110 Ампер сколько киловатт — Морской флот
Амперы и киловатты — используемые всеми физиками и электриками мира единицы общей системы измерения. Характеризуют они силу тока и мощность поставляемой электросетью энергии. Необходимость перевода возникает на стадии подбора защитных устройств, в маркировке которых чаще всего указывается лишь сила тока.
Все о том, как перевести Амперы в Киловатты, вы узнаете из предложенной нами статьи. Мы рассмотрим теорию, разберемся с основными принципами перевода, а затем поясним смысл этих действий на практических примерах. Следуя нашим советам, вы сможете самостоятельно выполнять такие вычисления.
Причины для выполнения перевода
Мощность и сила тока — ключевые характеристики, необходимые для грамотного подбора защитных устройств для оборудования, питающегося электроэнергией. Защита нужна для предотвращения оплавления изоляции проводки и поломки агрегатов.
Понятно, что контуру освещения, электроплите и кофе-машине нужны устройства с разной степенью защиты от КЗ и перегрева. Для их питания требуется разная нагрузка. У кабелей, подающих ток к приборам, сечение тоже будет различным, т.е. способным обеспечить конкретный вид оборудования током требующейся им силы.
Каждое защитное устройство обязано срабатывать в момент скачка напряжения, опасного для защищаемого типа техники или группы технических устройств. Значит, подбирать УЗО и автоматы следует так, чтобы во время угрозы для маломощного прибора не отключалась полностью сеть, а только ветка, для которой этот скачек является критичным.
На корпусах предложенных торговой сетью автоматических выключателей проставлена цифра, обозначающая величину предельно допустимого тока. Естественно, указана она в Амперах.
А вот на электроприборах, которые обязаны защищать эти автоматы, обозначена потребляемая ими мощность. Тут и возникает необходимость в переводе. Несмотря на то, что разбираемые нами единицы принадлежат разным токовым характеристикам, связь между ними прямая и довольно тесная.
Напряжением именуют разность потенциалов, проще говоря, работу, вложенную в перемещение заряда от одной точки к другой. Выражается оно в Вольтах. Потенциал – это и есть энергия в каждой из точек, в которой находится/находился заряд.
Под силой тока подразумевается число Ампер, проходящих по проводнику в конкретную единицу времени. Суть мощности заключается в отражении скорости, с которой происходило перемещение заряда.
Мощность обозначают в Ваттах и Киловаттах. Ясно, что второй вариант используется, когда слишком внушительную четырех- или пятизначную цифру нужно сократить для простоты восприятия. Для этого ее значение просто делят на тысячу, а остаток округляют как обычно в большую сторону.
Для питания мощного оборудования нужна более высокая скорость потока энергии. Предельно допустимое напряжение для него больше, чем для маломощной техники. У подбираемых для него автоматов предел срабатывания должен быть выше. Следовательно, точный подбор по нагрузке с грамотно выполненным переводом единиц просто необходим.
Правила проведения перевода
Часто изучая инструкцию, прилагаемую к некоторым приборам, можно увидеть обозначение мощности в вольт-амперах. Специалисты знают разницу между ваттами (Вт) и вольт-амперами (ВА), но практически эти величины обозначают одно и то же, поэтому преобразовывать здесь ничего не нужно. А вот кВт/час и киловатты — понятия разные и путать их нельзя ни в коем случае.
Чтобы продемонстрировать, как выразить электрическую мощность через ток, нужно воспользоваться следующими инструментами:
- тестером;
- токоизмерительными клещами;
- электротехническим справочником;
- калькулятором.
При перерасчете ампер в кВт используют следующий алгоритм:
- Берут тестер напряжения и измеряют напряжение в электроцепи.
- Используя токоизмерительные ключи, замеряют силу тока.
- Производят перерасчет, используя формулу для постоянного напряжения в сети или переменного.
В результате мощность получают в ваттах. Чтобы преобразить их в киловатты, делят получившееся на 1000.
У нас на сайте также есть материал о правилах перевода Амперов в Ватты. Чтобы с ним ознакомиться, переходите, пожалуйста, по следующей ссылке.
Однофазная электрическая цепь
На однофазную цепь (220 В) рассчитано большинство бытовых приборов. Нагрузка здесь измеряется в киловаттах, а маркировка АВ содержит амперы.
Ключевым при переводе в этом случае является закон Ома, который гласит, что P, т.е. мощность, равна I (силе тока) умноженной на U (напряжение). Подробнее о расчете мощности, силы тока и напряжения, а также о взаимосвязи этих величин мы говорили в этой статье.
кВт = (1А х 1 В) / 1 0ᶾ
А как же это выглядит на практике? Чтобы разобраться, рассмотрим конкретный пример.
Допустим, автоматический предохранитель на счетчике старого типа рассчитан на 16 А. С целью определения мощности приборов, которые можно безболезненно включить в сеть одновременно, нужно осуществить перевод ампер в киловатты с применением вышеприведенной формулы.
220 х 16 х 1 = 3520 Вт = 3,5КВт
Как для постоянного, так и переменного тока применяется одна формула перевода, но справедлива она только для активных потребителей, таких как нагреватели лампы накаливания. При емкостной нагрузке обязательно возникает сдвиг фаз между током и напряжением.
Это и есть коэффициент мощности или cos φ. Тогда как при наличии только активной нагрузки этот параметр принимают за единицу, то при реактивной нагрузке его нужно принимать во внимание.
Если нагрузка смешанная, значение параметра колеблется в диапазоне 0,85. Чем меньше приходится на реактивную составляющую мощности, тем незначительней потери и тем выше коэффициент мощности. По этой причине последний параметр стремятся повысить. Обычно производители указывают значение коэффициента мощности на этикетке.
Трехфазная электрическая цепь
В случае переменного тока в трехфазной сети берут значение электрического тока одной фазы, затем умножают на напряжение этой же фазы. То, что получили, умножают на косинус фи.
После подсчета напряжения во всех фазах, полученные данные складывают. Сумма, полученная в результате этих действий, является мощностью электроустановки, подсоединенной к трехфазной сети.
Основные формулы имеют следующий вид:
Ватт = √3 Ампер х Вольт или P = √3 х U х I
Ампер = √3 х Вольт либо I= P/√3 х U
Следует иметь понятие о разнице между напряжением фазным и линейным, а также между токами линейными и фазными. Перевод ампер в киловатты в любом случае выполняют по одной и той же формуле. Исключение — соединение треугольником при расчете нагрузок, подключенных индивидуально.
На корпусах или упаковке последних моделей электроприборов указана и сила тока, и мощность. Обладая этими данными, можно считать вопрос, как быстро перевести амперы в киловатты, решенным.
Специалисты применяют для цепей с переменным током конфиденциальное правило: силу тока делят на два, если нужно примерно вычислить мощность в процессе подбора пускорегулирующей аппаратуры. Также поступают и при расчете диаметра проводников для таких цепей.
Примеры перевода ампер в киловатты
Преобразование ампер в киловатты — довольно простая математическая операция.
Существует также много онлайн – программ, где нужно всего-навсего ввести известные параметры и нажать соответствующую кнопку.
Пример №1 — перевод А в кВт в однофазной сети 220В
Перед нами стоит задача: определить предельную мощность, допустимую для автоматического выключателя однополюсного с номинальным током 25 А.
P = U х I
Подставив значения, которые известны, получим: P = 220 В х 25 А = 5 500 Вт = 5,5 кВт.
Это обозначает, что к этому автомату могут быть подключены потребители, общая мощность которых не выходит за пределы 5,5 кВт.
По такой же схеме можно решить вопрос подбора сечения провода для электрочайника, потребляющего 2 кВт.
В этом случае I = P : U= 2000 : 220 = 9 А.
Это совсем маленькое значение. Нужно серьезно подойти к выбору сечения провода и материалу. Если отдать предпочтение алюминиевому, он выдержит только слабые нагрузки, медный с такого же диаметра будет мощнее в два раза.
Подробнее о выборе нужного сечения провода для устройства домашней проводки, а также правила вычисления сечения кабеля по мощности и по диаметру мы разбирали в следующих статьях:
Пример №2 — обратный перевод в однофазной сети
Усложним задачу — продемонстрируем процесс перевода киловатт в амперы. Имеем какое-то число потребителей.
- четыре лампы накаливания каждая по 100 Вт;
- один обогреватель мощностью 3 кВт;
- один ПК мощностью 0,5 кВт.
Определению суммарной мощности предшествует приведение величин всех потребителей к одному показателю, точнее — киловатты следует перевести в ватты.
Мощность обогревателя равна 3 кВт х 1000 = 3000 Вт. Мощность компьютера — 0,5 кВт х 1000 = 500 Вт. Лампы — 100 Вт х 4 шт. = 400 Вт.
Тогда обобщенная мощность: 400 Вт + 3000 Вт + 500 Вт = 3 900 Вт или 3,9 кВт.
Такой мощности соответствует сила тока I = P : U = 3900Вт : 220В = 17,7 А.
Из этого вытекает, что приобрести следует автомат, рассчитанный на номинальный ток не меньше, чем 17,7 А.
Наиболее соответствующим нагрузке мощностью 2,9 кВт является автомат стандартный однофазный 20 А.
Пример №3 — перевод ампер в кВт в трехфазной сети
Алгоритм перевода ампер в киловатты и в обратном направлении в трехфазной сети отличается от сети однофазной только формулой. Допустим, нужно высчитать, какую же наибольшую мощность выдержит АВ, номинальный ток которого 40 А.
В формулу подставляют известные данные и получают:
P = √3 х 380 В х 40 А = 26 296 Вт = 26,3кВт
Трехфазный АБ на 40 А гарантировано выдержит нагрузку 26,3 кВт.
Пример №4 — обратный перевод в трехфазной сети
Если мощность потребителя, подключаемого к трехфазной сети, известна, ток автомата вычислить легко. Допустим, имеется трехфазный потребитель мощностью 13,2 кВт.
В ваттах это будет: 13,2 кт х 1000 = 13 200 Вт
Далее, сила тока: I = 13200Вт : (√3 х 380) = 20,0 А
Получается, что этому электропотребителю нужен автомат номиналом 20 А.
Для однофазных аппаратов существует следующее правило: один киловатт соответствует 4,54 А. Один ампер — это 0,22 кВт или 220 В. Это утверждение — прямой результат, вытекающий из формул для напряжения 220 В.
Выводы и полезное видео по теме
О связи ватт, ампер и вольт:
Зависимость между амперами и киловольтами описывает закон Ома. Здесь наблюдается обратная пропорциональность силы электротока по отношению к сопротивлению. Что касается напряжения, то прослеживается прямая зависимость силы тока от этого параметра.
У вас остались вопросы по принципу перевода Амперов в Киловатты или хотите уточнить нюансы практического расчета? Задавайте свои вопросы нашим экспертам в блоке комментариев, расположенном ниже под статьей.
Если у вас есть полезная информация, дополняющая изложенный выше материал, или уточнения, поправки, пишите свои замечания и дополнения ниже.
Опубликовано Артём в 06.
02.2019 06.02.2019Все автоматы, которые имеются в продаже, содержат в маркировке величину предельно допустимого тока (но никак не поддерживаемой мощности в ваттах), а большинство потребителей имеют пометку на бирке о потребляемой мощности. Чтобы правильно подобрать кабель и автоматический выключатель нужно знать, как перевести амперы в киловатты и обратно.
Краткие о напряжении, токе и мощности
Напряжением (измеряют в Вольтах) называется разность потенциалов между двумя точками или работу, выполненную по перемещению единичного заряда. Потенциал, в свою очередь, характеризует энергию в данной точке. Величина тока (количество Ампер) описывает, сколько зарядов протекли через поверхность за единицу времени. Мощность (ватты и киловатты) описывает скорость, с которой этот заряд был перенесен. Из этого следует – чем больше мощность, тем быстрее и больше переместилось носителей заряда через тело. В одном киловатте тысяча ватт, это нужно запомнить для быстрого расчета и перевода.
В теории звучит довольно сложно, давайте рассмотрим на практике. Основная формула, которой вычисляется мощность электрических приборов следующая:
P=I*U*cosФ
Важно! Для чисто активных нагрузок используется формула P=U*I , у которых cosФ равен единице. Активные нагрузки – это нагревательные приборы (электрический обогрев, электропечь с ТЭНами, водонагреватель, электрочайник), лампы накаливания. Все остальные электроприборы имеют некоторое значение реактивной мощности, это обычно небольшие значения, поэтому ими пренебрегают, поэтому расчет в итоге примерный получается.
Единицы мощности
Перевод ватты в амперы и наоборот – понятие относительное, потому как это разные единицы измерения. Амперы – это физическая величина силы электрического тока, то есть скорость прохождения электричества через кабель. Ватт – величина электрической мощности, или скорость потребления электроэнергии. Но такой перевод необходим для того, чтобы рассчитать, соответствует ли значение силы тока значению его мощности.
Перевести амперы в киловатты? Легко!
Чтобы подобрать автомат определенной нагрузки, который бы обеспечивал оптимальную работу какого-либо прибора, необходимо знать, как одну информацию или данные, интегрировать в другую. А именно – как перевести амперы в киловатты.
Для того, чтобы безошибочно выполнить такой расчет, многие опытные электрики используют формулу I=P/U, где I – это амперы, P – это ватты, а U – это вольты. Получается, что амперы вычисляются путем деления ватт на вольты. Для примера, обычный электрический чайник потребляет 2 кВт и питается от сети в 220 В. Чтобы в этом случае вычислить ампераж тока в сети, применяем вышеуказанную формулу и получаем: 2000 Вт/220 В = 9,09 А. То есть, когда чайник включен он потребляет ток больше 9 Ампер.
На многочисленных сайтах в сети, чтобы узнать сколько ампер в 1 кВт таблица и многие другие данный приведены со всеми подробными пояснениями. Также в этих таблицах указано как рассчитать количество киловатт в самых распространенных случаях, когда речь идет о напряжении в 12, 220 и 380 вольт. Это наиболее распространенные сети, поэтому потребность в расчетах возникает именно в отношении данных сетей.
Для того, чтобы рассчитать и перевести амперы в киловатты не нужно заканчивать специальных учебных заведений. Знание всего лишь одной формулы помогает на бытовом уровне решить многие задачи и быть уверенным в том, что вся бытовая техника в доме работает в оптимальном режиме и надежно защищена.
Мощность Вт, при напряжении в В | |||
А | 12 | 220 | 380 |
1 | 12 | 220 | 380 |
2 | 24 | 440 | 760 |
3 | 36 | 660 | 1140 |
4 | 48 | 880 | 1520 |
5 | 60 | 1100 | 1900 |
б | 72 | 1320 | 2280 |
7 | 84 | 1540 | 2660 |
8 | 96 | 1760 | 3040 |
9 | 108 | 1980 | 3420 |
10 | 120 | 2200 | 3800 |
11 | 132 | 2420 | 4180 |
12 | 144 | 2640 | 4560 |
13 | 156 | 2860 | 4940 |
14 | 168 | 3080 | 5320 |
15 | 180 | 3300 | 5700 |
16 | 192 | 3520 | 6080 |
17 | 204 | 3740 | 6460 |
18 | 216 | 3960 | 6840 |
19 | 228 | 4180 | 7220 |
20 | 240 | 4400 | 7600 |
21 | 252 | 4620 | 7980 |
22 | 264 | 4840 | 8360 |
23 | 276 | 5060 | 8740 |
24 | 288 | 5280 | 9120 |
25 | ЗСО | 5500 | 9500 |
26 | 312 | 5720 | 9880 |
27 | 324 | 5940 | 10260 |
28 | 336 | 6160 | 10640 |
29 | 348 | 6380 | 11020 |
30 | 360 | 6600 | 11400 |
Как перевести амперы в киловатты в однофазной сети?
- — Ватт = Ампер * Вольт:
- — Ампер = Ватты / Вольт:
Для того чтобы Ватты (Вт) перевести в киловатты (кВт) нужно полученное значение разделить на 1000. То есть в 1000 Вт = 1 кВт.
Как перевести ватт в ампер?
Перевести ватт в ампер нужно в ситуации, когда необходимо поставить защитное устройство и нужно выбрать, с каким номинальным током оно должно быть. Из инструкции по эксплуатации ясно, сколько ватт потребляет бытовой прибор, подключаемый к однофазной сети.
Задача рассчитать, сколько ампер в ваттах или какая соответствует розетка для подключения, если микроволновая печь потребляет 1,5 кВт. Для удобства расчета киловатты лучше перевести в ватты: 1,5 кВт = 1500Вт. Подставляем значения в формулу и получаем: 1500Вт / 220В = 6,81 А. Значения округляем в большую сторону и получаем 1500 Вт в пересчете на амперы – потребление тока СВЧ не менее 7 А.
Если подключать несколько приборов одновременно к одному устройству защиты, то чтобы посчитать, сколько в ваттах ампер, нужно все значения потребления сложить вместе. Например, в комнате используется освещение со светодиодными лампами 10 шт. по 6Вт, утюг мощностью 2 кВт и телевизор 30Вт. Сначала все показатели нужно перевести в ватты, получается:
- лампы 6*10= 60 Вт,
- утюг 2 кВт=2000 Вт,
- телевизор 30 Вт.
Теперь можно перевести ампер в ватты, для этого подставляем значения в формулу 2090/220 В = 9,5 А
10А. Ответ: потребляемый ток около 10А.
Необходимо знать, как перевести амперы в ватты без калькулятора. В таблице показано соответствие скорости потребления электроэнергии силе тока при однофазной и трехфазной сетях.
Ампер (А) | Мощность (кВт) | |
220 В | 380 В | |
2 | 0,4 | 1,3 |
6 | 1,3 | 3,9 |
10 | 2,2 | 6,6 |
16 | 3,5 | 10,5 |
20 | 4,4 | 13,2 |
25 | 5,5 | 16,4 |
32 | 7,0 | 21,1 |
40 | 8,8 | 26,3 |
50 | 11,0 | 32,9 |
63 | 13,9 | 41,4 |
Кол-во блоков: 6 | Общее кол-во символов: 6878
Количество использованных доноров: 4
Информация по каждому донору:
1 ампер – это сколько киловатт мощности?
Сколько ампер в 1 киловатте?
Эти две величины не совсем соизмеримы (совместимы) в Киловаттах измеряется мощность, а вот в Амперах сила тока.
Но если надо, то высчитать можно, напряжение мы знаем 220-ь Вольт (или 380-т, надо смотреть по месту).
В одном киловатте 1000а Ватт, делим 1000-у на 220-ь, получаем 4,54545454545, если округлить (точная цифра просто не нужна, для этих расчётов), то 4,5-ь Ампер в 1000-е Ваттах (одном киловатте).
То есть амперы высчитываются путём деления Ватт на Вольты.
Один ампер равен 0,22-м киловаттам (см. выше), для сети 220-ь Вольт и соответственно один амер равен 0,38-и Киловаттам, если сеть 380-т Вольт.
Формула для расчёта не сложная, вот она
«I», это те самые амперы которые мы вычилсяем.
«Р», в данной формуле, это Ватты.
Всё, подставляем известные значения в формулу и производим расчёты.
Ещё более простой вариант, это воспользоваться специальной таблицей, вот одна из них,
Ампер может быть в киловатте, только как «составляющая» и сам по себе без напряжения не существует.
Для того что бы ответить на этот вопрос, нужна еще одна характеристика – величина напряжения. Так для однофазной сети 220 вольт и трехфазной 380 вольт, ампераж будет разным, так как меняется напряжение.
Если например на розетке (или вилке) квартирной электрической сети написано 16 ампер это означает допустимую нагрузку по силе тока, которую может дать потребитель мощностью 16 х 220 = 3520 ватт, или 3,5 киловатта.
По этой же формуле вычисляем и ответ на вопрос.
Для однофазной сети 220 вольт –
1 ампер – это 220 ватт (или 0,22 киловатта)
В 1 киловатте 4,54545 Ампера
Для трехфазной сети 380 вольт –
1 ампер – это 380 ватт (или 0,380 киловатта)
В 1 киловатте 2,63157 Ампера
Всё зависит от напряжения, на самом деле.
Один и тот же ампер с автомобильного двенадцативольтового аккумулятора – это одно, а дома из розетки – совсем другое.
Мощность потребляемая (ватты, киловатты. ) очень просто вычисляется – множим ток (в Амперах) на напряжение (в Вольтах). Если в розетке у нас положенные 220 Вольт, то потребитель с током 1 Ампер потребляет 220 (220*1) Ватт, то есть, 0,22 кВт.
Старые (советского образца) бытовые вилки и розетки рассчитывались на максимальный ток в 6 Ампер. Сейчас обычно на 10 Ампер. Превышать эти значения категорически не рекомендуется, даже запрещается – пожароопасно.
Корректно было бы спросить – если есть оборудование в 1 Квт мощностью, то сколько оно потребляет ампер? Например, есть у нас утюг с приведенной выше мощностью (а в ваттах это – 1000), в розетке, соответственно, ток переменный, с напряжением (в вольтах) 220 и частотой (в герцах) – 50. Ампер используется для измерения силы тока, которую можно найти так – разделить мощность (выраженную в ваттах) на сетевое напряжение. Получится так – 1000/220=4,55 (примерно) ампер. А вот, например, автомобильная лампочка на 50Вт работает на постоянном токе, с напряжением в 12В, тут сила тока (потребление ампер) составит – 50/12=4,17 (примерно). Но, это ведь на 50Вт, а если на 1000Вт (нужный вам киловатт), то значение будет иным – 4,17*20=83,3 (примерно). Словом, сила тока будет тем выше, чем меньше напряжение. Что это значит? А то, что сечение проводов в автомобиле должно быть больше. А при передаче тока на расстояния значительные (линии воздушные), чтобы уменьшить потери и, понятное дело, силу тока – нужно давать высокие показатели напряжения.
Как конвертировать ватты в амперы — Наука
Наука 2021
Вы не можете реально конвертировать напрямую из ватт в амперы или из ампер в ватты, потому что эти две единицы измеряют очень разные аспекты электрического тока. При этом понятия ватт, ампер и вольт в
Содержание:
Вы не можете реально конвертировать напрямую из ватт в амперы или из ампер в ватты, потому что эти две единицы измеряют очень разные аспекты электрического тока. При этом понятия ватт, ампер и вольт все неразрывно связаны. Поэтому, если вам известны какие-либо из этих двух показателей, вы можете использовать эту информацию, чтобы найти пропущенный показатель. Этому способствует тот факт, что в Соединенных Штатах большинство розеток стандартизировано на электрический ток 120 В. Если вы предполагаете, что это правда, и вы знаете мощность, вы всего лишь несколько расчетов от поиска усилителей.
TL; DR (слишком долго; не читал)
Чтобы преобразовать ватты в амперы при фиксированном напряжении, используйте уравнение:
Ампер = Ватт ÷ Вольт
Водная аналогия
Чтобы понять ключевые понятия электричества, обозначаемые ваттами, вольтами и амперами, полезно думать об электричестве как о воде, протекающей по трубе. Усилители представляют собой количество или объем воды, протекающей через трубу, а напряжение представляет собой величину давления воды — точно так же, как давление воды, которое выходит из вашей насадки для душа или ванны. Общая мощность воды, протекающей по трубам, будет измеряться по объему × давлению или, чтобы вернуть ее в область электричества, мощность (ватт), вырабатываемая водой, рассчитывается по амперам × вольт.
Это дает вам несколько ключевых формул, которые вы можете использовать, чтобы стать вашим собственным калькулятором усилителя, все при условии постоянного напряжения:
Ампер = Ватт ÷ Вольт
Вольт = Ватт ÷ А
Вт = Ампер × Вольт
Преобразование из ватт в амперы
Если у вас есть как минимум две из трех частей информации (амперы, ватты и вольт), найти недостающий элемент так же просто, как выбрать правильную формулу, вставить информацию, которая у вас уже есть, и затем выполнить некоторые основные математические операции, чтобы найти недостающий элемент. кусок. Например, если вы знаете, в ваттах и вольтах, но хотите знать усилители, выберите уравнение усилителей или:
Ампер = Ватт ÷ Вольт
Пример 1: Представьте, что у вас есть блендер с 600-ваттным двигателем на стационарной электрической цепи на 120 В. Сколько это усилителей?
Ампер = 600 ÷ 120 = 5
Таким образом, блендер рассчитан на 5 ампер. Обратите внимание, что рейтинги устройства часто не являются конкретными; например, все, от блендеров до электрических сковородок, может иметь турбо, пиковый или аналогичный режим «высокой мощности», который потребляет большую силу тока, чем при обычном использовании. Таким образом, вы часто будете видеть приборы, оцененные с определенным фактором выдумки; например, блендер может быть рассчитан на 5-6 ампер вместо просто 5 ампер.
Пример 2: Представьте, что у вас есть кондиционер, рассчитанный на 1500 ватт при фиксированной цепи 120 В. Сколько это усилителей?
Ампер = 1500 ÷ 120 = 12,5
Таким образом, кондиционер рассчитан на 12,5 А, хотя вы часто увидите, что это округлено до следующего наибольшего значения.
Преобразование из ватт в амперы
Аналогичным образом, если вы знаете ампер и вольт бытового прибора, стать вашим собственным ваттным калькулятором так же просто, как выбрать правильное уравнение.
Пример 3: Представьте, что вы хотите узнать, сколько ватт требуется зарядить ноутбуку. Если вы знаете, что ноутбук рассчитан на 0,5 А и постоянный бытовой ток 120 В, выберите следующее уравнение и вставьте недостающие части:
Вт = Ампер × Вольт
Вт = 0,5 × 120 = 60
Таким образом, ноутбук потребляет 60 Вт электроэнергии при зарядке.
220 В и 380 В, таблица
Как перевести амперы в киловатты: принципы перевода и практические примеры с пояснениями
Работая и проектируя электрическую сеть необходимо следовать нормам и правилам, по которым она устроена, а также разбираться в физических законах, а также в единицах измерения. Для многих сложно разобраться не только с тем, что они означают, но и как одну единицу конвертировать в соответствующую иную. Особенно важно понимать, как работать с единицами измерения силы электрического тока Амперами и единицами мощности электрического тока или Ваттами. Они используются в характеристиках разнообразного электрооборудования и приборов. Обеспечить совместную эксплуатацию электрооборудования без этих знаний невозможно.
Закон Георга Ома для участка цепи – почему важно его знать
Чтобы разобраться переводом электрических единиц одна в другую, нужно вспомнить школьную физику, а точнее закон Ома.
Свой закон и его доказательства немецкий физик Георг Симон Ом опубликовал в 1827 году. Он первый в мире установил взаимосвязь между слой тока участка цепи Ɪ, напряжением на этом участке U и сопротивлением R. В его честь эту зависимость назвали закон Ома.
Единицами измерения этих физических величин является:
– Ампер, обозначается А, определяет силу тока Ɪ,
– Вольт, обозначается В, размерность напряжения U,
– для сопротивления R – Ом (величина, названная в честь Георга Ома), обозначается Ω или Ом.
Из закона Ома выводится зависимость силы тока и напряжения участка цепи от мощности электрической энергии:
P = I × U
где Р – это электрическая мощность в Ваттах (Вт),
Ɪ – как мы уже знаем, обозначает силу тока в Амперах (А),
U – напряжение равно работе эффективного электрического поля и измеряется в Вольтах (В).
Для перевода ампер в ватты используется именно эта формула.
Для перевода ватт в амперы используют обратную формулу: I = P ⁄ U
Как перевести амперы в ватты и наоборот
Обязательно нужно уточнить, однофазная у вас сеть или трехфазная. Формулы выше можно применять при 1-фазной цепи.
Для 3-х фазной цепи используют несколько модифицированные формулы:
P = √3 × U × I
I = P ⁄ √3 × U
Нужно учесть, что напряжение 3-фазной цепи – 380 вольт.
Вне пределов России можно столкнуться с тем, что применяют напряжение в сети и не 220 вольт. Подставляя вместо Р и U имеющиеся силу тока в амперах или мощность оборудования, можно с легкостью конвертировать эти величины. В США, например, по стандарту используется напряжение в 110–127В.
В основном маркировку оборудования в зависимости от потребляемой электромощности производят в киловаттах. Чтобы их конвертировать в ватты используют следующую формулу:
кВт = Вт/1000
Наглядные образцы конвертации Ампер – Ватт
- Пример № 1. Перевод ампер в ватты
Рассмотрим ситуацию, при которой электрическая компания ограничила потребляемую мощность загородного дома автоматом (1-фазным) 32А. Чтобы точно знать, объем какого оборудования можно включить внутри дома, применяем формулу:
P = I × U
32 ампера (А) перемножаем с напряжением 220В, что дает 7040 ватт (кВт) или 7,04кВт.
Что определяет следующее: совокупная мощность одновременно включенных электропотребителей, включая осветительные приборы, не должна превышать 7 киловатт.
- Пример №2. Какой автомат требуется эксплуатировать, чтобы обеспечить бесперебойную работу кухонного оборудования (вытяжки, посудомойки, плиты и духового шкафа, электрического бойлера), если их суммарная потребляемая мощность составляет 3,5 кВт?
Используем следующую формулу:
I = P ⁄ U
3500Вт (не забываем киловатты конвертировать в ватты) делим на 220В и результатом будет 15,91А. То есть нам предстоит закупить автоматический выключатель в 16А.
- Пример №3. Проделаем расчеты для перевода кВт в А для 3-фазной цепи.
Например, требуется определить ограничивающую силу тока для оборудования в 6кВт, который работает от трех фаз.
6000 ват разделим на √3 и на 380В. Получаем 9,12 А. Необходимо закупить автомат на 3 фазы номиналом 10 А.
Почему сечение провода имеет значение
Произведя соответствующие расчеты, можно легко разобраться какую электроарматуру можно закупить для устройства электрической схемы в доме или квартире.
Электрические розетки по номиналу не должны по силе тока превышать включаемое в них оборудование. Соединенная одним проводом и выведенные на один автоматических выключатель группа розеток не должна по силе тока превышать номинал этого автомата.
Но осталось понять, какие ограничения есть по соединяющим электроустановочные изделия и автоматические выключатели проводам. Точнее – по сечению этих проводов. Приведенную ниже таблицу можно использовать для определения лимита мощностей в зависимости от сечения медных или алюминиевых проводов.
Сечение, мм | Медные жилы | Алюминиевые жилы | |||||||
Номинальное напряжение, 220 В | Номинальное напряжение, 380 В | Номинальное напряжение, 220 В | Номинальное напряжение, 380 В | ||||||
Ток, А | Мощность, кВт | Ток, А | Мощность, кВт | Ток, А | Мощность, кВт | Ток, А | Мощность, кВт | ||
1.5 | 19 | 4.1 | 16 | 10.5 | – | – | – | – | |
2.5 | 27 | 5.9 | 25 | 16.5 | 22 | 4.4 | 19 | 12.5 | |
4 | 38 | 8.3 | 30 | 19.8 | 28 | 6.1 | 23 | 15.1 | |
6 | 46 | 10.1 | 40 | 26.4 | 36 | 7.9 | 30 | 19.8 | |
10 | 70 | 15.4 | 50 | 33.0 | 50 | 11.0 | 39 | 25.7 | |
16 | 85 | 18.7 | 75 | 49.5 | 60 | 13.2 | 55 | 36.3 | |
25 | 115 | 25.3 | 90 | 59.4 | 85 | 18.7 | 70 | 46.2 | |
35 | 135 | 29.7 | 115 | 75.9 | 100 | 22.0 | 85 | 56.1 | |
50 | 175 | 38.5 | 145 | 95.7 | 135 | 29.7 | 110 | 72.6 | |
70 | 215 | 47.3 | 180 | 118.8 | 165 | 36.3 | 140 | 92.4 | |
95 | 260 | 57.2 | 220 | 145.2 | 200 | 44.0 | 170 | 112.2 | |
120 | 300 | 66.0 | 260 | 171.6 | 230 | 50.6 | 200 | 132.0 |
Полезное видео
Сергей Добронравов – автор сайта remohouse.ru. Эксперт в сфере ремонта, строительства, инфраструктурных проектов и эксплуатации зданий. Опыт работы в строительстве более 25 лет.
Сколько ампер в розетке 220В ? – RozetkaOnline.COM
Чтобы узнать сколько ампер в обычной домашней розетке 220В, в первую очередь вспомним, что в Амперах измеряется сила тока:
Сила тока «I» – это физическая величина, которая равна отношению заряда «q», проходящего через проводник, ко времени (t), в течении которого он протекал.
Главное, что нам в этом определении важно – это то, что сила тока возникает лишь когда электричество проходит через проводник, а пока к розетке ничего не подключено и электрическая цепь разорвана, движения электронов нет, соответственно и ампер в такой розетке тоже нет.
В розетке, к которой не подключена нагрузка, ампер нет, сила тока равно нулю.
Теперь рассмотрим случай, когда в розетку подключен какой-то электроприбор и мы можем посчитать величину силы тока.
Если бы нашу электропроводку не защищала автоматика, установленная в электрощите, и максимальная подключаемая мощность оборудования (как и сила тока), ничем бы не контролировались, то количество ампер в бытовой розетке 220В могло быть каким угодно. Сила тока росла бы до тех пор, пока бы от высокой температуры не разрушились механизм розетки или провода.
При протекании высокого тока, проводники или места соединений, не рассчитанные на него, начинают нагреваться и разрушаются. В качестве примера можно взять спираль обычной лампы накаливания, которая, при прохождении электрического тока, раскаляется, но т.к. вольфрам, из которого она сделана – тугоплавкий металл, он не разрушается, чего нельзя ждать от контактов механизма розетки.
Чтобы рассчитать сколько ампер будет в розетке, при подключении того или иного прибора или оборудования, если под рукой нет амперметра, можно воспользоваться следующей формулой:
Формула расчета силы тока в розетке
I=P/(U*cos ф) , где I – Сила тока (ампер), P – мощность подключенного оборудования (Вт), U – напряжение в сети (Вольт), cos ф – коэффициент мощности (если этого показателя нет в характеристиках оборудования, принимать 0,95)
Пример расчета:
Давайте рассчитаем по этой формуле сколько ампер сила тока в обычной домашней розетке с напряжением (U) 220В при подключении к ней утюга мощностью 2000 Вт (2кВт), cos ф у утюга близок к 1.
I=2000/(220*1)=9.1 Ампер
Значит, при включении и нагреве утюга мощностью 2кВт, в сила тока в розетке будет около 9,1 Ампер.
При одновременном включении нескольких устройств в одну розетку, ток в ней будет равен сумме токов этого оборудования.
Какая максимальная величина силы тока для розеток
Чаще всего, современные домашние розетки 220В рассчитаны на максимальный ток 10 или 16 Ампер. Некоторые производители заявляют, что их розетки выдерживают и 25 Ампер, но таких моделей крайне мало.
Старые, советские розетки, которые еще встречаются в наших квартирах, вообще рассчитаны всего на 6 Ампер.
Максимум, что вы сможете встретить в стандартной типовой квартире, это силовую розетку для электроплиты или варочной панели, которая способна выдерживать силу тока до 32 Ампер.
Это гарантированные производителем показатели силы тока, который выдержит розетка и не разрушится. Эти характеристики обязательно указаны или на корпусе розетки или на её механизме.
При выборе электроустановочных изделий имейте ввиду, что, например, розетка на 16 Ампер выдержит около 3,5 киловатт мощности, а на 10 Ампер уже всего 2,2 Киловатт.
Ниже представлена таблица, максимальной мощности подключаемого оборудования для розеток, в зависимости от количества ампер, на которые они рассчитаны.
ТАБЛИЦА МАКСИМАЛЬНОЙ МОЩНОСТИ ОБОРУДОВАНИЯ ДЛЯ РОЗЕТОК, РАССЧИТАННЫХ НА ТОК 6, 10, 16, 32 Ампер
Чаще всего, всё бытовое электрооборудование, которое включается в стандартные розетки 220В, не превышает по мощности 3,5кВт, более мощные приборы имеют уже иные разъемы для подключения или поставляются без электрической вилки, в расчете на подключение к клеммам или к электрическим вилкам для силовых розеток.
Я советую всегда выбирать розетки рассчитанные на силу тока 16 Ампер или больше – они надежнее. Ведь чаще всего электропроводку в квартирах прокладывают медным кабелем с сечением жил 2,5 мм.кв. и ставят автомат на розетки на 16 Ампер. Поэтому, если вы выберете розетку, рассчитанную на 10 Ампер и подключите к ней большую нагрузку, то защитная автоматика не сработает, и розетка начнет греться, плавится, это может стать причиной пожара.
Если же у вас остались вопросы о характеристиках розеток или их выборе, обязательно пишите, постараюсь помочь. Кроме того, приветствуется любая критика, дополнения, мнения – пишите.
Как выбрать зарядное устройство для смартфона и не ошибиться
На сегодняшний день все больше и больше производителей смартфонов громогласно вещают: «Наше устройство поддерживает быструю зарядку 60 Вт», «Мы представили новый стандарт зарядки – 80 Вт!». Vivo пошла еще дальше, выпустив Super FlashCharge с ее 120 Вт. Стандарты выходят за рамки должной «стандартности». Это безусловно хорошо, как двигатель прогресса, но вносит путаницу для пользователей. Давайте во всем разберемся.
Школьный курс физики или Что такое «небыстрая» зарядка
Основной показатель зарядного устройства – выдаваемая им мощность. На минуту вернемся в пятый класс. Произведение силы тока (амперы, А) на напряжение (вольты, В) является мощностью (ватты, Вт), по формуле W=I·U. Все, вернемся из школы в реальную жизнь, и что мы видим? Видим грустную картину – подавляющее большинство пользователей смартфонов в этом не разбирается. Редко кто знает характеристики зарядки своего гаджета. Будем это исправлять.
Прежде чем углубляться в разнообразие быстрых зарядок, разберемся что же подразумевает зарядка стандартная, «медленная». Ответ прост – а все, что угодно. Описания технических стандартов «медленности» зарядки не существует. До 2013 года, когда Qualcomm вывела в массы технологию Quick Charge, зарядные были просто зарядными, а после разделились на быстрые и не очень.
И все же стандартными значениями принято считать зарядку устройств 5 В, с силой тока 1,0, 1,5, 2,0 и 2,2 А, то есть от 5 до 11 Вт. Все, что выше, классифицируется как быстрая зарядка.
Как научиться понимать свое ЗУ
Будем развивать свою техническую грамотность – учиться понимать информацию, которую указывает производитель зарядных устройств. Итак, шильдик на зарядке может рассказать нам, какие режимы эта самая зарядка поддерживает. Конечно же, если она не сделана в темном китайском подвале. Возьмем два зарядных, которые попались под руку, и рассмотрим их возможности.
Зарядка №1 (от Lenovo VIBE P1 Pro)
Первым делом найдем слово «Output», все что идет за ним – параметры тока и напряжения, выдаваемых устройством. Смотрим: 5.2V-2A, 7V-2A, 9V-2A, 12V-2A. Перемножив вольты и амперы, мы узнаем четыре поддерживаемых режима работы – 10,4 Вт, 14 Вт, 18 Вт и 24 Вт. Т.е. ЗУ умеет работать медленно, для поддержки устаревших смартфонов без быстрой зарядки, и имеет три быстрых режима.
Три варианта мощности предназначено не для трех разных смартфонов, а для одного. Дело в том, что на максимальном значении в 24 Вт смартфон заряжается не все время, а примерно до 60% емкости батареи. После он переходит на 18 Вт и так далее в сторону уменьшения. Смысл – не допустить перегрева аккумулятора. Ведь чем больше мощности – тем больше тепла.
Зарядка №2 (от Xiaomi Mi 9)
Находим шильдик и видим: 5V-2.5A, 9V-2A, 12V-1.5A. Узнаем мощность – 12,5 Вт, 18 Вт и… 18 Вт. Данная зарядка нам предлагает стандартный режим, и два одинаково быстрых режима на 18 Вт. Зачем? Ну это Xiaomi, а восток дело тонкое. Как видно, это зарядное более простое, и имеет всего два режима быстрой зарядки (а, по сути, всего лишь один).
Приступаем к выбору
Моделируем ситуацию – зарядное благополучно посеяно, и вы стоите: а) на вокзале, б) в аэропорту, в) посреди комнаты, с растерянным видом. Берем себя в руки, открываем сайт производителя вашего смартфона, вбиваем свою модель и смотрим характеристики зарядки. Нашли? Должно быть что-то наподобие: «Поддержка быстрой зарядки 40 Вт». Также важно узнать применяемую технологию быстрой зарядки. К примеру – Quick Charge 3.0. Теперь можно приступить к выбору ЗУ.
Итак, мы знаем, что смартфон поддерживает максимальную мощность заряда в 40 Вт. И знаем, что промежуточные значения тоже важны – перегрев батареи, помните? Отсеиваем все зарядные устройства, не относящиеся к QC 3.0. Даже если среди другой технологии быстрой зарядки (например, Pump Express) нам попадется устройство с необходимыми характеристиками, не факт, что они подружатся с нашим смартфоном.
Имеем оставшиеся зарядки с нужной нам технологией. Выбираем. Допустим, первая, привлекшая наше внимание, имеет максимальную мощность 12V-2.5A. А это 30 Вт, маловато. Смотрим дальше – 20V-2A, это 40 Вт, то что нужно! Смотрим на промежуточные значения и, если нас все устраивает, покупаем. Если мощность зарядного оказалась выше поддерживаемой смартфоном, ничего страшного, он не сгорит, просто зарядное будет работать не в полную силу.
О недобросовестных производителях и беспроводных зарядках
Бывает, что жадные производители, комплектуют свои смартфоны стоковыми зарядными устройствами. То есть сам смартфон поддерживает 25-ваттную зарядку, а в комплекте с ним идут адаптеры всего лишь на 15 Вт или даже меньше.
В случае со смартфоном мы можем доукомплектовать его «правильным» зарядным устройством. Как и ранее, узнаем технологию, по которой он заряжается, и выбираем наиболее подходящее устройство. К примеру, некий смартфон Motorola поставляется с зарядным устройством 5V-5A, это 25 Вт мощности. Сам же смартфон может заряжаться от 35 Вт. Узнаем технологию, для Moto это – TurboPower 30. Ок, среди этой технологии есть зарядные с характеристиками 5V-7A, это и есть 35 Вт.
Подберем зарядное и для беспроводного дока. К примеру, имеем беспроводной «блинчик» от Xiaomi. Характеристики на нем следующие: 5V-2A, 9V-1.6A, то есть 10 и 14,4 Вт. По наименованию находим его на сайте, и проверяем используемую технологию – Quick Charge 2.0. Остается найти зарядное 9V-1.6A. Хотя в технологии Quick Charge 2.0 предусмотрены устройства до 12V–2A, переплачивать за них нет смысла, сама беспроводная станция более чем 14,4 Вт не выдаст.
Выводы
Как видно, разобравшись в пересчете вольтов и ампер в ватты, можно без труда определять выходные мощности зарядных устройств. При выборе ЗУ ориентируйтесь в первую очередь на используемую в нем технологию быстрой зарядки. Предпочтительно использовать такую же, как в смартфоне.
После нужно обращать внимание на поддерживаемую смартфоном мощность. Достаточно просто сопоставлять характеристики смартфона и зарядного устройства, и тогда выбор последнего не будет проблемой.
Различий, объясненных простыми словами
Клинт Демеритт
Ампер, вольт и ватт — это три основных понятия, с которыми вы будете постоянно сталкиваться при работе с любой электрической системой. Четвертый — сопротивление, которое измеряется в омах. Это может показаться сложным, но вам не нужна степень инженера, чтобы понимать, что такое электричество и как использовать его в своих интересах.
Подобно тому, как вода течет по шлангу, электричество — это поток электронов через проводник.В большинстве электрических систем проводник — это провод.
Электричество — это поток электронов через проводник.Поскольку вы не можете легко увидеть электроны, мы воспользуемся аналогией с водой и шлангом ниже. Давайте перейдем к этому, объясняя каждую концепцию отдельно.
Что такое усилители?
Ампер, или для краткости, ампер — это единица измерения электрического тока. Ток — это скорость или скорость, с которой электроны проходят через проводник, и обозначается буквой «I» в электрических уравнениях.
В нашей аналогии с водой, электрический ток эквивалентен скорости потока или количеству воды, протекающей через шланг.
Что такое вольт?
Вольт — это единица измерения электрического напряжения, которая в электрических уравнениях представлена буквой «V». Напряжение — это разница в электрическом потенциале или количестве электронов между любыми двумя точками в электрической цепи.
В нашей аналогии с водой, напряжение эквивалентно давлению воды.Давление — это сила, которая перемещает воду по шлангу, точно так же, как напряжение проталкивает электроны через проводник.
Что такое ом?
Ом — это единица измерения электрического сопротивления проводника, которая в электрических уравнениях обозначается буквой «R». Сопротивление пытается замедлить поток электронов.
В нашей аналогии с водой сопротивление — это диаметр шланга. Широкий шланг имеет очень небольшое сопротивление и позволяет воде быстро проходить через него.Проводники с низким электрическим сопротивлением, такие как медная проволока, позволяют электронам легко проходить через них, как и широкий шланг.
Сопротивление воды и трубки размеромЧто такое ватт?
Мощность — это скорость, с которой электрическая энергия передается в цепи, измеряется в ваттах. В электрических уравнениях буква «P» обозначает мощность.
Мощность немного сложнее объяснить с помощью аналогии с водой. С помощью шланга вы можете увеличить мощность, увеличив количество выходящей воды или увеличив давление воды на выходе.В электрической системе вы можете увеличить мощность, увеличивая ток или напряжение.
Собираем все вместе
Важно понимать эти базовые концепции сами по себе, но самое интересное происходит, когда мы связываем вместе усилители, вольты и ватты.
Напряжение, ток, сопротивление ЗаконОма связывает напряжение, ток и сопротивление. Он представлен простым уравнением.
В = I * R
В = напряжение (вольты)
I = ток (амперы)
R = сопротивление (Ом)
Если вы сохраните сопротивление и увеличите напряжение, ток должен увеличиться.Как и в нашей аналогии со шлангом, если вы увеличите давление, через него будет течь больше воды.
Сопротивление работает против напряжения, замедляя поток электронов. Если сопротивление увеличивается, а напряжение остается неизменным, ток, протекающий по цепи, уменьшится. Точно так же, если вы зажмете шланг, чтобы уменьшить диаметр или увеличить сопротивление, из конца будет выходить меньше воды.
Мощность, ток и напряжениеЧтобы свести воедино ватты (мощность), амперы (ток) и вольт (напряжение), нам нужно еще одно простое уравнение.
P = V * I
P = мощность (ватты)
V = напряжение (вольты)
I = ток (амперы)
Оглядываясь назад на наш пример воды, протекающей по шлангу, теперь мы можем увидеть, как мощность напрямую связана с током и напряжением, используя это уравнение.
Например, представьте, что вы распыляете шланг, чтобы вращать водяное колесо. Чем быстрее вращается колесо, тем больше мощности вырабатывается.
Если размер шланга останется прежним, мы можем ускорить вращение колеса двумя способами.Во-первых, увеличить скорость потока, что означает, что на колесо попадает больше воды и веса, и оно быстрее вращается. Второй способ — увеличить давление воды, чтобы вода с большей силой ударяла по колесу и быстрее вращала его.
Мы можем увеличить мощность, увеличивая напряжение (вольт) или ток (амперы).В нашей аналогии скорость потока воды эквивалентна току, а давление воды равно напряжению. Как видно из приведенного выше уравнения, если вы увеличите ток или напряжение, ваша мощность также увеличится.
Ампер, вольт и ватт: объяснение различий!
Взаимосвязь между мощностью, током, напряжением и сопротивлением поначалу кажется ошеломляющей, но если вы вникнете в нее, они станут довольно простыми. Электротехнические проекты на колесах с немного большей уверенностью.
Хотите узнать больше об электрических системах и литиевых батареях?
Мы знаем, что строительство или модернизация электрической системы может быть сложной задачей, поэтому мы здесь, чтобы помочь.Наши специалисты по продажам и обслуживанию клиентов из Рино, штат Невада, готовы ответить на ваши вопросы по телефону (855) 292-2831!
Также присоединяйтесь к нам в Facebook, Instagram и YouTube, чтобы узнать больше о том, как системы с литиевыми батареями могут способствовать вашему образу жизни, узнать, как другие построили свои системы, и обрести уверенность, чтобы выйти на рынок и остаться там.
Присоединяйтесь к нашему списку контактов
Подпишитесь сейчас на новости и обновления в свой почтовый ящик.Как определить требования к питанию
Одна из самых сложных концепций при размещении центров обработки данных — это определение необходимого количества энергооборудования. Есть много способов узнать, каковы ваши требования к питанию, но независимо от того, какой метод вы используете, все вычисления включают три электрические концепции:
- Ток (амперы)
- Напряжение (вольт)
- Электрическая мощность (ватты)
Расчет потребляемой мощности
Для расчета потребляемой мощности эти электрические концепции применяются к простой формуле:
ампер * вольт = ватт
Эта формула определяет, сколько энергии использует оборудование в данный момент.
Метод № 1. Использование счетчиков и лицевых панелей для определения требований к электропитанию вашего оборудования
Большинство современного оборудования для распределения электроэнергии имеет встроенный счетчик, отображающий использование мощности. На ЖК-дисплее PDU ниже вы видите, что как основной, так и резервный PDU потребляют 9 ампер:
Индикация на ЖК-дисплее PDUПроизводители также должны отображать допустимые диапазоны напряжения и силы тока, потребляемые на нагрузку, на лицевой панели оборудования:
Лицевая панель оборудования с указанием допустимого диапазона напряжения и потребляемого тока на нагрузку Подобное ИТ-оборудованиеобычно работает в диапазоне напряжений от 100 до 240 В и совместимо с питанием как 120 В, так и 208 В.К этим конкретным блокам распределения питания относятся APC AP7941, которые рассчитаны на ток до 30 ампер в цепях на 208 В (80% от 30 ампер в соответствии с Национальным электротехническим кодексом по соображениям безопасности). Поскольку мы знаем, что оборудование, подключенное к PDU, потребляет 9 ампер, мы можем подставить значения в формулу:
9 ампер * 208 вольт = 1872 ватта
Причина, по которой мы используем только одно из значений 9 ампер, связана с тем, как сконфигурированы первичная и резервная мощность. Первичное и резервное питание означает два или более блока питания от разных источников питания.Поскольку к каждому PDU подключено одно и то же устройство, они должны потреблять одинаковое количество энергии.
При планировании резервирования мощности каждая цепь (первичная и резервная) должна быть рассчитана таким образом, чтобы выдерживать общую нагрузку обеих в случае отказа одной из них.
Мы обнаружили, что оборудование шкафа потребляет 1872 Вт (почти 1,9 кВт).
Не забудьте оставить место для маневра для «снижения мощности», поскольку все ИТ-оборудование со временем потребляет больше энергии.
Метод № 2: Использование списков оборудования для определения требований к питанию вашего оборудования
Если у вас нет PDU со считыванием показаний усилителя, вы можете определить требования к питанию, используя полный список оборудования.Вам нужно будет изучить спецификации производителя по мощности для каждой единицы оборудования, чтобы определить:
- Конфигурация оборудования CPU / RAM / HDD / SSD
- Назначение оборудования (DNS, база данных, сервер приложений, веб-сервер)
- Возраст оборудования (более новое оборудование будет иметь более эффективные источники питания)
- Особые требования, такие как «Power-over-Ethernet» (общие для сетевых коммутаторов)
Например, один из наших клиентов может перечислить следующие единицы оборудования:
- 4 сервера Dell PowerEdge R420
- 1 коммутатор Juniper EX4200-48T
- 1 межсетевой экран FortiGate Fortinet 310B
Давайте определим максимальное энергопотребление для всех шести единиц оборудования.Сначала мы ищем в Интернете спецификации производителя по питанию и находим:
- Dell PowerEdge R420 имеет блок питания мощностью 550 Вт.
- Juniper EX4200-48T имеет блок питания мощностью 320 Вт.
- FortiGate Fortinet 310B может потреблять максимум 5–3 А в системах на 100–240 В. Мы знаем, что нам нужна максимальная потребляемая мощность в ваттах. (И мы знаем, что для расчета ватт нам нужно умножить ампер на вольты.) В таблице данных 310B указано, что наш максимальный диапазон составляет от 5 до 3 ампер.Поскольку устройство фактически потребляет на ампер меньше, чем на ампер, чем выше напряжение, наш максимум на самом деле меньше: 3 ампера. Для вольт в таблице данных указан диапазон: 100-240 вольт. Мы можем предположить, что это цепь на 120 В, потому что это стандарт для центров обработки данных в Соединенных Штатах.
Итак, чтобы определить максимальное энергопотребление в любой момент времени, мы сначала должны преобразовать все в ватты:
- 4 сервера Dell: 4 сервера * 550 Вт каждый = 2200 Вт
- 1 коммутатор Juniper: 320 Вт (оставьте как есть)
- 1 межсетевой экран FortiGate: 3 ампера * 120 вольт = 360 Вт
Затем сложите их вместе :
2200 Вт + 320 Вт + 360 Вт = 2880 Вт
Максимальное энергопотребление этих шести единиц оборудования составляет 2880 Вт.
Знание максимальной требуемой мощности дает основу для определения того, как используется оборудование и сколько реальной мощности необходимо обеспечить. Однако важно отметить, что ИТ-оборудование редко достигает предела максимальной мощности.
В SCTG мы гарантируем 100% бесперебойную работу при питании (и пропускной способности!). Часть нашего безупречного успеха в этом — это глубокие исследования и анализ, которые проводят наши инженеры по продажам. Другая часть — это уровень избыточности, встроенный в наши центры обработки данных (например, этот).
Все, что нужно, — это базовая формула, чтобы правильно определить ваши требования к мощности. А если вам нужно, чтобы кто-то перепроверил вашу работу, вы всегда можете связаться с нами.
Как рассчитать ватт (мощность)
Часто говорят, что мощность прибора (в ваттах) равна току (в амперах), умноженному на напряжение (в вольтах).
Хотя это верно для упрощенных цепей или цепей постоянного тока (DC), это не относится к электросети, которую мы используем каждый день.
Это общепринятое мнение или «эмпирическое правило» заставит вас рассчитывать кажущуюся мощность, а не реальную мощность.
Как НЕ рассчитывать мощность — Полная мощность (ВА)Ампер (А) x Вольт (В) = Вольт-Ампер (ВА)
Формулу выше можно использовать для расчета полной потребляемой мощности в вольт-амперах (ВА). Это уравнение даст вам приблизительное представление об использовании мощности в ваттах, но это не совсем правильно. Для этого нужно учитывать коэффициент мощности .
Как рассчитать мощность — Реальная мощность (Вт)Амперы (А) x Вольт (В) x Коэффициент мощности = Ватты (Вт)
Эта формула учитывает коэффициент мощности и показывает точное энергопотребление (за которое выставлен счет).
Что такое коэффициент мощности? Коэффициент мощности— это мера эффективности, с которой электрическое устройство преобразует вольтамперы в ватты. Коэффициент мощности представлен безразмерным числом от 0 до 1.
Чем ближе число к единице, тем «лучше» коэффициент мощности. Чем выше коэффициент мощности, тем эффективнее используется электроэнергия. Резистивные нагрузки, такие как большинство электрических нагревателей, будут иметь коэффициент мощности 1, поскольку они преобразуют всю подаваемую электрическую мощность в тепло. Оборудование с двигателями, такое как холодильники и кондиционеры, будет иметь меньший коэффициент мощности.
Как это относится к ваттам и мощности?Коэффициент мощности имеет решающее значение, если вы хотите узнать фактическое энергопотребление устройства.Ниже показано, как коэффициент мощности используется с нашим измерителем мощности для расчета реального энергопотребления небольшого телевизора.
Более крупным предприятиям необходимо иметь коэффициент мощности, близкий к «единице» (1), поскольку с них может взиматься плата, если они имеют низкий коэффициент мощности. Это связано с тем, что коммунальное предприятие должно подавать на объект больше тока (в амперах), чем требуется. При этом они несут больше потерь при передаче. Хорошая новость заключается в том, что предприятия могут предпринять шаги для увеличения коэффициента мощности.
Пример — расчет фактической мощности телевизора
На этикетке соответствия на этом телевизоре указана потребляемая мощность 130 Вт .
Проблема в том, что на этикетках соответствия часто указывается максимальная мощность , а не фактическая мощность. Единственный способ узнать реальную мощность — измерить ее с помощью подключаемого измерителя мощности. В течение двух часов измеритель мощности показал потребляемую мощность от 70 до 110 Вт — существенно меньше, чем указано на этикетке.
Такой ваттметр рассчитает фактическую мощность.
В какой-то момент измеритель мощности показал, что телевизор использует 243 вольта и 0.421 ампер. Если мы последуем общепринятому мнению и просто умножим Вольт и Ампер без коэффициента мощности, мы получим полную потребляемую мощность следующим образом: —
- Амперы (А) X Вольт (В) = ВА
- 243 В x 0,421 A = 102,3 ВА
… затем ложно представить его как 102,3 W
Когда мы добавляем в расчет коэффициент мощности, мы получаем совсем другую цифру. Поскольку в то время измеритель мощности показал коэффициент мощности 0,65, расчет будет:
- Амперы (А) x Вольт (В) x Коэффициент мощности = Ватты (Вт)
- 234 В x 0.421 A x 0,65 = 66,5 Вт
Надеюсь, теперь вы понимаете, почему так важно делать правильный расчет.
К счастью, наши подключаемые измерители мощности сделают эти расчеты за вас. Наш измеритель мощности отображает реальную мощность (ватты), а также амперы (A), вольт (V) и коэффициент мощности, поэтому вы можете проверить расчет, если вам нужно.
Подключаемый измеритель мощности Reduction Revolution — наш самый дешевый и самый популярный вариант. Power Mate Lite (на фото выше) — это высокоточная модель, используемая профессиональными энергоаудиторами.
См. Также: наш бесплатный онлайн-калькулятор эксплуатационных расходов.
Haier — Потребляемая мощность охлаждения (амперы и ватты)
Холодильные изделия потребляют более высокую силу тока (мощность) на мгновение во время запуска компрессора, чем во время работы.
В приведенной ниже таблице указаны амперы и ватты при запуске и работе:
Модель | Распашная дверь | Пусковой ток / мощность | Рабочие амперы / Вт |
DD410RS | ящик | 1,0 / | |
HC17SF15R 1,7 куб. Футов | Петля правая | 6,3 / 724,5 | 1,4 / 161 |
HC27SF22R 2,7 куб. Фута | Петля правая | 6,3 / 724,5 | 1,5 / 172,5 |
HC27SG42RB | 6.3 / 724,5 | 1,5 / 172,5 | |
HC31TG42S 3,1 куб. Фута | Петля правая | 4,0 / 460 | 1,1 / 126,5 |
HC32SA42S 3,2 куб. Фута | двусторонний | 3,4 / 391 | 0,8 / 92 |
HC32SF10S | двусторонний | 3,4 / 391 | 0,8 / 92 |
HC32TW10SV / HC32TW10SB | 4.0/460 | 1,1 / 126,5 | |
HC33SW20RB | 4,5 / | 1,3 / | |
HC33TF10S | двусторонний | 6/690 | 1,3 / 149,5 |
HC40SG42S 4,0 куб. Фута | двусторонний | 3,4 / 391 | 0,8 / 92 |
HC45SG42S | двусторонний | 6/690 | 1/115 |
HC46SF10SV | 6 | 1 | |
HF35CM23N | 6/690 | 1.2/138 | |
HF71CW20W | 6,6 / 759 | 1,7 / 195,5 | |
IF50CM23MW | 6,6 / 759 | 1,7 / 195,5 | |
HF71CW10W | 6,6 / 759 | 1,7 / 195,5 | |
HF71CW33NW | 6,6 / 759 | 1.7 / 195,5 | |
HF50CW10W | 6,6 / 759 | 1,7 / 195,5 | |
HF50CW33NW | 6,6 / 759 | 1,7 / 195,5 | |
HRC2736BWB | 6,3 / | 1,5 / | |
HRQ16N3BGS | 3/ | 2.3/ | |
HA10TG21S | 6.0 / 690 | 2,5 / 287,5 | |
HA10TG31 | 6.0 / 690 | 2,0 / 230 | |
DD400RS | 6.0 / 690 | 1,0 / 115 | |
HA12TG21S | 6.0 / 690 | 2,5 / 287,5 | |
Модели на 21 куб. Фут | 7.0/805 | 1,7 / 195,5 | |
Модели на 18 куб. Футов | 7,0 / 805 | 1,7 / 195,5 | |
HVTEC12DABS | 1,4 / 161 | 1,4 / 161 | |
HVTEC06 / 08ABS | 0,8 / 92 | 0,8 / 92 | |
HVTEC18DABS | 1.4/161 | 1,4 / 161 |
Какая разница между ваттами, вольтами и амперами?
Heating Green объясняет разницу между ваттами, вольтами и амперами.
Все электроприборы имеют 3 характеристики: мощность, сила тока и напряжение. Чтобы понять, как работает электричество, представьте его, как если бы это была вода, текущая через садовый шланг.
- Сила тока — это скорость потока воды через шланг. Например, предположим, что у вас есть два шланга рядом друг с другом, каждый с расходом 3 галлона в минуту.У них одинаковая сила тока.
- Напряжение — давление. В примере 1 представьте, что 3 галлона воды вытекают из шланга №1 без сопла. Вода может выливаться из шланга на расстояние до нескольких футов. Представьте, что вы кладете большой палец на шланг №2 и оказываете двойное давление. Вы можете создать поток воды, который струится по лужайке. Удвоение давления на шланге №2 эквивалентно удвоению напряжения. Однако вода больше не льется из шланга, она идет концентрированной струей.Со шлангом № 2 расход (сила тока) снижается до половины от его первоначального расхода, это более узкий, но более интенсивный поток воды.
- Выходная мощность (мощность). Уравнение для мощности — это напряжение, умноженное на силу тока (Вт = Вольт * Ампер). В нашем примере шланг № 1 с 3 галлонами вытекающей воды имеет ту же мощность, что и шланг № 2 с удвоенным давлением и половиной скорости потока (1,5 галлона). 1 * 3 = 3 и 2 * 1,5 = 3
Когда дело доходит до инфракрасных обогревателей, какая комбинация наиболее эффективна?
Измерительная линейка, определяющая стоимость использования инфракрасного обогревателя, — это мощность (мощность).Вы оплачиваете счет за электроэнергию в киловаттах (1 киловатт — 1000 ватт), которые вы используете в час. Запомните уравнение ватт = вольт * ампер. Если у вас есть нагреватель мощностью 1500 Вт при 120 В, он потребляет 12,5 ампера (1500/120 = 12,5). В качестве альтернативы, если у вас есть нагреватель мощностью 1500 Вт при 240 В, он использует 6,25 ампера (1500/240 = 6,25). Единственное отличие ампер . Поскольку мощность (выход) одинакова, нет никакой разницы в стоимости для запуска версии 1500 Вт 120 В и версии 1500 Вт 240 В.
Единственное преимущество использования более высокого напряжения заключается в том, что сила тока ниже, и это то, чем ограничивается ваша электрическая панель (большинство панелей имеют 200 ампер).Уменьшая силу тока, вы также можете установить больше нагревателей в каждую цепь. Это приводит к сокращению количества проводов, необходимых электрику для установки нагревателей, и, как правило, означает более низкую стоимость установки! По этой причине при подключении любой системы мы обычно рекомендуем использовать самое высокое напряжение, доступное в вашем доме или офисе. Вы можете прочитать здесь, в нашем блоге, о выборе правильного напряжения, чтобы определить, что лучше всего для вашего сценария.
Предупреждение: нагреватели зависят от напряжения i.е. они созданы для работы при определенном напряжении. Например, если вы подключаете 240 В к нагревателю, который рассчитан на работу при 120 В, вы прикладываете вдвое большее напряжение (давление), на которое он рассчитан. Хотя на самом деле вы получаете вдвое большую мощность (3000 Вт), это перегружает нагреватель, и он может преждевременно выйти из строя, если он вообще будет работать. И наоборот, если вы подключаете 120 В к нагревателю, который рассчитан на работу при 240 В, вы получаете половину выходной мощности (750 Вт), тогда как вы могли бы получить 1500 Вт, заказав нагреватель на 120 В.Нет никакой разницы в стоимости для нагревателей разного напряжения, поэтому всегда лучше подбирать яблоки к яблокам и заказывать нагреватель правильного напряжения для вашего приложения.
Если вы хотите выбрать подходящее решение для обогрева с учетом имеющейся мощности, не стесняйтесь обращаться к одному из наших экспертов по отоплению и электроснабжению.
Автор: Джефф Абель, вице-президент по продажам, экологическое отопление
Что такое ватт по сравнению с вольт-ампером в блоке питания постоянного тока?
Чтобы выбрать правильный источник питания для ваших приложений, первое, что вы должны сделать, — это выяснить, какая выходная мощность вам нужна.Для источника постоянного тока это относительно просто. Сначала вы определяете максимальное выходное напряжение, которое вам нужно, а затем максимальный выходной ток, который вам нужен. Выходная мощность (в ваттах) равна выходному напряжению, умноженному на выходной ток:
P (Вт) = V на выходе X I на выходе
В некоторых приложениях, конечно, может не потребоваться максимальный выходной ток и максимальное выходное напряжение или наоборот. Однако на всякий случай, если вы выберете источник питания, который может обеспечить максимальное напряжение и максимальный ток, которые вам понадобятся, вы можете быть уверены, что источник питания не будет недостаточным для вашего приложения.
Мощностьпостоянного тока, рассчитанная по приведенной выше формуле, иногда называется реальной мощностью или реальной мощностью. Мы называем это реальной мощностью, потому что это количество энергии, фактически доступное для выполнения некоторой работы. Это может включать в себя запуск двигателей постоянного тока или питание тестируемого электронного блока.
Видимо, не совсем так
Для источника питания переменного тока этот расчет не так прост. Причина этого в том, что для некоторых, если не для большинства, нагрузок переменного тока напряжение и ток не совпадают по фазе друг с другом.Если нагрузка емкостная, ток будет опережать напряжение. Если нагрузка индуктивная, напряжение будет опережать ток.
Реактивные нагрузки усложняют работу источника питания, поскольку им требуется источник питания для подачи энергии в течение части цикла переменного тока, а затем для возврата части этой мощности. В конечном итоге источник питания должен обеспечивать больший ток, чем рассчитанный по уравнению для расчета мощности постоянного тока.
Поскольку эта мощность не выполняет никакой реальной работы, ее называют полной мощностью или виртуальной мощностью .Чтобы отличить полную мощность от реальной, мы используем единицу измерения вольт-ампер, или вар, вместо ватт. Сокращение для вольт-ампер — ВА. Уравнение, используемое для расчета полной мощности:
.P (ВА) = В действующее значение x I среднеквадратичное значение
, где Vrms — среднеквадратичное значение переменного напряжения, а Irms — среднеквадратичное значение переменного тока.
Отношение реальной мощности к полной мощности называется коэффициентом мощности (PF):
PF = активная мощность (Вт) / полная мощность (ВА)
Если известен сдвиг фаз между напряжением и током, можно рассчитать коэффициент мощности по формуле:
PF = cos ø
где ø — фазовый угол между напряжением и током.
Коэффициент мощности всегда находится в диапазоне от 0 до 1, и чем больше фазовый угол, тем меньше коэффициент мощности. Чем меньше коэффициент мощности, тем больше кажущаяся мощность, а это означает, что вам понадобится источник с большей выходной мощностью для питания высокореактивной нагрузки, чем для питания нагрузки с очень низким реактивным сопротивлением.
Для получения дополнительной информации по этой теме и источникам питания переменного, постоянного и переменного / постоянного тока программируемого питания AMETEK обращайтесь в компанию AMETEK Programmable Power. Вы можете отправить электронное письмо в отдел продаж[email protected] или по телефону 800-733-5427.
Какова рабочая и импульсная мощность моего холодильного прибора? — EdgeStar
Требуемую мощность, необходимую для работы холодильного прибора, можно определить, используя данные, указанные на паспортной табличке, расположенной на задней или боковой стороне прибора. Величина протекающего тока указана в амперах (например, 1,1 А). Эквивалентное электричество от источника питания измеряется в вольтах (например, 115 В). Производимая мощность впоследствии измеряется в ваттах (например,грамм. 120 Вт). Один из наиболее важных расчетов, который необходимо понять, заключается в том, что мощность определяется путем умножения силы тока (номинального тока) на напряжение.
Ватт = Ампер x Напряжение.
ПРИМЕЧАНИЕ. Это особенно важно при рассмотрении использования генератора или инвертора в качестве источника питания, чтобы обеспечить надлежащую производительность и исключить возможность повреждения устройства или источника питания.
ОСНОВНАЯ ТЕРМИНОЛОГИЯ:
Номинальный или рабочий ток / мощность
Номинальный ток — это максимальный ток, при котором агрегат может работать в непрерывном режиме.Продолжительное потребление тока сверх номинального может привести к отказу компонентов.
Пуск или импульсный ток / мощность
Пусковой ток — это пик силы тока / потребляемой мощности, который возникает, когда прибор работает в наиболее тяжелых условиях или цикле. Для холодильной установки на базе компрессора это будет при запуске установки / компрессора. После того, как внутренние компоненты компрессора перейдут в рабочее состояние (обычно менее нескольких секунд), потребляемая сила тока вернется в нормальный режим работы.Также могут существовать различные уровни импульсных токов в зависимости от условий эксплуатации и других факторов окружающей среды (например, высокая температура окружающей среды или высокая влажность).
ПРИМЕР
Ex: Модель CRF150SS-1
Модель | CRF150SS-1 |
Напряжение / частота | 115 В / 60 Гц |
Хладагент / Кол-во | R600a / 0.92 унции |
Номинальный ток | 1.1A |
Номинальный или рабочий ток / мощность для CRF150SS-1
Расчет для приведенного выше примера будет: 1,1 A x 115 В = 126,5 Вт
Модель CRF150SS-1 имеет номинальный ток 1,1 А при напряжении 115 В. Для обычного использования это потребует 126,5 погонных ватт. Как отмечалось выше, бывают периоды запуска или всплеска мощности, которые обычно могут в 2-3 раза превышать количество рабочих ватт.Практически и из соображений предосторожности следует учитывать, что для первоначального запуска устройства может потребоваться до 6 раз больше номинального тока.
Пусковой или импульсный ток / мощность для CRF150SS-1
Пусковой ток потребления будет отмечен на самом компрессоре, ссылаясь на значение Locked Rotor Amp, также известное как «LRA». В приведенном ниже примере LRA составляет 5 А (5 А), что эквивалентно 575 Вт для запуска для устройства, подключенного к розетке 115 В.
См. Фото маркировки компрессора для модели CRF150SS-1 ниже
Расчет для приведенного выше примера: LRA = 5A x 115V = 575 Вт
Использование значений, определенных при расчете рабочих ватт и пусковых ватт, поможет определить требования к мощности и источнику питания, необходимые для правильной работы вашего устройства.
* Гарантийное обслуживание должно выполняться только уполномоченным представителем сервисной службы.
* Во избежание поражения электрическим током всегда отключайте прибор от электросети перед выполнением любых работ.
* Производитель или продавец не несет ответственности за интерпретацию или неправильное использование предоставленной информации, а также не несет никакой ответственности в связи с ее использованием.
.