарались разобраться в теме, как выбрать сечение провода по токовой нагрузке. В принципе, и сам расчет, и сам выбор – дело несложное. Формулы известны, где найти таблицы, вы знаете, так что пробуйте сделать расчет самостоятельно.

Выбор сечения кабеля по нагрузке

2017-05-05 Статьи  

Правильно подобранное сечение кабеля — основа безопасной и надежной работы электросети. Поэтому к выбору сечения надо относиться со всей ответственностью, в противном случае это может привести к перегреву, короткому замыканию и даже пожару.

Главным критерием при выборе сечения и типа кабеля является предельно допустимая токовая нагрузка, другими словами какую величину тока кабель или провод способен пропускать через себя длительное время без последствий.

Для того, чтобы определить максимальную токовую нагрузку необходимо подсчитать мощность всех электроприборов, расположенных в квартире. Мощность наиболее распространенных бытовых электроприборов указана ниже в таблице.

Потребитель

Мощность, Вт

Телевизор

300

Компьютер

500

Обогреватель

1500

Водонагреватель

5000

Утюг

1700

Электрочайник

1200

Микроволновая печь

1400

Стиральная машина

2500

Холодильник

600

Электроплита

2000

Фен

1200

Духовка

2000

После того, как подсчитали общую мощность, найдем силу тока по формуле:

Для однофазной сети

где P — общая мощность, Ки — коэффициент одновременности (принимаем 0.75), U — напряжение сети, cos φ — коэффициент мощности

Для трехфазной сети

Теперь зная силу тока находим сечение провода по таблице

Сечение токо-проводящих жил. ммМедные жилы проводов и кабелей
Напряжение 220ВНапряжение 380В
Ток. АМощность. кВТТок. АМощность кВТ
1.5194.11610.5
2.5275.92516.5
4388.33019.8
64610.14026.4
107015.45033
168018.77549.5
2511525.39059.4
3513529.711575.9
5017538.514595.7
7021547.3180118.8
9526557.2220145.2
12030066260171.6

 

СечениеTоко-проводящихжил. ммАлюминиевых жилы проводов и кабелей
Напряжение 220ВНапряжение 380В
Ток. АМощность. кВТТок. АМощность кВТ
2.5224.41912.5
4286.12315.1
6367.93019.8
1050113925.7
166013.25536.3
258518.77046.2
35100228556.1
5013529.711072.6
7016536.314092.4
9520044170112.2
12023050.6200132

Например мы подсчитали по формуле, что общий ток составляет 42 А. Исходя из таблицы для медных проводов и кабелей мы видим, что такого значения нет в таблице. Значит берем ближайшее большее значение, то есть 46 А. Для 46 А сечение кабеля составляет 6 мм². Если у вас нет под рукой кабеля нужного сечения, то можно взять два или три провода меньшего сечения, главное чтобы их суммарное сечение совпадало с сечением номинала.

Выбирая между медным и алюминиевым кабелем важно помнить, что несмотря на то что медный провод дороже, по своим характеристикам он намного превосходит алюминиевый.

Согласно ПУЭ последнего 7-го издания алюминиевые провода и кабели сечением менее 16 кв. мм не допускаются к использованию при монтаже.

Помимо предельно допустимой токовой нагрузки на выбор сечения проводника влияет способ прокладки, температура окружающей среды, длина линии.

Для скрытой проводки сечение кабеля выбирается больше на 20-30% чем для открытой, такими показателями как температура и длина трассы при выборе кабеля в квартире можно пренебречь, это важно только для сетей промышленного назначения.

Для расчета сечения кабеля вы также можете воспользоваться программой Электрик v7.0

Сечение провода и нагрузка, способы вычисления, таблица

Для безопасной работы электрических систем первоочередное значение имеет правильный выбор сечение провода. Неправильный выбор поперечного сечения может привести к перегреву электропроводки, оплавлению изоляции и, в конечном счете, к возникновению пожара.

Чрезвычайно важно правильно оценить потребляемую мощность и в соответствии с этими расчетами подобрать оптимальные параметры проводов домашней электрической сети. Для правильного определения параметров электрических проводников существует несколько различных методик.

Способы вычисления сечения проводов

Правильный выбор поперечного сечения электрических кабелей обеспечит безупречную работу системы, а также позволит не тратить лишние средства на провода с заведомо завышенными параметрами.

В сущности, токопроводящий кабель вполне можно сравнить с любым трубопроводом, только вместо жидкости или газа по нему транспортируется ток. Недостаточное поперечное сечение приводит к резкому увеличению плотности тока, что, в свою очередь, влечет за собой перегрев провода, разрушение изоляции и возникновение пожароопасных ситуаций.

Завышенные показатели поперечного сечения не имеет никаких эксплуатационных противопоказаний, однако стоимость проводки в этом случае неоправданно и существенно возрастает.

Определить площадь поперечного сечения провода можно следующим образом: необходимо снять изоляцию и измерить микрометром или штангенциркулем диаметр токопроводящей жилы. После этого по формуле:

S=0.785d2

Определяем искомую площадь поперечного сечения кабеля. В случае многожильного проводника следует учесть количество токопроводящих жил, в этом случае:

S=0.785nd2,

Где n – количество токопроводящих элементов кабеля.

Следующей важной характеристикой как бытовой, так и промышленной электропроводки является предельно допустимая нагрузка. От этого показателя зависят основные свойства будущей проводки, мощность автоматических выключателей и пр.

Расчет максимальной нагрузки провода по сечению

Наиболее простым способом расчета является вычисление суммарной потребляемой мощности. Наибольшее сечение провод должен иметь на входе в первую распределительную коробку, далее, в зависимости от мощности потребителей, поперечное сечение кабеля может уменьшаться в зависимости от характеристик потребителей.

Для проведения расчета на первом этапе необходимо сложить показатели мощностей всех предполагаемых потребителей. Далее возможно два варианта: первый подразумевает введение понижающего коэффициента в 0,8, мотивируя это тем, что все потребители одновременно практически никогда не работают. Второй вариант напротив предполагает использование повышающего коэффициента в 1,2, аргументируя его учетом пусковых токов и повышением общей надежности системы. Кроме этого, второй вариант предполагает известный резерв мощности для возможных будущих потребителей.

Далее по обобщенным показателям мощности выбирают требуемое сечение провода. В зависимости от нагрузки и действительного напряжения в сети по таблице ПУЭ подбирают стандартный кабель, оптимальный для данных условий эксплуатации.

Для определения оптимальных параметров схемы трехфазных проводов также существуют специальные методы. Основным отличием однофазного и трехфазного провода является количество подключаемых фаз и напряжение.

Как рассчитать сечение трехфазного провода

Расчет проводов трехфазной проводки выполняют по формуле:

I = P / (√3 × U × cosφ)

В этой формуле

I – Предполагаемое значение силы тока, для определения сечения провода;

U – Стандартное фазовое напряжение, 220В;

cosφ – косинус угла фазового сдвига;

P – суммарная мощность потребителей.

Значение cosφ имеет чрезвычайно важное значение, поскольку, как видно из формулы, непосредственно влияет на силу тока. После определения общей мощности по специальной таблице подбирают оптимальное сечение провода.

Как уже не раз указывалось, существуют различные типы таблиц для определения необходимых характеристик проводов, которые помогут сделать правильный выбор при покупке кабельной продукции.

Таблица сечения провода и нагрузки

Такой параметр как поперечное сечение проводов имеет чрезвычайно важное значение для электротехники. Как правило, этот параметр неразрывно связан с такой важной характеристикой электропроводки как допустимая нагрузка.

Без учета этих двух показателей невозможно провести расчет, и тем более монтаж линий электропередач и бытовой электропроводки. В случае правильного выполнения проектных расчетов, срок службы и надежность работы электрических сетей будут вполне удовлетворительны, в то время как даже незначительные ошибки могут привести к перегреву проводников, оплавлению изоляционного покрытия и возникновению пожароопасных ситуаций.

Существенную помощь в проведении электротехнических расчетов может оказать использование специальных таблиц, отражающих зависимость потребляемой мощности от величины поперечного сечения проводника.

Подводя итог можно сказать, что зависимость мощности от сечения провода, отраженная в таблице обеспечит выбор оптимальных параметров проводки на случай увеличения мощности в случае подключения дополнительных потребителей, а так же с учетом возможных перепадов температур.

Кабель для двигателя – обзор марок, подбор сечения по мощности электродвигателя, пример расчета

При запуске оборудования в эксплуатацию важно правильно подобрать кабель для его электропитания. Заниженное сечение жил приводит к затруднённому запуску электродвигателя и перегреву кабеля, вплоть до его повреждения, избыточное сечение — к лишним затратам.

Какие марки кабеля лучше всего использовать для подключения двигателя?

Подбирая марки кабелей для питания асинхронных электрических двигателей, учитывают условия, в которых они будут работать. Для обеспечения питания передвижных электроустановок, которые часто перемещаются между объектами строительства или других работ, предпочтение следует отдавать гибким маркам кабельной продукции. Существует ряд механизмов, приводимых асинхронными электродвигателями, которые в процессе работы совершают постоянные перемещения. Например, кран-балки, электротали и другая грузоподъёмная техника. Электропривод таких механизмов подключается к электросети только гибкими медными кабелями с резиновой изоляцией. Токовые жилы гибких кабелей набраны пучками тонкой медной проволоки, поэтому выдерживают многократные изгибы.

Наиболее подходящие  и популярные марки для таких двигателей КГ, КПГС, КПГ1У 

Подробная информация и обзор по маркам, подходящим для подключения кран-балки, в нашей статье «Кабель для кран-балки»

Для прокладки в земле целесообразно выбрать бронированный кабель (например, ВБШв или АВБШв), чтобы исключить возможность его случайного повреждения в твёрдом грунте. Допускается прокладка в траншеях с подушкой из песка кабелей в ПВХ оболочке. Эти типы кабелей могут прокладываться и в лотках. 

Как рассчитать сечение кабеля для электродвигателя?

В общем случае выбор сечения и марки кабеля для подключения двигателя входит в задачи проектирования. Ввод нового объекта, ремонт или реконструкция уже эксплуатирующегося, выполняются в соответствии с проектом. Проектировщики в своей работе учитывают различные факторы, влияющие на результаты выбора:

  • мощность подключаемого электродвигателя;
  • материал токопроводящих жил кабеля;
  • длину питающей кабельной линии;
  • вид кабельной трассы и способ прокладки.

Кроме этого, проверяется термическая стойкость кабеля при протекании ударного тока короткого замыкания в течение времени срабатывания защит.

Упрощенные методы расчета сечения для двигателя

Для самостоятельного подбора кабеля для трёхфазного двигателя можно пользоваться приближёнными методами. Для оценки величины номинального тока трёхфазного электродвигателя напряжением 380 вольт нужно мощность двигателя, выраженную в киловаттах умножить на два. Полученное значение приблизительно соответствует рабочему току в амперах. Как правило, оно несколько больше фактического значения, что создаёт определённый запас. Если есть возможность, то значение тока стоит уточнить на шильдике двигателя.


Шильдик двигателя

По одной из таблиц, приведённых в ГОСТ или Правилах Устройства Электроустановок, подбирается требуемое сечение, соответствующее найденному значению тока. Нужная таблица выбирается с учётом материала жил и метода прокладки проводников. Полученное сечение соответствует условиям нагрева при длительном протекании заданной величины тока. Если кабель предполагается прокладывать во взрывоопасной зоне категории В – 1а, расчётное значение тока умножается на поправочный коэффициент 1,25.

При большой протяжённости питающего кабеля (более 70 – 100 метров) может происходить существенное падение напряжения. Расчёт величины падения напряжения проводится для значения пускового тока.

Для очень грубой оценки при выборе кабеля по мощности двигателя в «полевых условиях» допустимо применять правило: одному кило

Выбор автомата по мощности нагрузки и сечению провода

Содержание статьи

Выбор автомата по мощности нагрузки

Для выбора автомата по мощности нагрузки необходимо рассчитать ток нагрузки, и подобрать номинал автоматического выключателя больше или равному полученному значению. Значение тока, выраженное в амперах в однофазной сети 220 В., обычно превышает значение мощности нагрузки, выраженное в киловаттах в 5 раз, т.е. если мощность электроприемника (стиральной машины, лампочки, холодильника) равна 1,2 кВт., то ток, который будет протекать в проводе или кабеле равен 6,0 А(1,2 кВт*5=6,0 А). В расчете на 380 В., в трехфазных сетях, все аналогично, только величина тока превышает мощность нагрузки в 2 раза.

Можно посчитать точнее и посчитать ток по закону ома I=P/U —  I=1200 Вт/220В =5,45А. Для трех фаз напряжение будет 380В.

Можно посчитать еще точнее и учесть cos φ — I=P/U*cos φ.

 

Коэффициент мощности

это безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей. Коэффициент мощности показывает, насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.
Численно коэффициент мощности равен косинусу этого фазового сдвига или cos φ

Косинус фи возьмем из таблицы 6.12 нормативного документа СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий»

Таблица 1. Значение Cos φ в зависимости от типа электроприемника

Тип электроприемникаcos φ
Холодильное  оборудование
предприятий торговли и
общественного питания,
насосов, вентиляторов и
кондиционеров воздуха
при мощности
электродвигателей, кВт:
до 10,65
от 1 до 40,75
свыше 40,85
Лифты и другое
подъемное оборудование
0,65
Вычислительные машины
(без технологического
кондиционирования воздуха)
0,65
Коэффициенты мощности
для расчета сетей освещения
следует принимать с лампами:
люминесцентными0,92
накаливания1,0
ДРЛ и ДРИ с компенсированными ПРА0,85
то же, с некомпенсированными ПРА0,3-0,5
газосветных рекламных установок0,35-0,4

Примем наш электроприемник мощностью 1,2 кВт. как бытовой однофазный холодильник на 220В, cos φ примем из таблицы 0,75 как двигатель от 1 до 4 кВт.
Рассчитаем ток I=1200 Вт / 220В * 0,75 = 4,09 А.

Теперь самый правильный способ определения тока электроприемника — взять величину тока с шильдика, паспорта или инструкции по эксплуатации. Шильдик с характеристиками есть почти на всех электроприборах.

Автоматические выключатели EKF

Общий ток в линии(к примеру розеточной сети) определяется суммированием тока всех электроприемников. По рассчитанному току выбираем ближайший  номинал автоматического автомата в большую сторону. В нашем примере для тока 4,09А это будет автомат на 6А.

 

 

ВАЖНО!

Очень важно отметить, что выбирать автоматический выключатель только по мощности нагрузки является грубым нарушением требований пожарной безопасности и может привести к возгоранию изоляции кабеля или провода и как следствие к возникновению пожара. Необходимо при выборе учитывать еще и сечение провода или кабеля.

По мощности нагрузки более правильно выбирать сечение проводника. Требования по выбору изложены в основном нормативном документе для электриков под названием ПУЭ (Правила Устройства Электроустановок), а точнее в главе 1.3. В нашем случае, для домашней электросети, достаточно рассчитать ток нагрузки, как указано выше, и в таблице ниже выбрать сечение проводника, при условии что полученное значение ниже длительно допустимого тока соответствующего его сечению.

Выбор автомата по сечению кабеля

Рассмотрим проблему выбора автоматических выключателей для домашней электропроводки более подробно с учетом требований пожарной безопасности.Необходимые требования изложены главе 3.1 «Защита электрических сетей до 1 кВ.», так как напряжение сети в частных домах, квартирах, дачах равно 220 или 380В.

Расчет сечения жил кабеля и провода

 

Напряжение 220В.

– однофазная сеть используется в основном для розеток и освещения.
380В. – это в основном сети распределительные – линии электропередач проходящие по улицам, от которых ответвлением подключаются дома.

Согласно требованиям вышеуказанной главы, внутренние сети жилых и общественных зданий должны быть защищены от токов КЗ и перегрузки. Для выполнения этих требований и были изобретены аппараты защиты под названием автоматические выключатели(автоматы).

 

Автоматический выключатель «автомат»

это механический коммутационный аппарат, способный включать, проводить токи при нормальном состоянии цепи, а также включать, проводить в течение заданного времени и автоматически отключать токи в указанном аномальном состоянии цепи, таких, как токи короткого замыкания и перегрузки.

 

Короткое замыкание (КЗ)

э- лектрическое соединение двух точек электрической цепи с различными значениями потенциала, не предусмотренное конструкцией устройства и нарушающее его нормальную работу. Короткое замыкание может возникать в результате нарушения изоляции токоведущих элементов или механического соприкосновения неизолированных элементов. Также, коротким замыканием называют состояние, когда сопротивление нагрузки меньше внутреннего сопротивления источника питания.

 

Ток перегрузки

– превышающий нормированное значение длительно допустимого тока и вызывающий перегрев проводника.Защита от токов КЗ и перегрева необходима для пожарной безопасности, для предотвращения возгорания проводов и кабелей, и как следствие пожара в доме.

 

Длительно допустимый ток кабеля или провода

– величина тока, постоянно протекающего по проводнику, и не вызывающего чрезмерного нагрева.

Кабели ВВГнг с медными жилами

Величина длительно допустимого тока для проводников разного сечения и материала представлена ниже.Таблица представляет собой совмещенный и упрощенный вариант применимый для бытовых сетей электроснабжения, таблиц № 1.3.6 и 1.3.7 ПУЭ.

Сечение
токо-
проводящей
жилы, мм
Длительно допустимый
ток, А, для проводов
и кабелей с медными жилами.
Длительно допустимый
ток, А, для проводов
и кабелей с алюминиевыми жилами.
1,519
2,52519
43527
64232
105542
167560
259575
3512090
50145110

Выбор автомата по току короткого замыкания КЗ

Выбор автоматического выключателя для защиты от КЗ (короткого замыкания) осуществляется на основании расчетного значения тока КЗ в конце линии. Расчет относительно сложен, величина зависит от мощности трансформаторной подстанции, сечении проводника и длинны проводника и т.п.

Из опыта проведения расчетов и проектирования электрических сетей, наиболее влияющим параметром является длинна линии, в нашем случае длинна кабеля от щитка до розетки или люстры.

Т.к. в квартирах и частных домах эта длинна минимальна, то такими расчетами обычно пренебрегают и выбирают автоматические выключатели с характеристикой «C», можно конечно использовать «В», но только для освещения внутри квартиры или дома, т.к. такие маломощные светильники не вызывают высокого значения пускового тока, а уже в сети для кухонной техники имеющей электродвигатели, использование автоматов с характеристикой В не рекомендуется, т.к. возможно срабатывание автомата при включении холодильника или блендера из-за скача пускового тока.

Выбор автомата по длительно допустимому току(ДДТ) проводника

Выбор автоматического выключателя для защиты от перегрузки или от перегрева проводника осуществляется на основании величины ДДТ для защищаемого участка провода или кабеля. Номинал автомата должен быть меньше или равен величине ДДТ проводника, указанного в таблице выше. Этим обеспечивается автоматическое отключение автомата при превышении ДДТ в сети, т.е. часть проводки от автомата до последнего электроприемника защищена от перегрева, и как следствие от возникновения пожара.

Провода ПУГНП и ШВВП

Пример выбора автоматического выключателя

Имеем группу от щитка к которой планируется подключить посудомоечную машину -1,6 кВт, кофеварку – 0,6 кВт и электрочайник – 2,0 кВт.

Считаем общую нагрузку и вычисляем ток.

Нагрузка = 0,6+1,6+2,0=4,2 кВт. Ток = 4,2*5=21А.

Смотрим таблицу выше, под рассчитанный нами ток подходят все сечения проводников кроме 1,5мм2 для меди и 1,5 и 2,5 по алюминию.

Выбираем медный кабель с жилами сечением 2,5мм2, т.к. покупать кабель большего сечения по меди не имеет смысла, а алюминиевые проводники не рекомендуются к применению, а может и уже запрещены.

Смотрим шкалу номиналов выпускаемых автоматов — 0.5; 1.6; 2.5; 1; 2; 3; 4; 5; 6; 8; 10; 13; 16; 20; 25; 32; 40; 50; 63.

Автоматический выключатель для нашей сети подойдет на 25А, так как на 16А не подходит потому что рассчитанный ток (21А.) превышает номинал автомата 16А, что вызовет его срабатывание, при включении всех трех электроприемников сразу. Автомат на 32А не подойдет потому что превышает ДДТ выбранного нами кабеля 25А., что может вызвать, перегрев проводника и как следствие пожар.

Сводная таблица для выбора автоматического выключателя для однофазной сети 220 В.

Номинальный ток автоматического выключателя, А.Мощность, кВт.Ток,1 фаза, 220В.Сечение жил кабеля, мм2.
160-2,80-15,01,5
252,9-4,515,5-24,12,5
324,6-5,824,6-31,04
405,9-7,331,6-39,06
507,4-9,139,6-48,710
639,2-11,449,2-61,016
8011,5-14,661,5-78,125
10014,7-18,078,6-96,335
12518,1-22,596,8-120,350
16022,6-28,5120,9-152,470
20028,6-35,1152,9-187,795
25036,1-45,1193,0-241,2120
31546,1-55,1246,5-294,7185

Сводная таблица для выбора автоматического выключателя для трехфазной сети 380 В.

Номинальный ток
автоматического
выключателя, А.
Мощность, кВт.Ток, 1 фаза 220В.Сечение жил
кабеля, мм2.
160-7,90-151,5
258,3-12,715,8-24,12,5
3213,1-16,324,9-31,04
4016,7-20,331,8-38,66
5020,7-25,539,4-48,510
6325,9-32,349,2-61,416
8032,7-40,362,2-76,625
10040,7-50,377,4-95,635
12550,7-64,796,4-123,050
16065,1-81,1123,8-124,270
20081,5-102,7155,0-195,395
250103,1-127,9196,0-243,2120
315128,3-163,1244,0-310,1185
400163,5-207,1310,9-393,82х95*
500207,5-259,1394,5-492,72х120*
630260,1-327,1494,6-622,02х185*
800328,1-416,1623,9-791,23х150*

* — сдвоенный кабель, два кабеля соединенных паралельно, к примеру 2 кабеля ВВГнг 5х120

Итоги

При выборе автомата необходимо учитывать не только мощность нагрузки, но и сечение и материал проводника.

Для сетей с небольшими защищаемыми участками от токов КЗ, можно применять автоматические выключатели с характеристикой «С»

Номинал автомата должен быть меньше или равен длительно допустимому току проводника.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Понравилась статья?

Поделиться с друзьями:

Подпишитесь на новые

Как длина и площадь поперечного сечения провода влияют на сопротивление — GCSE Science

Выдержки из этого документа …

Как длина и площадь поперечного сечения провода влияют на сопротивление?

Введение:

Это исследование призвано доказать, что на сопротивление влияет изменение длины и площади поперечного сечения провода.

Теория:

Сопротивление возникает, когда электроны, движущиеся по проволоке, сталкиваются с атомами проволоки.Эти столкновения замедляют поток электронов, вызывая сопротивление. Сопротивление — это мера того, насколько сложно перемещать электроны по проводу. Для расчета сопротивления в цепи можно использовать эту формулу (Закон Ома).

Сопротивление (Ом) = разность потенциалов (В)

Ток (А)

Прогноз:

Я предсказываю, что если длина провода увеличивается, сопротивление также увеличивается пропорционально длине.Если длина увеличена вдвое, сопротивление также должно удвоиться. Это связано с тем, что при удвоении длины количество атомов также удвоится, что приведет к удвоению количества столкновений, замедляющих электроны и увеличивающих сопротивление. Мой график должен показать, что длина пропорциональна сопротивлению.

Я предсказываю, что при увеличении площади поперечного сечения провода сопротивление уменьшится, потому что оно обратно пропорционально.

… подробнее.

Для подключения вышеперечисленных элементов и завершения цепи.

Метод:

1) Аппарат собран.

2) Устройство установлено, как показано на рисунке 4 выше.

3) Настройте скользящий контакт переменного резистора 2 на желаемый ток (0,4 A)

3a) Настройте скользящий контакт переменного резистора 2 на желаемый ток (0,5 A)

4) Измените длину провода регулируя скользящие соединители проводов (зажимы типа «крокодил»)

4a) Измените площадь поперечного сечения провода.

  1. Зафиксируйте результаты за период наблюдения.

Справедливо: чтобы сделать его честным тестом, я должен учитывать все эти переменные и следить за тем, чтобы они оставались постоянными.

  • Температура: Если проволока нагревается, атомы в проволоке начинают вибрировать из-за увеличения их энергии. Это вызывает больше столкновений между электронами и атомами, поскольку атомы движутся по пути электронов. Это увеличение числа столкновений означает увеличение сопротивления.
  • Материал: Тип материала влияет на количество свободных электронов, которые могут проходить через провод. Число электронов зависит от количества электронов во внешней энергетической оболочке атомов, поэтому, если имеется больше или больше атомов, то должно быть больше электронов. Если материал имеет большое количество атомов, будет большое количество электронов, вызывающее более низкое сопротивление из-за увеличения количества электронов. Также, если атомы в материале плотно упакованы, электроны будут иметь более частые столкновения
    , и сопротивление возрастет.
  • Длина провода: Если длина провода увеличивается, сопротивление также увеличивается, так как электроны должны перемещаться на большее расстояние, и поэтому будет происходить больше столкновений. В связи с этим увеличение длины должно быть пропорционально увеличению сопротивления.
  • Площадь поперечного сечения проводов: при увеличении ширины проводов сопротивление уменьшится. Это происходит из-за увеличения пространства, через которое проходят электроны. Из-за этого увеличенного пространства между атомами должно быть меньше столкновений.

Я должен контролировать все эти переменные, чтобы мои результаты соответствовали моему прогнозу, и я проверяю только одну переменную за раз.

Чтобы построить хороший график, мне нужно убедиться, что у меня есть по крайней мере 5 наборов результатов для каждого эксперимента, и для каждого испытания я буду тестировать провод двумя соответствующими токами, чтобы я мог вычислить среднее сопротивление.

Оценка рисков:

  • Я буду осторожно обращаться с источником питания.
  • Я буду использовать только слабые ток и напряжение.
  • Я буду осторожен при обращении с проводами под напряжением.
… подробнее.

Поскольку температура является такой огромной переменной и непостоянной, было бы трудно измерить этот фактор или проверить его, поскольку он может стать довольно опасным, поэтому я решил не исследовать этот фактор. Однако в ходе своих исследований я обнаружил, что температура действительно влияет на сопротивление в проводе, и в той же степени влияет на материалы.Мои исследования показывают, что температура проволоки нагревает атомы в проволоке, которые начинают вибрировать из-за увеличения их энергии. Это вызывает больше столкновений между электронами и атомами, поскольку атомы движутся по пути электронов. Это увеличение числа столкновений означает увеличение сопротивления.

… подробнее.

Эта письменная работа студента — одна из многих, которые можно найти в нашем разделе GCSE Электричество и магнетизм.

Как пользоваться осциллографом

Введение

Вы когда-нибудь обнаруживали, что при поиске неисправностей в цепи вам требуется больше информации, чем может предоставить простой мультиметр? Если вам нужно получить такую ​​информацию, как частота, шум, амплитуда или любые другие характеристики, которые могут измениться со временем, вам понадобится осциллограф!

О-образные диафрагмы

— важный инструмент в лаборатории любого инженера-электрика. Они позволяют видеть электрические сигналы , поскольку они меняются во времени, что может иметь решающее значение для диагностики, почему ваша схема таймера 555 не мигает правильно или почему ваш генератор шума не достигает максимальных уровней раздражения.

HAMlab — 160-6 10 Вт

Осталось всего 3! WRL-15001

HAMlab — это полнофункциональный SDR-трансивер с диапазоном 160-10 м и выходной мощностью 10 Вт, построенный на платформе STEMlab…

рассматривается в этом учебном пособии

Это руководство предназначено для ознакомления с концепциями, терминологией и системами управления осциллографов.Он разбит на следующие разделы:

  • Основы O-Scopes — Введение в то, что конкретно представляют собой осциллографы, что они измеряют и почему мы их используем.
  • Oscilloscope Lexicon — Глоссарий, охватывающий некоторые из наиболее распространенных характеристик осциллографов.
  • Анатомия O-Scope — Обзор наиболее важных систем осциллографа — экран, горизонтальные и вертикальные элементы управления, триггеры и пробники.
  • Использование осциллографа — Советы и рекомендации для тех, кто впервые использует осциллограф.

Мы будем использовать Gratten GA1102CAL — удобный цифровой осциллограф среднего уровня — в качестве основы для обсуждения осциллографа. Другие o-области могут выглядеть по-другому, но все они должны иметь одинаковый набор механизмов управления и интерфейса.

Рекомендуемая литература

Прежде чем продолжить изучение этого руководства, вы должны быть знакомы с приведенными ниже концепциями. Ознакомьтесь с руководством, если хотите узнать больше!

Видео


Основы O-Scopes

Основное назначение осциллографа — графическое изображение электрического сигнала, изменяющегося во времени .Большинство осциллографов создают двумерный график со временем по оси x и напряжением по оси y .

Пример дисплея осциллографа. Сигнал (в данном случае желтая синусоида) отображается на горизонтальной оси времени и вертикальной оси напряжения.

Элементы управления, окружающие экран осциллографа, позволяют регулировать масштаб графика как по вертикали, так и по горизонтали, что позволяет увеличивать и уменьшать масштаб сигнала.Есть также элементы управления для установки триггера на прицеле, который помогает сфокусировать и стабилизировать изображение.

Что могут измерить прицелы?

В дополнение к этим основным функциям многие осциллографы имеют инструменты измерения, которые помогают быстро определять частоту, амплитуду и другие характеристики формы сигнала. Как правило, осциллограф может измерять характеристики как по времени, так и по напряжению:

  • Временные характеристики :
    • Частота и период — Частота определяется как количество повторений сигнала в секунду.И период является обратной величиной (количество секунд, которое занимает каждый повторяющийся сигнал). Максимальная частота, которую может измерить осциллограф, варьируется, но часто она находится в диапазоне 100 МГц (1E6 Гц).
    • Рабочий цикл — Процент периода, в течение которого волна является либо положительной, либо отрицательной (есть как положительные, так и отрицательные рабочие циклы). Рабочий цикл — это соотношение, которое показывает, как долго сигнал «включен» по сравнению с тем, как долго он «выключен» в каждом периоде.
    • Время нарастания и спада — Сигналы не могут мгновенно переходить от 0 В до 5 В, они должны плавно возрастать.Продолжительность волны, идущей от нижней точки к верхней точке, называется временем нарастания, а время спада измеряет обратное. Эти характеристики важны при рассмотрении того, насколько быстро цепь может реагировать на сигналы.
  • Характеристики напряжения :
    • Амплитуда — Амплитуда — это мера величины сигнала. Существует множество измерений амплитуды, включая размах амплитуды, которая измеряет абсолютную разницу между точкой высокого и низкого напряжения сигнала.Пиковая амплитуда, с другой стороны, измеряет только то, насколько высокий или низкий сигнал превышает 0 В.
    • Максимальное и минимальное напряжение — осциллограф может точно сказать вам, насколько высоким и низким становится напряжение вашего сигнала.
    • Среднее и среднее напряжение — Осциллографы могут вычислять среднее или среднее значение вашего сигнала, а также могут сообщать вам среднее значение минимального и максимального напряжения вашего сигнала.

Когда использовать O-Scope

o-scope полезен в различных ситуациях поиска и устранения неисправностей, в том числе:

  • Определение частоты и амплитуды сигнала, которые могут иметь решающее значение при отладке входа, выхода схемы или внутренних систем.По этому вы можете определить, неисправен ли какой-либо компонент в вашей цепи.
  • Определение уровня шума в вашей цепи.
  • Определение формы волны — синуса, квадрата, треугольника, пилообразной формы, сложной формы и т. Д.
  • Количественная оценка разности фаз между двумя разными сигналами.

Осциллограф Lexicon

Научиться пользоваться осциллографом означает познакомиться с целым словарем терминов.На этой странице мы познакомим вас с некоторыми важными модными словечками o-scope, с которыми вы должны знать, прежде чем включать его.

Основные характеристики осциллографа

Некоторые прицелы лучше других. Эти характеристики помогают определить, насколько хорошо вы можете ожидать от прицела:

  • Полоса пропускания — Осциллографы чаще всего используются для измерения сигналов определенной частоты. Однако ни один прицел не идеален: у всех есть ограничения на то, насколько быстро они могут видеть изменение сигнала.Полоса пропускания осциллографа определяет диапазон частот, он может надежно измерить.
  • Сравнение цифрового и аналогового — Как и большинство всего электронного, осциллографы могут быть аналоговыми или цифровыми. Аналоговые осциллографы используют электронный луч для прямого отображения входного напряжения на дисплей. Цифровые осциллографы включают микроконтроллеры, которые дискретизируют входной сигнал с помощью аналого-цифрового преобразователя и отображают это показание на дисплее. Как правило, аналоговые осциллографы старше, имеют меньшую полосу пропускания и меньше функций, но они могут иметь более быстрый отклик (и выглядеть намного круче).
  • Количество каналов — Многие осциллографы могут считывать более одного сигнала одновременно, отображая их все на экране одновременно. Каждый сигнал, считываемый осциллографом, подается в отдельный канал. Очень распространены двух-четырехканальные осциллографы.
  • Частота дискретизации — Эта характеристика уникальна для цифровых осциллографов, она определяет, сколько раз в секунду считывается сигнал. Для осциллографов с более чем одним каналом это значение может уменьшиться, если используется несколько каналов.
  • Время нарастания — Указанное время нарастания осциллографа определяет самый быстрый нарастающий импульс, который он может измерить. Время нарастания осциллографа очень тесно связано с полосой пропускания. Его можно рассчитать как Время нарастания = 0,35 / Пропускная способность .
  • Максимальное входное напряжение — Каждая электроника имеет свои пределы, когда дело касается высокого напряжения. Все осциллографы должны быть рассчитаны на максимальное входное напряжение. Если ваш сигнал превышает это напряжение, есть большая вероятность, что прицел будет поврежден.
  • Разрешение — Разрешение осциллографа показывает, насколько точно он может измерять входное напряжение. Это значение может измениться при настройке вертикального масштаба.
  • Вертикальная чувствительность — Это значение представляет собой минимальное и максимальное значения вертикальной шкалы напряжения. Это значение указано в вольтах на деление.
  • База времени — База времени обычно указывает диапазон чувствительности на горизонтальной оси времени. Это значение указывается в секундах на div.
  • Входной импеданс — Когда частота сигнала становится очень высокой, даже небольшой импеданс (сопротивление, емкость или индуктивность), добавленный к цепи, может повлиять на сигнал. Каждый осциллограф добавляет к считываемой цепи определенный импеданс, называемый входным сопротивлением. Входные импедансы обычно представлены как большое сопротивление (> 1 МОм), соединенное параллельно (||) с малой емкостью (в диапазоне пФ). Влияние входного импеданса более очевидно при измерении очень высокочастотных сигналов, и пробник, который вы используете, может помочь его компенсировать.

Используя GA1102CAL в качестве примера, вот характеристики, которые можно ожидать от прицела среднего уровня:

9026 дел
Характеристика Значение
Полоса пропускания 100 МГц
Частота дискретизации 1 Гвыб / с (1E9 выборок в секунду)
Время нарастания канала
Максимальное входное напряжение 400 В
Разрешение 8 бит
Чувствительность по вертикали 2 мВ / дел — 5 В / дел
2 с / 2
Входное сопротивление 1 МОм ± 3% || 16 пФ ± 3 пФ

Понимая эти характеристики, вы сможете выбрать осциллограф, который лучше всего соответствует вашим потребностям.Но вам все равно нужно знать, как им пользоваться … на следующей странице!


Анатомия O-Scope

Хотя не существует абсолютно одинаковых осциллографов, все они должны иметь некоторые общие черты, которые заставляют их функционировать одинаково. На этой странице мы обсудим некоторые из наиболее распространенных систем осциллографа: дисплей, горизонтальную, вертикальную, триггер и входы.

Дисплей

Осциллограф бесполезен, если он не может отображать информацию, которую вы пытаетесь проверить, что делает дисплей одним из наиболее важных разделов осциллографа.

Каждый дисплей осциллографа должен быть пересечен горизонтальными и вертикальными линиями, называемыми делениями . Масштаб этих делений изменен с помощью горизонтальной и вертикальной систем. Вертикальная система измеряется в «вольтах на деление», а горизонтальная — в «секундах на деление». Как правило, прицелы имеют около 8-10 делений по вертикали (напряжение) и 10-14 делений по горизонтали (секунд).

Старые прицелы (особенно аналоговые) обычно имеют простой монохромный дисплей, хотя интенсивность волны может варьироваться.Более современные осциллографы оснащены многоцветными ЖК-экранами, которые очень помогают отображать более одной формы сигнала за раз.

Многие дисплеи осциллографа расположены рядом с набором из пяти кнопок — сбоку или под дисплеем. Эти кнопки могут использоваться для навигации по меню и управления настройками осциллографа.

Вертикальная система

Вертикальная секция осциллографа управляет шкалой напряжения на дисплее. В этом разделе традиционно есть две ручки, которые позволяют индивидуально управлять вертикальным положением и вольт / дел.

Более критичная ручка вольт на деление позволяет установить вертикальный масштаб на экране. Вращение ручки по часовой стрелке уменьшает масштаб, а против часовой стрелки — увеличивает. Меньший масштаб — меньшее количество вольт на деление экрана — означает, что вы в большей степени увеличиваете масштаб сигнала.

Дисплей GA1102, например, имеет 8 вертикальных делений, а ручка вольт / дел может выбирать шкалу от 2 мВ / дел до 5 В / дел. Таким образом, при полном увеличении до 2 мВ / дел на дисплее может отображаться осциллограмма 16 мВ сверху вниз.Полностью уменьшенный, осциллограф может отображать сигнал в диапазоне более 40 В. (Зонд, как мы обсудим ниже, может еще больше увеличить этот диапазон.)

Положение Регулятор управляет вертикальным смещением формы сигнала на экране. Поверните ручку по часовой стрелке, и волна будет двигаться вниз, против часовой стрелки — вверх по дисплею. Вы можете использовать ручку положения, чтобы сместить часть сигнала за пределы экрана.

Используя одновременно ручки положения и вольт / деления, вы можете увеличить только крошечную часть сигнала, которая вас больше всего волнует.Если бы у вас был прямоугольный сигнал 5 В, но вы беспокоились только о том, насколько он звенел по краям, вы могли бы увеличить нарастающий фронт, используя обе ручки.

Горизонтальная система

Горизонтальная часть осциллографа управляет шкалой времени на экране. Как и в вертикальной системе, горизонтальный элемент управления дает вам две ручки: положение и секунды / дел.

Регулятор секунды на деление (с / дел) вращается для увеличения или уменьшения горизонтального масштаба.Если вы вращаете ручку s / div по часовой стрелке, количество секунд, которое представляет каждое деление, уменьшится — вы «увеличите масштаб» временной шкалы. Поверните против часовой стрелки, чтобы увеличить шкалу времени и показать на экране большее количество времени.

Если снова использовать GA1102 в качестве примера, дисплей имеет 14 горизонтальных делений и может отображать от 2 нс до 50 с на деление. Таким образом, при полном увеличении по горизонтали осциллограф может показывать 28 нс формы волны, а при увеличении масштаба он может отображать сигнал, когда он изменяется в течение 700 секунд.

Регулятор положения может перемещать форму сигнала вправо или влево от дисплея, регулируя горизонтальное смещение .

Используя горизонтальную систему, вы можете настроить , сколько периодов сигнала вы хотите видеть. Вы можете уменьшить масштаб и показать несколько пиков и впадин сигнала:

Или вы можете увеличить масштаб и использовать ручку положения, чтобы показать только крошечную часть волны:

Система запуска

Секция запуска предназначена для стабилизации и фокусировки осциллографа.Триггер сообщает осциллографу, какие части сигнала «запускать» и начинать измерение. Если ваша форма волны периодическая , триггером можно управлять, чтобы дисплей оставался статичным, и устойчивым. Плохо сработавшая волна будет давать такие широкие волны, как это:

Секция триггера осциллографа обычно состоит из ручки уровня и набора кнопок для выбора источника и типа триггера. Регулятор уровня можно повернуть, чтобы установить триггер на определенную точку напряжения.

Ряд кнопок и экранных меню составляют остальную часть триггерной системы. Их основное назначение — выбор источника и режима запуска. Существует множество типов триггеров , которые управляют активацией триггера:

  • Спусковой механизм edge — это самая простая форма спускового крючка. Он заставит осциллограф начать измерения, когда напряжение сигнала перейдет на определенный уровень. Триггер по фронту может быть настроен на захват нарастающего или спадающего фронта (или обоих).
  • Триггер по импульсу сообщает осциллографу ввести заданный «импульс» напряжения. Вы можете указать длительность и направление импульса. Например, это может быть крошечный скачок 0 В -> 5 В -> 0 В, или это может быть секундный провал с 5 В на 0 В, обратно на 5 В.
  • Триггер по наклону может быть настроен для запуска осциллографа по положительному или отрицательному наклону в течение определенного периода времени.
  • Существуют более сложные триггеры, позволяющие сосредоточиться на стандартизированных формах сигналов, передающих видеоданные, например, NTSC или PAL .Эти волны используют уникальный шаблон синхронизации в начале каждого кадра.

Обычно вы также можете выбрать режим запуска , который, по сути, сообщает осциллографу, насколько сильно вы относитесь к триггеру. В режиме автоматического запуска осциллограф может попытаться нарисовать сигнал, даже если он не срабатывает. Нормальный режим будет рисовать вашу волну, только если видит указанный триггер. И single mode ищет указанный вами триггер, когда он его видит, он рисует вашу волну, а затем останавливается.

Зонды

Осциллограф хорош только в том случае, если вы действительно можете подключить его к сигналу, а для этого вам нужны пробники. Пробники — это устройства с одним входом, которые направляют сигнал от вашей схемы к осциллографу. У них есть острый наконечник , который исследует точку на вашей цепи. Наконечник также может быть оснащен крючками, пинцетом или зажимами, чтобы упростить фиксацию на цепи. Каждый пробник также включает в себя заземляющий зажим , который следует надежно прикрепить к общей точке заземления на тестируемой цепи.

Хотя пробники могут показаться простыми устройствами, которые просто подключаются к вашей цепи и передают сигнал в осциллограф, на самом деле многое нужно сделать в конструкции и выборе пробника.

В оптимальном случае зонд должен быть невидимым — он не должен влиять на ваш тестируемый сигнал. К сожалению, все длинные провода обладают собственной индуктивностью, емкостью и сопротивлением, поэтому, несмотря ни на что, они будут влиять на показания осциллографа (особенно на высоких частотах).

Существует множество типов пробников, наиболее распространенным из которых является пассивный пробник , входящий в состав большинства прицелов.Большинство «стандартных» пассивных зондов — это аттенуированный . Ослабляющие пробники имеют большое сопротивление, намеренно встроенное и шунтируемое небольшим конденсатором, что помогает свести к минимуму влияние длинного кабеля на нагрузку вашей цепи. Этот ослабленный пробник, подключенный последовательно к входному сопротивлению осциллографа , будет создавать делитель напряжения между вашим сигналом и входом осциллографа.

Большинство пробников имеют резистор 9 МОм для ослабления, который в сочетании со стандартным входным сопротивлением 1 МОм на осциллографе создает делитель напряжения 1/10.Эти зонды обычно называются ослабленными зондами 10X . Многие пробники включают переключатель для выбора между 10X и 1X (без затухания).

Аттенуированные пробники отлично подходят для повышения точности на высоких частотах, но они также уменьшат амплитуду вашего сигнала. Если вы пытаетесь измерить сигнал очень низкого напряжения, вам, возможно, придется использовать пробник 1X. Вам также может потребоваться выбрать настройку на вашем осциллографе, чтобы сообщить ему, что вы используете ослабленный зонд, хотя многие осциллографы могут это обнаружить автоматически.

Помимо пассивного ослабленного пробника, существует множество других пробников. Активные пробники — это пробники с питанием (для них требуется отдельный источник питания), которые могут усилить ваш сигнал или даже предварительно обработать его, прежде чем он попадет в ваш осциллограф. Хотя большинство пробников предназначены для измерения напряжения, существуют пробники, предназначенные для измерения переменного или постоянного тока. Токовые пробники уникальны, потому что они часто зажимают провод, фактически не контактируя с цепью.


Использование осциллографа

Бесконечное разнообразие сигналов означает, что вы никогда не сможете использовать один и тот же осциллограф дважды. Но есть несколько шагов, на выполнение которых вы можете рассчитывать практически каждый раз, когда тестируете схему. На этой странице мы покажем пример сигнала и шаги, необходимые для его измерения.

Выбор и настройка датчика

Во-первых, вам нужно выбрать зонд. Для большинства сигналов простой пассивный пробник , входящий в комплект поставки осциллографа, будет работать идеально.

Затем, прежде чем подключать его к осциллографу, установите ослабление на пробнике. 10X — наиболее распространенный коэффициент затухания — обычно является наиболее всесторонним выбором. Однако если вы пытаетесь измерить сигнал очень низкого напряжения, вам может потребоваться 1X.

Подсоедините зонд и включите осциллограф

Подключите пробник к первому каналу осциллографа и включите его. Наберитесь терпения, некоторые прицелы загружаются так же долго, как и старый компьютер.

При загрузке осциллографа вы должны увидеть деления, масштаб и зашумленную ровную линию сигнала.

На экране также должны отображаться предварительно установленные значения времени и вольт на деление. Игнорируя пока эти шкалы, внесите эти настройки, чтобы поместить ваш прицел в стандартную установку :

  • Включите канал 1 и выключите канал 2.
  • Установите канал 1 на Соединение по постоянному току .
  • Установите источник запуска на канал 1 — без внешнего источника или запуск по альтернативному каналу.
  • Установите для типа триггера нарастающий фронт, а для режима триггера установите автоматический (в отличие от одиночного).
  • Убедитесь, что ослабление пробника осциллографа на вашем прицеле соответствует настройке на вашем пробнике (например, 1X, 10X).

Для получения помощи в выполнении этих настроек обратитесь к руководству пользователя осциллографа (например, вот руководство GA1102CAL).

Проверка датчика

Давайте подключим этот канал к значимому сигналу. Большинство осциллографов будут иметь встроенный частотный генератор , который излучает надежную волну заданной частоты — на GA1102CAL в правом нижнем углу передней панели имеется прямоугольный выходной сигнал частотой 1 кГц.Выход генератора частоты имеет два отдельных проводника — один для сигнала и один для заземления. Подключите заземляющий зажим пробника к земле, а наконечник пробника к выходу сигнала.

Как только вы подключите обе части зонда, вы должны увидеть, как сигнал начинает танцевать вокруг вашего экрана. Попробуйте поиграть с помощью системных регуляторов по горизонтали и вертикали , чтобы перемещать осциллограмму по экрану. Поворот регуляторов шкалы по часовой стрелке «увеличивает» осциллограмму, а против часовой стрелки — уменьшает.Вы также можете использовать ручку положения для дальнейшего определения вашего сигнала.

Если ваша волна все еще нестабильна, попробуйте повернуть ручку положения триггера на . Убедитесь, что триггер не выше самого высокого пика сигнала . По умолчанию тип триггера должен быть установлен по фронту, что обычно является хорошим выбором для таких прямоугольных волн.

Попробуйте повозиться с этими ручками, чтобы отобразить на экране один период вашей волны.

Или попробуйте уменьшить масштаб временной шкалы, чтобы отобразить десятки квадратов.

Компенсация затухающего пробника

Если ваш датчик настроен на 10X, и у вас нет идеально прямоугольной формы волны, как показано выше, вам может потребоваться компенсировать ваш датчик . Большинство пробников имеют утопленную головку винта, которую можно поворачивать, чтобы отрегулировать шунтирующую емкость пробника.

Попробуйте использовать небольшую отвертку, чтобы повернуть триммер, и посмотрите, что происходит с осциллограммой.

Отрегулируйте подстроечный колпачок на рукоятке зонда так, чтобы получился прямоугольный сигнал с прямым краем .Компенсация необходима только в том случае, если ваш зонд ослаблен (например, 10X), и в этом случае это критично (особенно, если вы не знаете, кто использовал ваш прицел последним!).

Наконечники для пробников, запуска и масштабирования

После того, как вы скомпенсировали зонд, пришло время измерить реальный сигнал! Иди найди источник сигнала (генератор частоты ?, Террор-Мин?) И возвращайся.

Первый ключ к зондированию сигнала — найти надежную точку заземления . Прикрепите зажим заземления к известному заземлению, иногда вам, возможно, придется использовать небольшой провод для промежуточного звена между зажимом заземления и точкой заземления вашей цепи.Затем подключите наконечник пробника к тестируемому сигналу. Наконечники пробников существуют в различных форм-факторах — подпружиненный зажим, острие, крючки и т. Д. — попробуйте найти тот, который не требует от вас постоянного удерживания его на месте.

⚡ Внимание! Будьте осторожны при установке заземляющего зажима при проверке неизолированной цепи (например, без батарейного питания или при использовании изолированного источника питания). При проверке цепи, которая заземлена на сетевую землю, обязательно подключите заземляющий зажим к стороне цепи , подключенной к сетевой земле .Это почти всегда отрицательная сторона цепи / земля, но иногда это может быть и другая точка. Если точка, к которой подключен заземляющий зажим, имеет разность потенциалов, вы создадите прямое короткое замыкание и можете повредить вашу схему, осциллограф и, возможно, вас самих! Для дополнительной безопасности при проверке цепей, подключенных к сети, подключите его к источнику питания через изолирующий трансформатор.

Как только ваш сигнал появится на экране, вы можете начать с настройки горизонтального и вертикального масштабов по крайней мере так, чтобы приблизиться к вашему сигналу.Если вы исследуете прямоугольную волну 5 В на 1 кГц, вам, вероятно, понадобится значение вольт / дел где-то около 0,5-1 В и установите секунды / деление примерно на 100 мкс (14 делений покажут около полутора периодов).

Если часть вашей волны поднимается или опускается за пределы экрана, вы можете отрегулировать положение по вертикали , чтобы переместить его вверх или вниз. Если ваш сигнал является чисто постоянным током, вы можете настроить уровень 0 В в нижней части дисплея.

После того, как вы настроите весы, возможно, потребуется выполнить запуск формы волны. Запуск по фронту — когда осциллограф пытается начать сканирование, когда видит повышение (или падение) напряжения выше заданного значения, — это самый простой тип в использовании. Используя триггер по фронту, попробуйте установить уровень триггера на точку на вашей форме волны, которая видит только нарастающий фронт один раз за период .

Теперь просто масштабируйте , позиционируйте, запускайте и повторяйте , пока не увидите именно то, что вам нужно.

Отмерь дважды, отрежь один раз

Когда сигнал определяется, запускается и масштабируется, наступает время для измерения переходных процессов, периодов и других свойств формы сигнала.У некоторых осциллографов больше инструментов измерения, чем у других, но все они, по крайней мере, будут иметь деления, по которым вы сможете по крайней мере оценить амплитуду и частоту.

Многие осциллографы поддерживают множество инструментов автоматического измерения, они могут даже постоянно отображать самую важную информацию, например частоту. Чтобы получить максимальную отдачу от своей области, вам нужно изучить все функции измерения , которые он поддерживает. Большинство осциллографов автоматически рассчитают частоту, амплитуду, рабочий цикл, среднее напряжение и ряд других волновых характеристик.

Используя инструменты измерения осциллографа, найдите V PP , V Max , частоту, период и рабочий цикл.

Третий измерительный инструмент, который предоставляют многие прицелы, — это курсоры . Курсоры — это подвижные маркеры на экране, которые можно размещать на оси времени или напряжения. Курсоры обычно бывают парами, поэтому вы можете измерить разницу между ними.

Измерение сигнала прямоугольной формы курсорами.

После того, как вы измерили искомую величину, вы можете приступить к корректировке вашей схемы и еще раз измерить! Некоторые осциллографы также поддерживают сохранение , печать или сохранение осциллограммы, чтобы вы могли вспомнить ее и вспомнить те старые добрые времена, когда вы оценивали этот сигнал.

Чтобы узнать больше о возможностях вашего прицела, обратитесь к его руководству пользователя!


% PDF-1.5 % 7844 0 obj> endobj xref 7844 91 0000000016 00000 н. 0000004792 00000 н. 0000002116 00000 н. 0000004918 00000 н. 0000006227 00000 н. 0000007397 00000 н. 0000007466 00000 н. 0000007533 00000 п. 0000007694 00000 н. 0000007733 00000 н. 0000007820 00000 н. 0000008997 00000 н. 0000009063 00000 н. 0000009132 00000 н. 0000017736 00000 п. 0000022533 00000 п. 0000026633 00000 п. 0000030878 00000 п. 0000036110 00000 п. 0000040184 00000 п. 0000044754 00000 п. 0000050428 00000 п. 0000051093 00000 п. 0000051902 00000 п. 0000052903 00000 п. 0000054576 00000 п. 0000055943 00000 п. 0000056824 00000 п. 0000057932 00000 п. 0000058775 00000 п. 0000059488 00000 п. 0000060211 00000 п. 0000060894 00000 п. 0000061594 00000 п. 0000062289 00000 п. 0000062988 00000 п. 0000063660 00000 п. 0000064335 00000 п. 0000065030 00000 п. 0000065743 00000 п. 0000066441 00000 п. 0000067154 00000 п. 0000067867 00000 п. 0000068565 00000 п. 0000069264 00000 п. 0000069964 00000 н. 0000072778 00000 п. 0000074518 00000 п. 0000075834 00000 п. 0000076550 00000 п. 0000077264 00000 п. 0000077980 00000 п. 0000078693 00000 п. 0000079406 00000 п. 0000080097 00000 п. 0000080783 00000 п. 0000081452 00000 п. 0000082635 00000 п. 0000083517 00000 п. 0000084214 00000 п. 0000084927 00000 п. 0000085721 00000 п. 0000087491 00000 п. 0000088524 00000 п. 0000089656 00000 п. 00000

00000 п. 00000 00000 п. 0000093153 00000 п. 0000093880 00000 п. 0000094572 00000 п. 0000095268 00000 п. 0000095960 00000 п. 0000096646 00000 п. 0000097332 00000 п. 0000098017 00000 п. 0000099713 00000 п. 0000100411 00000 н. 0000101952 00000 н. 0000103464 00000 н. 0000104132 00000 н. 0000105173 00000 п. 0000105858 00000 п. 0000106554 00000 н. 0000107251 00000 н. 0000107936 00000 п. 0000108604 00000 п. 0000109273 00000 н. 0000109949 00000 н. 0000110641 00000 п. 0000111338 00000 н. 0000112036 00000 н. трейлер ] >> startxref 0 %% EOF 7846 0 obj> поток xX {PTv ݳ W] T 51i JA5 * (jL @SQDk_i; -6m

Поперечное исследование | Определения, использование и примеры

Поперечное исследование — это тип исследования, в котором вы собираете данные от множества разных людей в один момент времени.В перекрестном исследовании вы наблюдаете за переменными, не влияя на них.

Исследователи в области экономики, психологии, медицины, эпидемиологии и других социальных наук используют в своей работе кросс-секционные исследования. Например, эпидемиологи, которых интересует текущая распространенность заболевания в определенной подгруппе населения, могут использовать кросс-секционный план для сбора и анализа соответствующих данных.

Поперечные и продольные исследования

Противоположностью поперечного исследования является продольное исследование.В то время как поперечные исследования собирают данные от многих субъектов в один момент времени, лонгитюдные исследования собирают данные от одних и тех же субъектов неоднократно с течением времени, часто сосредотачиваясь на меньшей группе людей, связанных общей чертой.

Оба типа полезны для ответов на различные типы исследовательских вопросов. Поперечное исследование — это дешевый и простой способ собрать исходные данные и выявить корреляции, которые затем могут быть исследованы в дальнейшем в продольном исследовании.

Поперечный и продольный пример Вы хотите изучить влияние низкоуглеводной диеты на диабет. Сначала вы проводите перекрестное исследование с выборкой пациентов с диабетом, чтобы увидеть, есть ли различия в результатах для здоровья, таких как вес или уровень сахара в крови, у тех, кто придерживается низкоуглеводной диеты. Вы обнаруживаете, что диета коррелирует с потерей веса у молодых пациентов, но не у пожилых.

Затем вы решаете разработать продольное исследование для дальнейшего изучения этой связи у более молодых пациентов.Без предварительного проведения поперечного исследования вы бы не смогли сосредоточиться, в частности, на более молодых пациентах.

Когда использовать конструкцию поперечного сечения

Если вы хотите изучить распространенность какого-либо результата в определенный момент времени, лучшим выбором будет поперечное исследование.

Пример Вы хотите знать, сколько семей с детьми в Нью-Йорке в настоящее время имеют низкий доход, чтобы вы могли оценить, сколько денег требуется для финансирования программы бесплатного обеда в государственных школах.Поскольку все, что вам нужно знать, это текущее число семей с низким доходом, перекрестное исследование должно предоставить вам все необходимые данные.

Иногда перекрестное исследование является лучшим выбором по практическим соображениям — например, если у вас есть только время или деньги для сбора перекрестных данных, или если единственные данные, которые вы можете найти для ответа на свой исследовательский вопрос, были собраны на единый момент времени.

Поскольку поперечные исследования дешевле и требуют меньше времени, чем многие другие типы исследований, они позволяют легко собирать данные, которые можно использовать в качестве основы для дальнейших исследований.

Описательные и аналитические исследования

Поперечные исследования могут использоваться как для аналитических, так и для описательных целей:

  • Аналитическое исследование пытается ответить, как и почему может произойти определенный результат.
  • Описательное исследование только суммирует указанный результат с использованием описательной статистики.
Описательный и аналитический пример Вы изучаете детское ожирение. Описательное исследование могло бы изучить распространенность ожирения у детей, в то время как аналитическое исследование могло бы изучить физические упражнения и пищевые привычки в дополнение к уровням ожирения, чтобы объяснить, почему у одних детей вероятность ожирения гораздо выше, чем у других.

Что вычитка может сделать для вашей статьи?

Редакторы

Scribbr не только исправляют грамматические и орфографические ошибки, но и укрепляют ваше письмо, убеждаясь в том, что в вашей статье нет нечетких слов, лишних слов и неудобных формулировок.

См. Пример редактирования

Как провести поперечное исследование

Для проведения перекрестного исследования вы можете полагаться на данные, собранные из другого источника, или собирать свои собственные.Правительства часто размещают кросс-секционные наборы данных в свободном доступе в Интернете.

Яркими примерами являются переписи населения в нескольких странах, таких как США или Франция, в которых анализируются данные о важных показателях жителей страны. Международные организации, такие как Всемирная организация здравоохранения или Всемирный банк, также предоставляют доступ к кросс-секционным наборам данных на своих веб-сайтах.

Однако эти наборы данных часто агрегированы на региональном уровне, что может помешать исследованию определенных вопросов исследования.Вы также будете ограничены теми переменными, которые первоначальные исследователи решили изучить.

Если вы хотите выбрать переменные в своем исследовании и проанализировать свои данные на индивидуальном уровне, вы можете собрать свои собственные данные, используя такие методы исследования, как опросы. Важно тщательно продумать вопросы и выбрать образец.

Преимущества и недостатки перекрестных исследований

Как и любой дизайн исследования, перекрестные исследования имеют различные преимущества и недостатки.

Преимущества

  • Поскольку вы собираете данные только в один момент времени, перекрестные исследования относительно дешевы и требуют меньше времени, чем другие типы исследований.
  • Поперечные исследования позволяют собирать данные от большого пула субъектов и сравнивать различия между группами.
  • Поперечные исследования фиксируют определенный момент времени. Национальные переписи, например, дают картину условий в этой стране в то время.

Недостатки

  • Трудно установить причинно-следственные связи с помощью перекрестных исследований, поскольку они представляют собой только одноразовое измерение предполагаемой причины и следствия.
  • Поскольку перекрестные исследования изучают только один момент времени, их нельзя использовать для анализа поведения в течение определенного периода времени или установления долгосрочных тенденций.
  • Время создания снимка поперечного сечения может не характеризовать поведение группы в целом.Например, представьте, что вы смотрите на влияние психотерапии на такое заболевание, как депрессия. Если депрессивные люди в вашей выборке начали терапию незадолго до сбора данных, тогда может показаться, что терапия вызывает депрессию, даже если она эффективна в долгосрочной перспективе.

Часто задаваемые вопросы о перекрестных исследованиях

Поперечное сечение — определение сечения по The Free Dictionary

Расчетная оценка по (9) с теми же начальными данными ([[theta].sub.0i], = [[тета]. Sub.11] = 70 [градусов] C; [t.sub.KC] = 160 мс; [T.sub.a] = 20 мс; Imk = 100 кА; [J.sub.ak] = 9 x [10.sup.8] [A.sup.2] xs) конечной температуры [[theta] .sub.iS] Джоулева нагрева медного круглого сердечника кабель с изоляцией из ПВХ или R (второй пример) с допустимым поперечным сечением [S.sub.il] = 258,62 [мм.sup.2] (см. Таблицу 6) показывает, что в этом случае он достигает уровня примерно 139,1 [ градусов] C. Развитие компьютерных технологий, обработки сигналов и новых материалов с интересными и необычными электрическими и магнитными характеристиками способствовало значительным разработкам в радарах, а также в поперечном сечении радара, говорит Дженн.В разделе 3 мы покажем, что путем символьного вычисления четырех ребер в четырехугольнике Магнеля мы можем искать внутри области, чтобы найти подходящую расчетную точку для каждого поперечного сечения. Во-первых, параболический и линейный профили сухожилий будут получены с использованием трех поперечных сечений. В таблице 1 показано сечение рассеяния сферической частицы с различным расположением в гауссовом пучке. Чтобы получить математическое соотношение для перепада температуры с точки зрения глубины поперечного сечения , линейное уравнение или, точнее, полином четвертой степени является наиболее подходящим выбором после тестирования различных аппроксимаций кривой.Величина и распределение этих начальных напряжений в горячекатаных элементах имеют сложную форму и зависят от типа поперечного сечения и производственного процесса, и, следовательно, предполагаемое распределение и величина обычно представляют только удобство моделирования. Теоретические и вычислительные аспекты включительно изолированных быстрое производство фотонов, такое как вовлеченные подпроцессы ведущего порядка (LO) и следующего за ведущим порядком (NLO), прямая и фрагментационная составляющие поперечного сечения, а также требование изоляции фотонов обсуждались во многих статьях (например,g., см. [30, 32]). Хотя изображение ВСУЗИ содержит информацию о поперечном сечении кровеносного сосуда, положение и ориентация, при которых изображение было получено, неизвестны. Цели настоящей работы — предоставить новый рекомендованный крест. раздел экспериментальных данных с использованием соответствующего метода подсчета для определения нейтронного потока, чтобы подтвердить текущие оцененные сечения, представляющие интерес, в диапазоне энергий и обеспечить ряд данных сечения, полученных относительно стандартного сечения.Golden Software предлагает шесть продуктов: Surfer [R] для построения координатной сетки, контуров и трехмерного картирования поверхностей; Voxler [R] для трехмерной визуализации данных; Grapher [TM] для построения 2D и 3D графиков; Strater [R] для построения каротажных диаграмм, стволов и разрезов; MapViewer [TM] для тематического картографирования и пространственного анализа; и Didger [R] для оцифровки и преобразования координат. Низкочастотный ультразвуковой томограф обнаружил арматурную сталь с низким уровнем потерь поперечного сечения.

Поперечное сечение — Как сокращается поперечное сечение?

Фильтр категорий: Показать все (307) Наиболее распространенные (1) Технологии (55) Правительство и военные (65) Наука и медицина (84) Бизнес (45) Организации (35) Сленг / жаргон (40)

902 69 Переключатель контекста 907 терминология внутренней сети) 9 089427070 Государственная служба Кредит Science70 Cognitive Science Cognitive (Министерство торговли США) CS 9026 9 Культурные исследования Shared Substance 902 902 Shared Substance 902 Отдельные листы 908 Cesium 908 9 0269 Compressed Sensing (обработка сигналов) Store CS 90 269 ​​CS 9023 Научный совет 907 (Французский научный совет) CS CS Simpson музыкальный центр Simpson Starship Sie Синдром CS Citrate Synthase Copper Sulfate Disney Resort) 23 (ВМС США) CS 9026 Super Spectrum90 (5.1 Surround Sound от SRS Labs) CS Конфиденциально CS 907 62 ядерная) 90écur координатор (координатор по безопасности) французский 9026 9026 CS 9026 CS 90 267 SoC Труппа) CS CS Cobalt CS Curveder параметры) 70 Связь с CS70 Соревновательный-Чувствительный 9026 Simulator 9026
Акроним Определение
CS Counter-Strike (игра)
CS Creative Suite (Adobe)
CS Counter Strike
Counter Strike
CS Clip System (Nerf)
CS Caught Stealing (Baseball)
CS Core Systems
CS
Компьютерное общество
CS Христианская наука
CS Корпус (s)
CS
CS Вычислительная техника
CS Стандартное программное обеспечение
CS Служба поддержки клиентов
CS Сервер для компьютерных исследований CS
CS Клиент-сервер
CS Сервер сообщества
CS Секретарь компании
CS Безопасность связи Безопасность связи Система управления
CS College Station (Техас)
CS Скоро в продаже
CS Компьютерное программное обеспечение
CS CS Компьютерные услуги CS Компьютерные услуги Поперечное сечение
CS Colorado Springs
CS Критическая секция
CS Заменитель комитета
CS Служба поддержки клиентов
CS Клиентская система (s)
CS С учетом регистра
CS Поддержка детей
CS Computing Services
CS
CS Удовлетворенность клиентов
CS Коста-Рика
CS Социальная служба
CS Карточные услуги (карты PCMCIA)
CS CS Кредит CS Центральный вокзал
CS Круглосуточный магазин
CS Критические системы
CS Center Stage
CS Коммуникационная система
CS
CS
Сервис
CS Спецификация Комитета
CS Углеродистая сталь
CS Программное обеспечение для связи
CS Common Stock CS Сегмент кода
CS Начальник штаба
CS Консультационные услуги (различные компании)
CS Коммуникационные услуги
Кофейня 902 CS
CS Система охлаждения
CS Система координат
CS CompuServe
CS Crystal Space Engine 907 с открытым исходным кодом CS Чистый лист (английский футбол; вратарь)
CS Строительная площадка
CS Control Set
CS Cable Select
CS Cities22 902 902 902 Cities (Skylines) 902 CS Алгоритм планирования на основе CDF (кумулятивная функция распределения)
CS Холодный старт
CS Call Server
CS Психология условных стимулов CS Clear Screen (графическая команда Hyper Logo Turtle)
CS Cosenza (Италия)
CS Секция управления
CS CS Сталь CS Контрактные услуги
CS Club Spo rt
CS Case Series
CS Consadole Sapporo (спортивный клуб Japanase)
CS Chemical Synthesis
Custom Scenery Custom Scenery CS ; также рассматривается как ОГО; Atari)
CS Common Source (топология усилителя)
CS Collective Soul (band)
CS CS
CS ChanServ (сервер канала IRC)
CS California Special (автомобиль)
CS Creative Solutions 6270
CS Станция управления (Армия США)
CS C Sharp (расширение имени файла)
CS Cesium
CS Конкурентные источники
CS
CS Изменить статус
CS Позывной (военный)
CS Conceptual Structures
CS Замкнутое пространство
CS Контрольная сумма
CS Куриный смузи (игра)
Модель CS CS Клюшки CS Загрязненные участки
CS Поставщик компонентов
CS Кортикостероиды
CS Поддержка связи
Sulfate CS
Sulfate 9026 игровой)
Cyber ​​Sex
CS Christian Surfers
CS Challenge Stradale (Ferrari)
CS Conseil
Combat Support
CS Composite Service
CS Campus Safety (в разных местах)
CS Cocker Spaniel Storm CS County Seat
CS Клинические признаки
CS Статус канала
CS Коммуникационная эскадрилья
CS Curbside (конструкция автомобиля )
CS Сертифицированный сомелье (вино)
CS Коронарный синус (медицинский)
CS Cub Scouts
CS Coefficient de Structure (французский: факторная структура)
CS Главный секретарь (для администрации; Гонконг)
CS Comfort Suites (отель)
CS Consigne de Sécurité (французский: залог)
CS Cobra Band
CS Coronation Street (Британская мыльная опера)
CS Cracked Software
CS Civil Servant
CS (всегда)
CS Crimson Skies (видеоигра)
CS Пробковый винт
CS CouchSurfing
CS Combat System CS Combat System Набор для CS
CS Постоянный источник
CS Critical Sou rce (Министерство обороны США)
CS Текущая серия
CS Корпоративная структура
CS Подуровень сходимости CS Подуровень конвергенции CS CS
CS Chad Smith (участник группы Red Hot Chili Peppers)
CS Специалист по контрактам
CS Copper Sulfate70
70
CS Набор ограничений
CS Campus Solutions (программное обеспечение)
CS Cirrostratus CS (образование облаков)
CS Сервер сертификатов (компьютерная безопасность)
CS Centro de Salud (Health Center)
CS Creep Score (игровой)
Clive 902 С.С. Льюис)
CS Прибрежная станция (Министерство обороны США)
CS Capital Strategies (различные местоположения)
CS одновременные организации
CS Cum Suis (латинское: и ассоциированные)
CS Удобный отбор проб
CS Кардиогенный шок (сердечно-легочный синдром) 9023 9026 9026 9026
CS Conseiller a la Sécurité (французский: советник по безопасности)
CS Поддержка
CS CS Гражданская поддержка
Civil Support CS Хлорированные растворители
CS Когерентные состояния
CS Контролируемое пространство (Министерство обороны США)
CS Культурное выживание
CS Конвей Стюарт (ручки; UK)
CS Сегмент управления
CS Коммутатор цепи
CS Синдром Кокейна
CS
CS Clinical 9026
CS Cerulean Studios
CS Campana & Schott (различные местоположения)
CS Cat Show
CS Competitive 9026
CS Компьютерная станция
CS Сила тока
CS Система возделывания (сельское хозяйство)
CS (математика) Колонка Space70 CS Cyberstorm 9072 2 (игра)
CS Секция коммуникаций
CS Поддержка подрядчика
CS Схема цепи
CS
Окружающая среда
CS
CS Chief Steward (различные организации)
CS Chaplain Service (Air Force; US DoD)
Источник
CS Colonne Sèche (по-французски: Dry Column; противопожарное устройство)
CS Charles Schwab & Co
CS Chappelle2’s Show 902
CS Кесарево сечение
CS Подсистема связи
CS Combat Skill (игры, безопасность Diablo II)
CS Международная федерация компьютеров и обработка информации журнал)
CS Текущий сегмент
CS Соединение запятой
CS Селектор каналов
CS Текущий лист (астрономия)
CS Синдром Коудена Синдром Коудена
CS Close Shot (кинематография)
CS Кулинарный специалист (военно-морской рейтинг)
CS
CS Cable Ship
CS Championship Subdivision (футбол)
CS Crescent School (Торонто, Онтарио, Канада)
  • 70 Station
  • 70 Станция
  • Crew
    CS Crystal Square (Хрустальный город, Арлинг тонна, ВА)
    CS Кабинные системы
    CS Ортохлорбензальмалононитрил (слезоточивый газ)
    CS Crew Systems Crew Systems сюиты для виолончели
    CS Captain Skyhawk (видеоигра)
    CS Сверхпроводящий циклотрон
    CS
    Сегмент ядра CS Сотовая станция (базовая радиостанция в PHS)
    CS Специалист по контрактам (USACE)
    CS Check Solutions
    Counter Общий доступ
    CS Коммуникационный сегмент
    CS Cleveland Steamer
    CS Кодовая полоса
    CS Полностью стерильный CS
    Полностью стерильный CS
    CS Излишек потребителя (экономика)
    CS Кейт Сит (персонаж Final Fantasy VII)
    CS CS Компьютерная подсистема
    CS Coordination Sud
    CS Обманная система (игровая)
    CS Cheesy Smile
    Файл Cheesy Smile
    CS
    Файл CS
    CS Certification Sur vey
    CS Core Spray (Атомная энергетика)
    CS Линия бегущей строки, одинарный (Министерство обороны США)
    CS CS Critically 9070 Классифицированный Чувствительный
    CS Комиссар (рейтинг USN)
    CS Спецификация кандидата (GS1)
    CS CS Control Synthesizerha07 Control Strobe (логический сигнал, электроника)
    CS Cliometric Society
    CS Checkout Station
    CS Combat Surveillance CS
    CS Синдром Кавала (собачий сердечный червь) 902 70
    CS Хондроидная сирингома (опухоль)
    CS Competition Sensitive
    CS Едкий скруббер
    Coustic Scrubber
    Сдвиг циклов
    CS Capita Symonds Ltd (Великобритания)
    CS Условия договора
    CS Заявление о сотрудничестве CS )
    CS Противодействие саботажу
    CS Подкомитет соответствия
    CS Combat Sent
    CS Curveder
    CS Centi Stokes
    CS Chevalier School (Филиппины)
    CS Cold Skill (игры, Diablo II)
    CS
    CS Castle Sauvage (игра)
    CS Закрытый спутник
    CS Отбор проб охлаждающей жидкости
    CS Свидетели
    CS свидетели
    CS Дополнительная поддержка
    CS Сортировщик чеков
    CS Устойчивость к загрязнению
    CS CS 902 9026 ClickServ
    CS Corrugated Services, Inc (Форни, Техас)
    CS Перестановка каналов (мобильная связь)
    CS Засоренный поток CS13270 Контроль засорения
    CS Миссионеры Св.

    Вам может понравится

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *