Что такое нормальный метр кубический газа: Нормальный кубический метр — Справочная информация

Содержание

Объем газа при нормальных условиях – Все о газоснабжении

Из положений о том, что один моль любого вещества включает число частиц этого вещества, равное числу Авогадро, и что равные числа частиц различных газов при одинаковых физических условиях содержатся в равных объемах этих газов, вытекает следствие:

равные количества любых газообразных веществ при одинаковых физических условиях занимают равные объемы

Например, объем одного моль любого газа имеет (при p, T = const) одно и то же значение. Следовательно, уравнение реакции, протекающей с участием газов, задает не только соотношение их количеств и масс, но и объемов.

молярный объем газа (VM) — это объем газа в котором содержится 1 моль частиц этого газа
VM = V / n

Единица молярного объема газа в СИ — кубический метр на моль (м 3 /моль), но чаще используют дольные единицы — литр (кубический дециметр) на моль (л/моль, дм 3 /моль) и мллилитр (кубический сантиметр) на моль (см 3 /моль).
В соответствии с определением молярного объема дял любого газа отношение его объема V к количеству n будет одинаковым при условии, что это идеальный газ.

При нормальных условиях (н.у.) — 101,3 кПа, 0°С — молярный объем идеального газа равен

VM = 2,241381·10 -2 м 3 /моль ≈ 22.4 л/моль

В химических расчетах используется округленное значение 22,4 л/моль, поскольку точное значение относится к идеальному газу, а большинство реальных газов по свойствам отличаются от него. Реальные газы с очень низкой температурой равновесной конденсации (H2, O2, N2) при нормальных условиях имеют объем, почти равный 22,4 л/моль, а газы, конденсирующиеся при высоких температурах, имеют несколько меньшее значение молярного объема при н.у.: для CO2 — 22.26 л/моль, для NH3 — 22,08 л/моль.

Зная объем некоторого газа при заданных условиях, можно определить количество веществ в этом объеме, и наоборот, по количеству вещества в данной порции газа можно найти объем этой порции:

n = V / VM; V = VM * n

Молярный объем газа при н. у. — фундаментальная физическая постоянная, которая широко используется в химических расчетах. Она позволяет применять объем газа вместо его массы, что очень удобно в аналитической химии (газоанализаторы основанные на измерении объема), поскольку легче измерить объем газа, чем его массу.

Значение молярного объема газа при н.у. является коэффициентом пропорциональности между постоянными Авогадро и Лошмидта:

VM = NA / NL = 6.022·10 23 (моль -1 ) / 2,24·10 4 (см 3 /моль) = 2.69·10 19 (см -3 )

Используя значения молярного объема и молярную массу газа можно определить плотность газа:

ρ = M / VM

В расчетах, основанных на законе эквивалентов для газообразных веществ (реагентов, продуктов) вместо эквивалентной массы удобнее применятьэквивалентный объем, который предстваляет собой отношение объема порции данного газа к эквивалентному количеству вещества в этой порции:

Veq = V / neq = V / zn = VM / z; (p, T = const)

Единица эквивалентного объема совпадает с единицей молярного объема.

Значение эквивалентного объема газа является константой данного газа только в конкретной реакции, так как зависит от фактора эквивалентности feq.

Молярный объем газа


Молярный объем газа Из положений о том, что один моль любого вещества включает число частиц этого вещества, равное числу Авогадро, и что равные числа частиц различных газов при одинаковых

Источник: techemy.com

Тема 1

УРОК 7

Тема. Молярный объем газов. Вычисление объема газа при нормальных условиях

Цели урока: ознакомить учащихся с понятием «молярный объем»; раскрыть особенности использования понятия «молярный объем» для газообразных веществ; научить учащихся использовать полученные знания для расчетов объемов газов при нормальных условиях.

Тип урока: комбинированный.

Формы работы: рассказ учителя, управляемая практика.

Оборудование: Периодическая система химических элементов Д. И. Менделеева, карточки с заданиями, куб объемом 22,4 л (со стороной 28,2 см).

II. Проверка домашнего задания, актуализация опорных знаний

Ученики сдают на проверку выполненное на листах домашнее задание.

1) Что такое «количество вещества»?

2) Единица измерения количества вещества.

3) Сколько частиц содержится в 1 моль вещества?

4) Какая существует зависимость между количеством вещества и агрегатного состояния, в котором находится это вещество?

5) Сколько молекул воды содержится в 1 моль льда?

6) А в 1 моль жидкой воды?

7) В 1 моль водяного пара?

8) Какую массу будут иметь:

III . Изучение нового материала

Создание и решение проблемной ситуации Проблемный вопрос. Какой объем будет занимать:

Ответить на эти вопросы сразу мы не можем, потому что объем вещества зависит от плотности вещества. И согласно формуле V = m / ρ , объем будет разным. 1 моль пара занимает больший объем, чем 1 моль воды или льда.

Потому, что в жидких и газообразных веществах расстояние между молекулами воды разная.

Изучением газообразных веществ занималось множество ученых. Значительный вклад в изучение этого вопроса внесли французский химик Жозеф Луи Гей-Люссак и английский физик Роберт Бойль, которые сформулировали ряд физических закономерностей, описывающих состояние газов.

Из этих закономерностей вы знаете?

Все газы одинаково сжимаются, имеют одинаковый термический коэффициент расширения. Объемы газов зависят не от размеров отдельных молекул, а от расстояния между молекулами. Расстояния между молекулами зависят от скорости их движения, энергии и, соответственно, температуры.

На основании этих законов и своих исследований итальянский ученый Амедео Авогадро сформулировал закон:

В равных объемах различных газов содержится одинаковое количество молекул.

При обычных условиях газообразные вещества имеют молекулярное строение. Молекулы газов очень мелкие по сравнению с расстоянием между ними. Поэтому объем газа определяется не размером частиц (молекул), а расстоянием между ними, что для любого газа примерно одинакова.

А. Авогадро сделал вывод, что, если взять 1 моль, т. е. 6,02 · 1023 молекул любых газов, то они будут занимать одинаковый объем. Но при этом измеряться этот объем при одинаковых условиях, то есть при одинаковых температуре и давлении.

Условия, при которых проводятся подобные расчеты, назвали нормальными условиями.

Нормальные условия (н. в.):

Т= 273 К или t = 0 °С

Р = 101,3 кПа или Р = 1 атм. = 760 мм рт. ст.

Объем 1 моль вещества называют молярным объемом ( Vm ). Для газов при нормальных условиях равен 22,4 л/моль.

Демонстрируется куб объемом 22,4 л.

В таком кубе содержится 6,02-1023 молекул любых газов, например, кислорода, водорода, аммиака ( NH 3 ), метана (СН4).

При каких условиях?

При температуре 0 °С и давлении 760 мм рт. ст.

Из закона Авогадро следует, что

где Vm = 22,4 л/моль любого газа при н. в.

Итак, зная объем газа, можно вычислить количество вещества, и наоборот.

IV. Формирование навыков и умений

Практика на примерах

Вычислите, какой объем будут занимать 3 моль кислорода при н. в.

Вычислите количество молекул карбон( IV ) оксида в объеме 44,8 л (н. в).

2) Вычислим количество молекул С O 2 по формулам:

N ( CO 2) = 2 моль · 6,02 · 1023 молекул/моль = 12,04 · 1023 молекул.

Ответ: 12,04 · 1023 молекул.

Вычислите, какой объем занимает азот массой 112 г (по н. в.).

V ( N 2 ) = 4 моль · 22,4 л/моль = 89,6 л.

V. Домашнее задание

Проработать соответствующий параграф учебника, ответить на вопросы.

Творческое задание (домашняя практика). Самостоятельно решить задачи 2, 4, 6 с карты.

Карточка-задание к уроку 7

Вычислите, какой объем займет 7 моль азота N 2 (по н. в.).

Вычислите количество молекул водорода объемом 112 л.

(Ответ: 30,1 · 1023 молекул)

Вычислите, какой объем занимает сероводород массой 340 г.

Объем газа при нормальных условиях


Молярный объем газов. Вычисление объема газа при нормальных условиях – КОЛИЧЕСТВО ВЕЩЕСТВА. РАСЧЕТЫ ПО ХИМИЧЕСКИМ ФОРМУЛАМ – ВСЕ УРОКИ ХИМИИ – 8 класс – конспекты уроков – уроки химии – План урока – Конспект урока – Планы уроков – разработки уроков по химии – ХИМИЯ – Стандарт и академический уровень школьная программа – всех уроков химии для восьмого класса 12-летней школы

Источник: schooled. ru

Расход газа на отопление дома: примерный расчет

Главная » Отопление » Как рассчитать потребление газа на отопление дома

Газ пока еще самый дешевый вид топлива, но стоимость подключения порой очень высокая потому многие хотят предварительно оценить, насколько экономически обоснованы такие расходы. Для этого необходимо знать расход газа на отопление, потом можно будет оценить общую стоимость и сравнить ее с другими видами топлива. 

Содержание статьи

Методика расчета для природного газа

Примерный расход газа на отопление считается исходя из половинной мощности установленного котла. Все дело в том, что при определении мощности газового котла закладывается самая низкая температура. Это и понятно — даже когда на улице очень холодно, в доме должно быть тепло.

Посчитать расход газа на отопление можно самостоятельно

Но считать расход газа на отопление по этой максимальной цифре совсем неверно — ведь в основном температура значительно выше, а значит, топлива сжигается намного меньше. Потому и принято считать средний расход топлива на отопление — порядка 50% от теплопотерь или мощности котла.

Считаем расход газа по теплопотерям

Если котла еще нет, и вы оцениваете стоимость отопления разными способами, считать можно от общих теплопотерь здания. Они, скорее всего, вам известны. Методика тут такая: берут 50% от общих теплопотерь, добавляют 10% на обеспечение ГВС и 10% на отток тепла при вентиляции. В результате получим средний расход в киловаттах в час.

Далее можно  узнать расход топлива в сутки (умножить на 24 часа),  в месяц (на 30 дней), при желании — за весь отопительный сезон (умножить на количество месяцев, на протяжении которых работает отопление). Все эти цифры можно перевести в кубометры (зная удельную теплоту сгорания газа), а потом перемножить кубометры на цену газа и, таким образом, узнать затраты на отопление.

Наименование толпиваЕдиница измеренияУдельная теплота сгорания в кКалУдельная теплота сгорания в кВтУдельная теплота сгорания в МДж
Природный газ1 м 38000 кКал9,2 кВт33,5 МДж
Сжиженный газ1 кг10800 кКал12,5 кВт45,2 МДж
Уголь каменный (W=10%)1 кг6450 кКал7,5 кВт27 МДж
Пеллета древесная1 кг4100 кКал4,7 кВт17,17 МДж
Высушенная древесина (W=20%)1 кг3400 кКал3,9 кВт14,24 МДж

Пример расчета по теплопотерям

Пусть теплопотери дома составляют 16 кВт/час. Начинаем считать:

  • средняя потребность в тепле в час — 8 кВт/ч + 1,6 кВт/ч + 1,6 кВт/ч = 11,2 кВт/ч;
  • в день — 11,2 кВт * 24 часа = 268,8  кВт;
  • в месяц — 268,8 кВт * 30 дней = 8064 кВт.

    Фактический расход газа на отопление еще зависит от типа горелки — модулируемые самые экономичные

Переводим в кубометры. Если использовать будем природный газ, делим расход газа на отопление в час: 11,2 кВт/ч / 9,3 кВт = 1,2 м3/ч. В расчетах цифра 9,3 кВт — это удельная теплоемкость сгорания природного газа (есть в таблице).

Кстати, также можно посчитать необходимое количество топлива любого типа — надо только взять теплоемкость для требуемого топлива.

Так как котел имеет не 100% КПД, а 88-92%, придется внести еще поправки на это — добавить порядка 10% от полученной цифры. Итого получаем расход газа на отопление в час — 1,32 кубометра в час. Далее можно рассчитать:

  • расход в день: 1,32 м3 * 24 часа = 28,8 м3/день
  • потребность в месяц:28,8 м3/день * 30 дней =  864 м3/мес.

Средний расход за отопительный сезон зависит от его длительности — умножаем на количество месяцев, пока длится отопительный сезон.

Этот расчет — приблизительный. В какой-то месяц потребление газа будет намного меньше, в самый холодный — больше, но в среднем цифра будет примерно такой же.

Расчет по мощности котла

Расчеты будут немного проще, если имеется рассчитанная мощность котла — тут уже учтены все необходимые запасы (на ГВС и вентиляцию). Потому просто берем 50% от расчетной мощности и далее считаем расход в день, месяц, за сезон.

Например, проектная мощность котла — 24 кВт. Для расчета расхода газа на отопление берем половину: 12 к/Вт. Это и будет средняя потребность в тепле в час. Чтобы определить расход топлива в час, делим на теплотворную способность, получаем 12 кВт/час / 9,3 к/Вт =  1,3 м3. Далее все считается как в примере выше:

Объемный и массовый расход газа

Расход газа – это количество газа, прошедшего через поперечное сечение трубопровода за единицу времени. Вопрос в том, что принять за меру количества газа. В этом качестве традиционно выступает объем газа, а получаемый расход называют объемным. Не случайно чаще всего расход газа выражают в объемных единицах (см3/мин, л/мин, м3/ч и т.д.). Другой мерой количества газа является его масса, а соответствующий расход называется массовым. Он измеряется в массовых единицах (например, г/с или кг/ч), которые на практике встречаются значительно реже.

Как объем связан с массой, так и объемный расход связан с массовым через плотность вещества:
, где  – массовый расход,  – объемный расход,  – плотность газа в условиях измерения (рабочие условия). Пользуясь этим соотношением, для массового расхода переходят к использованию объемных единиц (см3/мин, л/мин, м3/ч и т.д.), но с указанием условий (температуру и давление газа), определяющих плотность газа. В России применяют «стандартные условия» (ст.): давление 101,325 кПа (абс) и температура 20°С. Помимо «стандартных», в Европе используют «нормальные условия» (н.): давление 101,325 кПа (абс) и температура 0°С. В результате, получаются единицы массового расхода н.л/мин, ст.м3/ч и т.д.

Итак, расход газа бывает объемным и массовым. Какой из них следует измерять в конкретном применении? Как наглядно увидеть разницу между ними? Давайте рассмотрим простой эксперимент, где три расходомера последовательно установлены в магистраль. Весь газ, поступающий на вход схемы, проходит через каждый из трех приборов и выбрасывается в атмосферу. Утечек или накопления газа в промежуточных точках системы не происходит.

Источником сжатого воздуха является компрессора, от которого под давлением 0,5…0,7 бар (изб) газ подаётся на вход поплавкового ротаметра. Выход ротаметра подключен ко входу теплового регулятора расхода газа серии EL-FLOW, производства компании Bronkhorst. В нашей схеме именно он регулирует количество газа, проходящее через систему. Далее газ подаётся на вход второго поплавкового ротаметра, абсолютно идентичного первому. При задании расхода 2 н.л/мин с помощью расходомера EL-FLOW первый поплавковый ротаметр дает показания 1,65 л/мин, а второй – 2,1 л/мин. Все три расходомера дают различные показания, причем разница достигает 30%. Хотя через каждый прибор проходит одно и то же количество газа.

Попробуем разобраться. Какая мера количества газа в данной ситуации остается постоянной: объем или масса? Ответ: масса. Все молекулы газа, попавшие на вход в систему, проходят через нее и выбрасываются в атмосферу после прохождения второго поплавкового ротаметра. Молекулы как раз и являются носителями массы газа. При этом удельный объем (расстояние между молекулами газа) в разных частях системы изменяется вместе с давлением.

Здесь следует вспомнить, что газы сжимаемы, чем выше давление, тем меньше объем занимает газ (закон Бойля-Мариотта). Характерный пример: цилиндр емкостью 1 литр, герметично закрытый подвижным поршнем малого веса. Внутри него содержится 1 литр воздуха при давлении порядка 1 бар (абс). Масса такого объема воздуха при температуре равной 20°С составляет 1,205 г. Если переместить поршень на половину расстояния до дна, то объем воздуха в цилиндре сократится наполовину и составит 0,5 литра, а давление повысится до 2 бар (абс), но масса газа не изменится и по-прежнему составит 1,205 г. Ведь общее количество молекул воздуха в цилиндре не изменилось.

Возвратимся к нашей системе. Массовый расход (количество молекул газа, проходящих через любое поперечное сечение в единицу времени) в системе постоянен. При этом давление в разных частях системы отличается. На входе в систему, внутри первого поплавкового ротаметра и в измерительной части расходомера EL-FLOW давление составляет порядка 0,6 бар (изб). В то время, как на выходе EL-FLOW и внутри второго поплавкового ротаметра давление практически атмосферное. Удельный объем газа на входе ниже, чем на выходе. Получается, что и объемный расход газа на входе ниже, чем на выходе.

Эти рассуждения подтверждаются и показаниями расходомеров. Расходомер EL-FLOW измеряет и поддерживает массовый расход воздуха на уровне 2 н.л/мин. Поплавковые ротаметры измеряют объемный расход при рабочих условиях. Для ротаметра на входе это: давление 0,6 бар (изб) и температура 21°С; для ротаметра на выходе: 0 бар (изб), 21°С. Также понадобится атмосферное давление: 97,97 кПа (абс). Для корректного сравнения показаний объемного расхода, все показания должны быть приведены к одним и тем же условиям. Возьмем в качестве таковых «нормальные условия» расходомера EL-FLOW: 101,325 кПа (абс) и температура 0°С.

Пересчет показаний поплавковых ротаметров в соответствии с методикой поверки ротаметров ГОСТ 8.122-99 осуществляется по формуле:

 , где Q – расход при рабочих условиях; Р и Т – рабочие давление и температура газа; QС – расход при условиях приведения; Рс и Тс – давление и температура газа, соответствующие условиям приведения.

Пересчет показаний ротаметра на входе к нормальным условиям по этой формуле даёт значение расхода 1,985 л/мин, а ротаметра на выходе – 1,990 л/мин. Теперь разброс показаний расходомеров не превышает 0,75%, что при точности ротаметров 3% ВПИ является отличным результатом.

Из приведенного примера видно, что объемный расход сильно зависит от рабочих условий. Мы показали зависимость от давления, но в той же мере объемный расход зависит и от температуры (закон Гей-Люссака). Даже в технологической схеме, имеющей один вход и один выход, где отсутствуют утечки и накопление газа, показания объемного расходомера будут сильно зависеть от конкретного места установки. Хотя массовый расход будет одним и тем же в любой точке такой схемы.

Хорошо понимать физику процесса. Но, все же, какой расходомер выбрать: объемного расхода или массового? Ответ зависит от конкретной задачи. Каковы требования технологического процесса, с каким газом необходимо работать, величина измеряемого расхода, точность измерений, рабочие температура и давление, особые правила и нормы, действующие в Вашей сфере деятельности, и, наконец, отведенный бюджет. Также следует учитывать, что многие расходомеры, измеряющие объемный расход, могут комплектоваться датчиками температуры и давления. Они поставляются вместе с корректором, который фиксирует показания расходомера и датчиков, а затем приводит показания расходомера к стандартным условиям.

Но, тем не менее, можно дать общие рекомендации. Массовый расход важен тогда, когда в центре внимания находится сам газ, и необходимо контролировать количество молекул, не обращая внимания на рабочие условия (температура, давление). Здесь можно отметить динамическое смешение газов, реакторные системы, в том числе каталитические, системы коммерческого учета газов.

Измерение объемного расхода необходимо в случаях, когда основное внимание уделяется тому, что находится в объеме газа. Типичные примеры – промышленная гигиена и мониторинг атмосферного воздуха, где необходимо проводить количественную оценку загрязнений в объеме воздуха в реальных условиях.

Что такое кубический метр и где он применяется

Производные в Международной системе единиц применяются при проведении расчетов. Кубический метр – одна из самых распространенных единиц измерения, которая применяется в самых различных сферах. Без нее сложно провести строительные, монтажные работы, рассчитать требуемое количество сыпучих материалов. Правильно высчитать единицу измерения можно самостоятельно, нужно лишь знать установленные стандарты.

Что такое кубический метр (кубометр)

Кубический метр – термин, который получил название от слов куб и метр. Для указания куба применяется специальный символ «³». В большинстве случаев он используется для определения объема. Куб считается фигурой трехмерного пространства, то есть он характеризуется тремя основными показателями: длиной, шириной и высотой. Поэтому стандартный кубометр –это небольшой кубик.

Один кубический метр равен 1000 литров. Высота, ширина и длина составляют по одному метру, в результате чего получается фигура для вычисления объема. Термин использовался для создания распространенного показателя Еврокуб, который сегодня активно применяется в промышленности при перевозке сыпучих и других грузов.

Подобное понятие получило широкое распространение. Его часто используют на рынке строительных материалов или в других случаях, к примеру, в квитанциях на оплату коммунальных платежей.

Более широкое распространение термин получил в математике. Многие задачи связаны с определением вместимости различных геометрических фигур. Несмотря на название, параметр подходит для расчета емкости цилиндра, сферы и других сложных форм.

Где используются кубические метры

Измерить кубатурой можно различные жидкости и сыпучие материалы, газы, древесину или бетон. При этом ее распространение весьма широкое, для определения количества израсходованной воды давно не используют литры. Кубичный счетчик устанавливается в доме, квартире и других сооружениях для определения количества израсходованных природных ресурсов.

В промышленности объемы в метрах кубических измеряются для правильного смешения материалов, учета их расхода. При этом они могут измеряться при использовании специальных счетчиков, которые представлены сложными конструкциями.

Провести правильно определение размера можно только при использовании соответствующих механизмов и инструментов. При этом есть возможность выполнить правильный перевод по таблице в сантиметры. Для того чтобы рассчитать вес изделия и для получения показателя в килограммах или тоннах используется формула, предусматривающая использование значения плотности.

Как выглядит кубический метр

Широкое распространение рассматриваемой единицы измерения определило появление большого количества различных примеров того, как она выглядит. Общие черты следующие:

  • Фигура описывается 24 ребрами. Однако не стоит забывать, что в ходе вычислений может быть получено дробное значение, или термин применяется для измерения вместимости цилиндров или сфер.
  • Квадратные фигуры рассчитываются проще всего. В различных учебных заведениях может встречаться куб, который используется в качестве примера для определения рассматриваемого показателя.
  • Материал должен заполнять всю емкость. Поэтому кубометр позволяет посчитать только количество жидкости, газа или сыпучих, сплошных материалов. В других случаях полученный показатель не подходит для вычисления веса, особенно если материал неоднородный.

Кубокилометр и другие варианты подобной единицы также напоминают куб, но в реальной жизни встретить подобный пример практически невозможно.

Единица измерения куба

Куб считается распространенной геометрической фигурой, используемой для измерения объема и определения других показателей. Однако она не может использоваться для определения площади, так как для расчета требуется только длина и ширина. Особенности кубометра заключаются в следующем:

  • В качестве стандарта используется фигура, которая имеет метровые грани. Для обозначения применяется символ «³», сокращение в письменном виде «куб. м».
  • При необходимости можно провести перевод полученного показателя в дециметры или сантиметры, миллиметры, километры и литры.
  • В некоторых странах вычисления проводятся в футах, баррелях и ярдах. При этом перевод приблизительный, так как целое число при конвертации не получается.
  • Кубометр является производной в Международной системе единиц и системе МКГСС и МТС. Поэтому в большинстве случаев производить перевод не нужно.

Единица измерения встречается в различных программах для компьютера, калькуляторах и другой вычислительной технике. Кубометровый показатель указывается на этикетке производителями материала, на емкостях и в иных случаях.

Что нужно для расчета кубометра

Узнать объем материала довольно просто, так как для этого требуется всего несколько параметров. Считать следует путем перемножения:

  • длины;
  • ширины;
  • высоты.

Измерить их достаточно просто, так как для этого требуется только линейка или другой подобный измерительный прибор. Сложности возникают в случае, когда нужно определить кубометры для цилиндра или конуса. Для вычислений потребуется диаметр основания.

Формулы

Для того чтобы определить рассматриваемый показатель, достаточно использовать всего одну простейшую формулу. Она используется для определения вместимости V =  L × W × H, где:

  • L – длина;
  • W – ширина;
  • H – высота.

Правильный расчет емкости цилиндрических объектов намного сложнее. Для этого применяется следующая формула вычисления объема V= (3,14) × R2 × L, где:

  • R – радиус;
  • L – высота;
  • 3,14 – число Пи.

Кубовый метод измерения поможет для определения объема сфер. В данном случае V = ¾ × 3,14 × R3, где:

  • R – радиус;
  • 3,14 – число Пи.

Приведенная выше информация определяет то, что для измерения вместительности шара требуется только радиус. Считаться он может путем замера диаметра, который делится пополам.

При необходимости можно провести расчет значения для конуса. Формула выглядит следующим образом V = 1/3 × R2 × H, где:

  • R – радиус основания;
  • H – высота.

Формула указывает на то, что объем конуса равен 1/3 вместимости цилиндра. Для вычисления рассматриваемого показателя более сложных фигур их разбивают на несколько простых, после чего вычисляется кубометр путем сложения полученных результатов. Поэтому чтобы вычислить кубический метр, нужно рассмотреть тип геометрической фигуры.

Калькулятор

В интернете встречается большое количество различных калькуляторов, которые могут использоваться для вычисления кубатуры. Большинство вариантов работают на основе простых формул, при написании других применяются сложные логарифмы. В подобном случае расчеты просты:

  1. Открывается сайт с онлайн-калькулятором. Их довольно много, разница заключается в количестве вводимых переменных и оформлением. Точность расчетов высокая, но при применении калькулятора в строительстве рекомендуют брать полученный результат с запасом.
  2. Выбирается определенное изделие. Это делается для расчета веса и других параметров, так как от типа материала зависит плотность.
  3. Указываются другие требуемые параметры.

В большинстве случаев проводится вычисление объема в кубометрах по размерам одной единицы продукции. Для этого вводится длина и ширина, а также высота. Для расчета конечной стоимости материала указывается количество и цена за одну кубатуру.

Какой объем имеет один кубический метр

Кубометр представляет собой стандартную единицу измерения, поэтому ее часто переводят в другие. Исключением можно назвать случай измерения объема жидкости, когда требуются литры.

В одном кубе 1000 литров. Кроме этого, в подобной емкости помещается 35,3 кубических фута, 1,31 кубических ядра и 6,29 баррелей.

Таблица перевода куба

Для перевода полученного значения может использоваться специальный калькулятор или таблица.

м3дм3см3мм3л
11000100000010000000001000

Приведенная выше информация указывает на то, что кубометр является важной единицей измерения, которая может применяться в различных сферах. Ее начинают изучать в школе, после этого она применяется в высшей математике, при профессиональной или другой деятельности.

В чем разница между Нм3 и См3?

В чем разница между Нм3 и См3?

К сожалению, ни Nm3 (нормальный кубический метр), ни Sm3 (стандартный кубический метр) сами по себе не являются полными определениями. Для определения объема газа важно знать стандартные эталонные условия температуры и давления, поскольку существуют различные споры о том, что должно быть нормальным и стандартным.

Наиболее часто используемые стандартные условия:

Нормальный кубический метр (Нм3) — Температура: 0 ° C, Давление: 1.01325 barA
Стандартный кубический метр (Sm3) — Температура: 20 ° C, Давление: 1.01325 barA

barA: абсолютное давление

Как рассчитать Nm3 и Sm3 и каков коэффициент пересчета?

Объем газов изменяется в зависимости от температуры и давления, поэтому эти параметры также являются частью уравнения преобразования.

Преобразование из Sm3 в Nm3:

V1 / V2 = (P2xT1) / (P1xT2)
V1 / V2 = (293.16×1.013) / (273.16×1.013) = 1.0732

Температура вводится в K; 273.16 — температура тройной точки воды.

Интерпретация: Газ с определенной массой занимает при нормальных условиях объем на 7,32% меньше, чем при стандартных условиях . Следовательно, 1 Нм3 содержит на 7,32% больше газа, чем 1 См3.

Преобразование для стандартных условий 15 ° C, 981 мбар:

V1 / V2 = (288,16×1,013) / (273,16×0,981) = 1,08932389

Для полноты картины мы приводим сравнение на основе веса:

Кислород:
1 м3 (температура: 0 ° C, давление: 1.01325 барA) вес 1,43 кг
1 м3 (температура: 20 ° C, давление: 1,01325 барA) вес 1,33 кг

Азот:
1 м3 (температура: 0 ° C, давление: 1,01325 барA) вес 1,25 кг
1 м3 (температура: 20 ° C) ° C, давление: 1,01325 барA) вес 1,16 кг

Допущение: Важно учитывать эти факты при проектировании газогенераторной системы или при фактическом принятии решения о покупке определенной модели, потому что на самом деле вы можете покупать меньше, чем вы на самом деле так думаешь.

Что такое микрограмм на кубический метр [мкг / м³], единица плотности

A микрограмм на кубический метр (мкг / м³) — производная метрическая единица измерения плотности в системе СИ (Международная система), используемая для измерения объема в кубических метров для оценки веса или массы в микрограммах

  • Что такое плотность Мгновенные преобразования Таблицы преобразования
  • 1 мкг / м³ = 1,0 × 10 -9 мкг / мм³ мкг / м³> мкг / мм³ мкг / мм³> мкг / м³Что такое мкг / мм³
  • 1 мкг / м³ = 1.0 × 10 -6 мкг / см³ мкг / м³> мкг / см³ мкг / см³> мкг / м³Что такое мкг / см³
  • 1 мкг / м³ = 0,001 мкг / дм³ мкг / м³> мкг / дм³ мкг / дм³> мкг / м³W мкг / дм³
  • 1 мкг / м³ = 1,0 × 10 -6 мкг / мл мкг / м³> мкг / мл мкг / мл> мкг / м³ Что такое мкг / мл
  • 1 мкг / м³ = 0,001 мкг / л мкг / м³> мкг / л мкг / л> мкг / м³ Что такое мкг / л
  • 1 мкг / м³ = 5,0 × 10 -6 мкг / метрическая чайная ложка / м³> чайная ложка> мкг / м³ Что такое чайная ложка
  • 1 мкг / м³ = 1,5 × 10 -5 мкг / метрическая столовая мкг / м³> столовая ложка> мкг / м³Что такое столовая ложка
  • 1 мкг / м³ = 0.00025 мкг / метрический сг / м³> см> мкг / м³ Что такое с
  • 1 мкг / м³ = 1,6387064 × 10 -5 мкг / дюйм³ мкг / м³> мкг / дюйм³ мкг / дюйм³> мкг / м³ Что такое мкг / дюйм³
  • 1 мкг / м³ = 0,0283168466 мкг / фут³ мкг / м³> мкг / фут³ мкг / фут³> мкг / м³Что такое мкг / фут³
  • 1 мкг / м³ = 0,764554858 мкг / ярд³ мкг / м³> мкг / ярд³ мкг / м³> мкг / ярд³µg мкг / ярд³
  • 1 мкг / м³ = 4,92892159 × 10 -6 мкг / чайная ложка / м3> мкг / чайная ложка / чайная ложка> мкг / м³ Что такое мкг / чайная ложка
  • 1 мкг / м³ = 1.47867648 × 10 -5 900 мкг / столовая ложка / м³> мкг / столовая ложка мкг / столовая ложка> мкг / м³Что такое мкг / столовая ложка
  • 1 мкг / м³ = 2.95735296 × 10 -5 мкг / жидкая унция мкг / м³> мкг / унция мкг / унция> мкг / м³ Что такое мкг / унция
  • 1 мкг / м³ = 0,000236588237 мкг / США с мкг / м³> см
  • 1 мкг / м³ = 0,000473
  • 1 мкг / м³ = 0,00378541178 мкг / галлон США мкг / м³> галлон> мкг / м³ Что такое галлон
  • 1 мкг / м³ = 1,0 × 10 -12 мг / мм³ мкг / м³> мг / мм³ мг / мм3> мкг / м³ составляет мг / мм³
  • 1 мкг / м³ = 1.0 × 10 -9 мг / см³ мкг / м³> мг / см³ мг / см³> мкг / м³ Что такое мг / см³
  • 1 мкг / м³ = 1,0 × 10 -6 мг / дм³ мкг / м³> мг / дм³ мг / дм³> мкг / м³ Что такое мг / дм³
  • 1 мкг / м³ = 0,001 мг / м³ мкг / м³> мг / м³ мг / м³> мкг / м³ Что такое мг / м³
  • 1 мкг / м³ = 1,0 × 10 -9 мг / мл мкг / м³> мг / млмг / мл> мкг / м³ Что такое мг / мл
  • 1 мкг / м³ = 1,0 × 10 -6 мг / л мкг / м³> мг / лмг / л> мкг / м³ Что такое мг / л
  • 1 мкг / м³ = 5,0 × 10 -9 мг / метрическая чайная ложка / м³> чайная ложка> мкг / м³ Что такое чайная ложка
  • 1 мкг / м³ = 1.5 × 10 -8 мг / метрические столовые ложки мкг / м³> столовые ложки столовых ложек> мкг / м³ Что такое столовые ложки
  • 1 мкг / м³ = 2,5 × 10 -7 мг / метрические мкг / м³> куб. См> мкг / м³Что такое с
  • 1 мкг / м³ = 1,6387064 × 10 -8 мг / дюйм³ мкг / м³> мг / дюйм³ мг / дюйм³> мкг / м³ Что такое мг / дюйм³
  • 1 мкг / м³ = 2,83168466 × 10 -5 мг / фут³ мкг / м³> мг / фут³ мг / фут³> мкг / м³ Что такое мг / фут³
  • 1 мкг / м³ = 0,000764554858 мг / ярд³ мкг / м³> мг / ярд³ мг / ярд³> мкг / м³ Что такое мг / ярд³
  • 1 мкг / м³ = 4.9289215 м³ = 4,928 × 10 -9 мг / чайная ложка мкг / м³> мг / чайная ложка / чайная ложка> мкг / м³ Что такое мг / чайная ложка
  • 1 мкг / м³ = 1.47867648 × 10 -8 мг / столовые ложки мкг / м³> мг / столовые ложки / столовые ложки> мкг / м³ Что такое мг / столовые ложки
  • 1 мкг / м³ = 2,95735296 × 10 -8 мг / жидких унций мкг / м³> мг / ozmg / oz> мкг / м³ Что такое мг / унция
  • 1 мкг / м³ = 2,36588237 × 10 -7 мг / США cµg / m³> cc> мкг / м³ What is c
  • 1 мкг / м³ = 4,73176473 × 10 -7 мг / птмкг / м³> мг / птмг / пт> мкг / м³Что такое мг / пт
  • 1 мкг / м³ = 9,46352946 × 10 -7 мг / ам. Кв. Мкг / м³> qtqt> мкг / м³Что такое qt
  • 1 мкг / м³ = 3,78541178 × 10 -6 мг / галлон США мкг / м³> галгал> мкг / м³Что такое галлон
  • 1 мкг / м³ = 1.0 × 10 -15 г / мм³ мкг / м³> г / мм³ г / мм³> мкг / м³ Что такое г / мм³
  • 1 мкг / м³ = 1,0 × 10 -12 г / см³ мкг / м³> г / см³ г / см³> мкг / м³Что такое г / см³
  • 1 мкг / м³ = 1,0 × 10 -9 г / дм³ мкг / м³> г / дм³г / дм³> мкг / м³ Что такое г / дм³
  • 1 мкг / м³ = 1,0 × 10 -6 г / м³ мкг / м³> г / м³

Природный газ | Национальное географическое общество

Природный газ — это ископаемое топливо. Как и другие ископаемые виды топлива, такие как уголь и нефть, природный газ образуется из растений, животных и микроорганизмов, которые жили миллионы лет назад.

Существует несколько различных теорий, объясняющих, как образуются ископаемые виды топлива. Наиболее распространенная теория заключается в том, что они образуются под землей в интенсивных условиях. По мере разложения растений, животных и микроорганизмов они постепенно покрываются слоями почвы, отложений, а иногда и горных пород. За миллионы лет органическое вещество сжимается. По мере того как органическое вещество продвигается глубже в земную кору, оно сталкивается с все более высокими температурами.

Сочетание сжатия и высокой температуры вызывает разрушение углеродных связей в органическом веществе.В результате этого молекулярного распада образуется термогенный метан — природный газ. Метан, вероятно, самое распространенное органическое соединение на Земле, состоит из углерода и водорода (Глава 5).

Месторождения природного газа часто находятся рядом с нефтяными месторождениями. Месторождения природного газа вблизи поверхности Земли обычно затмеваются близлежащими месторождениями нефти. Более глубокие месторождения, образующиеся при более высоких температурах и более высоком давлении, содержат больше природного газа, чем нефти. Самые глубокие месторождения могут состоять из чистого природного газа.

Однако природный газ необязательно формировать глубоко под землей.Он также может быть образован крошечными микроорганизмами, называемыми метаногенами. Метаногены обитают в кишечнике животных (в том числе человека) и в районах с низким содержанием кислорода у поверхности Земли. Например, свалки полны разлагающегося вещества, которое метаногены распадаются на метан, называемый биогенным метаном. Процесс образования метаногенов природного газа (метана) называется метаногенезом.

Хотя большая часть биогенного метана улетучивается в атмосферу, создаются новые технологии для удержания и сбора этого потенциального источника энергии.

Термогенный метан — природный газ, образующийся глубоко под поверхностью Земли — также может улетучиваться в атмосферу. Часть газа может подниматься через проницаемые вещества, такие как пористые породы, и в конечном итоге рассеиваться в атмосфере.

Однако большая часть термогенного метана, который поднимается к поверхности, встречается с геологическими образованиями, которые слишком непроницаемы для его выхода. Эти скальные образования называются осадочными бассейнами.

Осадочные бассейны улавливают огромные резервуары природного газа.Чтобы получить доступ к этим резервуарам природного газа, в породе необходимо пробурить отверстие (иногда называемое скважиной), чтобы газ мог выйти и быть собран.

Осадочные бассейны, богатые природным газом, встречаются по всему миру. Пустыни Саудовской Аравии, влажные тропики Венесуэлы и ледяная Арктика американского штата Аляска — все это источники природного газа. В Соединенных Штатах за пределами Аляски бассейны в основном расположены вокруг штатов, граничащих с Мексиканским заливом, включая Техас и Луизиану.Недавно в северных штатах Северная Дакота, Южная Дакота и Монтана были созданы значительные буровые установки в осадочных бассейнах.

Типы природного газа

Природный газ, добыча которого экономична и легкодоступна, считается «традиционным». Обычный газ задерживается в проницаемом материале под непроницаемой породой.

Природный газ, обнаруженный в других геологических условиях, не всегда так просто и практично добыть. Этот газ называют «нетрадиционным».«Постоянно разрабатываются новые технологии и процессы, чтобы сделать этот нетрадиционный газ более доступным и экономически выгодным. Со временем газ, считавшийся «нетрадиционным», может стать обычным.

Биогаз — это газ, который образуется при разложении органических веществ в отсутствие кислорода. Этот процесс называется анаэробным разложением и происходит на свалках или там, где разлагаются такие органические материалы, как отходы животноводства, сточные воды или промышленные побочные продукты.

Биогаз — это биологическое вещество, которое поступает от растений или животных, которые могут быть живыми или неживыми. Этот материал, такой как лесные остатки, можно сжигать для создания возобновляемого источника энергии.

Биогаз содержит меньше метана, чем природный газ, но его можно очищать и использовать в качестве источника энергии.

Deep Natural Gas
Deep Natural Gas — нетрадиционный газ. В то время как большинство обычных газов можно найти на глубине всего в несколько тысяч метров, природный газ на глубине залегает в залежах на глубине не менее 4500 метров (15000 футов) от поверхности Земли.Бурение глубокого месторождения природного газа не всегда экономически целесообразно, хотя методы его добычи были разработаны и усовершенствованы.

Сланцы
Сланцевый газ — еще один вид нетрадиционных месторождений. Сланец — это мелкозернистая осадочная порода, не разрушающаяся в воде. Некоторые ученые говорят, что сланец настолько непроницаем, что мрамор по сравнению с ним считается «губчатым». Толстые листы этой непроницаемой породы могут «прослоить» между собой слой природного газа.

Сланцевый газ считается нетрадиционным источником из-за сложных процессов, необходимых для доступа к нему: гидроразрыв пласта (также известный как гидроразрыв) и горизонтальное бурение. Фрекинг — это процедура, при которой открытая порода раскалывается струей воды под высоким давлением, а затем «подпирается» крошечными песчинками, стеклом или кремнеземом. Это позволяет газу более свободно вытекать из скважины. Горизонтальное бурение — это процесс бурения прямо в землю, а затем бурение сбоку или параллельно поверхности Земли.

Плотный газ
Плотный газ — это нетрадиционный природный газ, уловленный под землей в непроницаемой горной породе, что делает его чрезвычайно трудным для добычи. Для извлечения газа из «плотных» горных пород обычно требуются дорогие и сложные методы, такие как гидроразрыв и кислотная обработка.

Окисление аналогично гидроразрыву. Кислота (обычно соляная кислота) закачивается в скважину с природным газом. Кислота растворяет плотную породу, которая блокирует поток газа.

Метан угольных пластов
Метан угольных пластов — это еще один вид нетрадиционного природного газа. Как следует из названия, метан угольных пластов обычно находится в угольных пластах, которые проходят под землей. Исторически сложилось так, что при добыче угля природный газ намеренно выпускался из шахты в атмосферу как отходы. Сегодня метан угольных пластов собирается и является популярным источником энергии.

Газ в зонах с избыточным давлением
Еще одним источником нетрадиционного природного газа являются зоны с геодинамическим давлением.Зоны с избыточным давлением составляют 3 000–7 600 метров (10 000–25 000 футов) ниже поверхности Земли.

Эти зоны образуются, когда слои глины быстро накапливаются и уплотняются поверх более пористого материала, такого как песок или ил. Поскольку природный газ вытесняется из сжатой глины, он откладывается под очень высоким давлением в песке, иле или другом абсорбирующем материале под ним.

Зоны с избыточным давлением очень трудно добывать, но они могут содержать очень большое количество природного газа.В Соединенных Штатах наибольшее количество зон с повышенным давлением обнаружено в районе побережья Мексиканского залива.

Гидраты метана
Гидраты метана — еще один вид нетрадиционного природного газа. Метаногидраты были обнаружены совсем недавно в океанских отложениях и в районах вечной мерзлоты Арктики. Гидраты метана образуются при низких температурах (около 0 ° C или 32 ° F) и под высоким давлением. При изменении условий окружающей среды гидраты метана выбрасываются в атмосферу.

По оценкам Геологической службы США (USGS), гидраты метана могут содержать в два раза больше углерода, чем весь уголь, нефть и обычный природный газ в мире вместе взятые.

В океанических отложениях на континентальном склоне образуются гидраты метана, когда бактерии и другие микроорганизмы опускаются на дно океана и разлагаются в иле. Метан, заключенный в отложениях, имеет способность «цементировать» рыхлые отложения на месте и поддерживать стабильность континентального шельфа. Однако, если вода становится теплее, гидраты метана разрушаются. Это вызывает подводные оползни и выделяет природный газ.

В экосистемах вечной мерзлоты гидраты метана образуются при замерзании водоемов, и молекулы воды создают индивидуальные «клетки» вокруг каждой молекулы метана.Газ, заключенный в замороженной решетке воды, имеет гораздо более высокую плотность, чем в газообразном состоянии. Когда ледяные клетки тают, метан улетучивается.

Глобальное потепление, текущий период изменения климата, влияет на высвобождение гидратов метана как из слоев вечной мерзлоты, так и из слоев океанических отложений.

В гидратах метана хранится огромное количество потенциальной энергии. Однако, поскольку они представляют собой такие хрупкие геологические образования, способные разрушать и нарушать окружающие условия окружающей среды, методы их извлечения разрабатываются с особой осторожностью.

Бурение и транспортировка

Природный газ измеряется в кубических метрах или стандартных кубических футах. В 2009 году Управление энергетической информации США (EIA) подсчитало, что доказанные мировые запасы природного газа составляют около 6 289 триллионов кубических футов (триллионов кубических футов).

Большая часть запасов находится на Ближнем Востоке, 2 686 триллионов кубических футов в 2011 году, или 40 процентов от общих мировых запасов. Россия занимает второе место по размеру доказанных запасов — 1680 трлн фут3 в 2011 году.В Соединенных Штатах сосредоточено чуть более 4 процентов мировых запасов природного газа. <

Согласно EIA, общее мировое потребление сухого природного газа в 2010 году составило 112 920 миллиардов кубических футов (bcf). В том году Соединенные Штаты потребили немногим более 24 000 млрд куб. Футов — больше, чем любая другая страна.

Природный газ обычно добывается вертикальным бурением от поверхности Земли. От одиночного вертикального бурения скважина ограничивается обнаруженными запасами газа.

Гидравлический разрыв пласта, горизонтальное бурение и кислотная обработка — это процессы, позволяющие увеличить объем газа, к которому скважина может получить доступ, и тем самым повысить ее производительность.Однако такая практика может иметь негативные экологические последствия.

Гидравлический разрыв пласта или гидроразрыв пласта — это процесс, при котором открытые горные породы разделяются потоками воды, химикатов и песка под высоким давлением. Песочные подпорки открывают скалы, что позволяет газу выходить и храниться или транспортироваться. Однако для гидроразрыва требуется огромное количество воды, что может радикально снизить уровень грунтовых вод в районе и негативно повлиять на водную среду обитания. В результате этого процесса образуются высокотоксичные и часто радиоактивные сточные воды, которые при неправильном управлении могут протекать и загрязнять подземные источники воды, используемые для питья, гигиены, промышленного и сельскохозяйственного использования.

Кроме того, гидроразрыв может вызывать микроземлетрясения. Большинство этих землетрясений слишком малы, чтобы их можно было почувствовать на поверхности, но некоторые геологи и защитники окружающей среды предупреждают, что землетрясения могут вызывать структурные повреждения зданий или подземных сетей труб и кабелей.

Из-за этих негативных воздействий на окружающую среду, гидроразрыв был подвергнут критике и запрещен в некоторых областях. В других областях гидроразрыв — это прибыльная экономическая возможность и надежный источник энергии.

Горизонтальное бурение — это способ увеличения площади скважины без создания множества дорогостоящих и экологически чистых буровых площадок.После бурения прямо с поверхности Земли, бурение можно направить в сторону — горизонтально. Это увеличивает продуктивность скважины, не требуя нескольких буровых площадок на поверхности.

Подкисление — это процесс растворения кислотных компонентов и их помещения в скважину с природным газом, при котором растворяется порода, которая может блокировать поток газа.

После добычи природного газа его чаще всего транспортируют по трубопроводам, диаметр которых может составлять от 2 до 60 дюймов.

В континентальной части Соединенных Штатов имеется более 210 трубопроводных систем, состоящих из 490 850 километров (305 000 миль) магистральных трубопроводов, по которым газ транспортируется во все 48 штатов. Для этой системы требуется более 1400 компрессорных станций, чтобы газ продолжал свой путь, 400 подземных хранилищ, 11000 мест для доставки газа и 5000 мест для приема газа.

Природный газ также можно охладить до температуры около -162 ° C (-260 ° F) и преобразовать в сжиженный природный газ или СПГ.В жидкой форме природный газ занимает лишь 1/600 объема своего газообразного состояния. Его легко хранить и транспортировать в места, где нет трубопроводов.

СПГ транспортируется в специализированном изотермическом танкере, в котором СПГ поддерживается при температуре кипения. Если какой-либо из СПГ испаряется, он удаляется из зоны хранения и используется для питания транспортного судна. Соединенные Штаты импортируют СПГ из других стран, включая Тринидад и Тобаго и Катар. Однако в настоящее время США наращивают внутреннее производство СПГ.

Потребление природного газа

Хотя для разработки природного газа требуются миллионы лет, его энергия использовалась только в течение последних нескольких тысяч лет. Около 500 г. до н.э. китайские инженеры использовали природный газ, выходящий из Земли, построив бамбуковые трубопроводы. Эти трубы транспортируют газ для нагрева воды. В конце 1700-х годов британские компании поставляли природный газ для освещения уличных фонарей и домов.

Сегодня природный газ используется бесчисленными способами в промышленных, коммерческих, жилых и транспортных целях.По оценкам Министерства энергетики США (DOE), природный газ может быть на 68 процентов дешевле, чем электричество.

В жилых домах природный газ наиболее часто используется для отопления и приготовления пищи. Он используется для питания бытовой техники, такой как печи, кондиционеры, обогреватели, наружное освещение, обогреватели для гаражей и сушилки для одежды.

Природный газ также используется в более крупных масштабах. В коммерческих условиях, таких как рестораны и торговые центры, это чрезвычайно эффективный и экономичный способ питания водонагревателей, обогревателей, сушилок и плит.

Природный газ также используется для обогрева, охлаждения и приготовления пищи в промышленных условиях. Однако он также используется в различных процессах, таких как обработка отходов, пищевая промышленность и очистка металлов, камня, глины и нефти.

Природный газ также можно использовать в качестве альтернативного топлива для автомобилей, автобусов, грузовиков и других транспортных средств. В настоящее время во всем мире насчитывается более 5 миллионов автомобилей, работающих на природном газе (NGV), и более 150 000 автомобилей в США.

Хотя изначально газомоторные автомобили стоят больше, чем автомобили, работающие на газе, их дешевле заправлять топливом, и они являются самыми экологически чистыми автомобилями в мире.Транспортные средства с бензиновыми и дизельными двигателями выделяют вредные и токсичные вещества, включая мышьяк, никель и оксиды азота. Напротив, газомоторные автомобили могут выделять незначительные количества пропана или бутана, но выделяют в атмосферу на 70 процентов меньше окиси углерода.

Используя новую технологию топливных элементов, энергия природного газа также используется для производства электроэнергии. Вместо сжигания природного газа для получения энергии топливные элементы вырабатывают электричество с помощью электрохимических реакций. Эти реакции производят воду, тепло и электричество без каких-либо других побочных продуктов или выбросов.Ученые все еще исследуют этот метод производства электричества, чтобы по доступной цене применять его в электрических изделиях.

Природный газ и окружающая среда

Природный газ обычно необходимо обработать, прежде чем его можно будет использовать. При добыче природный газ может содержать множество элементов и соединений, кроме метана. Вода, этан, бутан, пропан, пентаны, сероводород, диоксид углерода, водяной пар и иногда гелий и азот могут присутствовать в скважине с природным газом.Чтобы использовать его для получения энергии, метан обрабатывается и отделяется от других компонентов. Газ, который используется для получения энергии в наших домах, представляет собой почти чистый метан.

Как и другие ископаемые виды топлива, природный газ можно сжигать для получения энергии. Фактически, это самое чистое горючее, а это значит, что при нем выделяется очень мало побочных продуктов.

При сжигании ископаемого топлива они могут выделять (или выделять) различные элементы, соединения и твердые частицы. Уголь и нефть — это ископаемые виды топлива с очень сложными молекулярными образованиями, которые содержат большое количество углерода, азота и серы.Когда они сгорают, они выделяют большое количество вредных выбросов, включая оксиды азота, диоксид серы и частицы, которые уносятся в атмосферу и способствуют загрязнению воздуха.

Напротив, метан в природном газе имеет простую молекулярную структуру: Ch5. Когда он горит, он выделяет только углекислый газ и водяной пар. Когда мы дышим, люди выдыхают те же два компонента.

Двуокись углерода и водяной пар, а также другие газы, такие как озон и закись азота, известны как парниковые газы.Увеличение количества парниковых газов в атмосфере связано с глобальным потеплением и может иметь катастрофические экологические последствия.

Хотя при сжигании природного газа по-прежнему выделяются парниковые газы, он выделяет почти на 30 процентов меньше CO2, чем нефть, и на 45 процентов меньше, чем уголь.

Безопасность

Как и при любой другой добывающей деятельности, бурение на природный газ может привести к утечкам. Если буровая установка попадает в неожиданный карман с высоким давлением природного газа, или если скважина повреждена или разрывается, утечка может быть немедленно опасной.

Поскольку природный газ так быстро растворяется в воздухе, он не всегда вызывает взрыв или возгорание. Однако утечки представляют собой опасность для окружающей среды, которая также приводит к утечке грязи и масла в окружающие области.

Если для расширения скважины использовался гидроразрыв, химические вещества, полученные в результате этого процесса, могут загрязнить местные водные среды обитания и питьевую воду высокорадиоактивными материалами.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *